文档库 最新最全的文档下载
当前位置:文档库 › 应力分析基础理论讲义

应力分析基础理论讲义

应力分析基础理论讲义
应力分析基础理论讲义

管道应力分析基础理论

管道应力分析主要包括三方面内容:正确建立模型、真实地描述边界条件、正确地分析计算结果。所谓建立模型就是将所分析管系的力学模型按一定形式离散化,简化为程序所要求的数学模型,模型的真实与否是做好应力分析的前提条件。应力分析的根本问题就是边界条件问题,而体现在工程问题上就是约束(支架)、管口等具体问题的模拟,真实地描述这些边界条件,才能得到正确的计算结果。要想能够熟练而正确地分析结果,首先会正确设计支吊架,有一定的相关理论知识如工程力学,流体力学,化工设备及机械等,另外需在一定时间内不断摸索,总结出规律性的问题。

第一章管道应力分析有关内容

1.1 管道应力分析的目的

进行管道应力分析的问题很多CAESARII解决的问题主要有:

1、使管道各处的应力水平在规范允许的范围内。

2、使与设备相连的管口载荷符合制造商或公认的标准(如

NEMASM23,API610 API617等标准)规定的受力条件。

3、使与管道相连的容器处局部应力保持在ASME第八部分许用应力范围内。

4、计算出各约束处所受的载荷。

5、确定各种工况下管道的位移。

6、解决管道动力学问题,如机械振动、水锤、地震、减压阀泄放等。

7、帮助配管设计人员对管系进行优化设计。

1.2 管道所受应力分类

1.2.1 基本应力定义

轴向应力(Axial stress):

轴向应力是由作用于管道轴向力引起的平行管子轴线的正应力,:S L=F AX/A m

其中 S L=轴向应力MPa

F AX=横截面上的内力N

A m=管壁横截面积mm2=π(do2-di2)/4

管道设计压力引起的轴向应力为S L=Pdo/4t

轴向力和设计压力在截面引起的应力是均布的,故此应力限制在许用应力[σ]t范围内。

弯曲应力(bending stress):

由法向量垂直于管道轴线的力矩产生的轴向正应力。

S L=M b c/I

其中:

M b=作用在管道截面上的弯矩N.m

C-从管道截面中性轴到所在点的距离mm

I-管道横截面的惯性矩mm4=π(d o4-d l4)/64

当C达到最大值时,弯曲应力最大

S max=M b R0/I= M b/Z

弯曲应力在断面上是线性分布的,截面最外端应力达到最大时,其它地方仍处于弹性状态,故应力限制在1.5[σ] 之内。

周向应力(circumferential stress):

由于内压在管壁圆周的切线方向引起的正应力。

对薄壁管 S H=Pdo/2t

径向应力(radial stress):

由内压在管子半径方向引起的应力

S r=P(r i2-r i2 r o2/r2)/( r o2-r i2〕

剪应力(shearing stress):

由作用在截面上的剪切力引起的应力。

t max=VQ/A m

t max=最大剪应力,MPa

V=剪切力F

Q=剪切系数

由扭矩引起的剪切力 t max=M T C/R

其中,M T-作用在横截面上的扭矩N.m

C-横截面上的点到扭转中心距离mm

R-抗扭截面模量mm4=2I=π(d o4-d4i)/32

当C最大时,扭曲应力也最大,即C等于外半径时

τmax=M T Ro/2I=M T/2Z

把剪应力的各个分量求和:作用在管子截面上最大剪应力为

τmax=VQ/Am+M T/2Z

CAESARII计算应力结果中有弯曲应力,轴向应力,扭转应力然后形成规范应力与许用应力比较。

大多数美国管道规范标准要求应力计算时用以下公式:

轴向应力:SL=M b/Z+F max/A m+Pdo/4t

剪切应力:τ=M T/2Z

周向应力:S H=Pdo/2t

1.2.2 应力分类

管道强度破坏主要由一次应力引起的断裂破坏和二次应力引起的疲劳断裂破坏.

一次应力:由机械外载荷引起的正应力和剪切应力,它必须满足外部和内部的力和力矩的平衡法则。

特征:一次应力是非自限性,它始终随所加载荷的增加而增加,超过材料的屈服极限或持久强度时,将使管道发生塑性破坏或总体变形,因此在管系的应力分析中,首先应使一次应力满足许用应力值。

二次应力:由于变形受到约束所产生的正应力或剪应力,它本身不直接与外力相平衡。

特征:①管道内二次应力通常是由位移载荷引起的(如热膨胀、附加位移,安装误差,振动载荷)

②二次应力是自限性的,当局部屈服和产生少量塑性变形时,通过

变形协调就能使应力降低下来。

③二次应力是周期性的(除去安装引起的二次应力)

④二次应力的许用极限是基于周期性和疲劳断裂模式,不取决于一个时期的应力水平,而是取决于交变的应力范围和交变的循环次数。

峰值应力,局部应力集中或局部结构不连续或局部热应力等所引起的较大的应力。

1.3 管道应力分析判剧

石油化工管道一般遵循B31或B31.1标准

1.3.1 B31.1电力管道标准

一次应力对应于CAESARII中持续(SUS)工况下的应力

S SuS=S1=0.75iM A/Z+Pdo/4t≤S h

其中:S SUS。S1=持续应力MPa

i--强度系数(各种类型弯矩的单一系数)依据B31.1标准附录D M A-由于持续载荷产生的总弯矩=

S h-材料在设计温度下的许用应力

二次应力对应于CAESARII中EXP工况下的应力

S E=IM C/Z≤f(1.25S c+1.25S h-S1) MPa

其中: S E=二次应力范围

i-强度系数(各种类型弯矩的单一系数)依据B31.1标准附录D

M c-由于二次载荷引起的弯矩范围=

S c-材料在环境温度下的许用应力。

偶然应力,对应于风载等偶然载荷下产生的应力

S oce=

其中:S occ-偶然载荷引起的总的弯矩N.m=

K-偶然载荷系数(偶然载荷发生率小于运行时间1%,系数为1.2,发生率处于运行时间的10%,系数为1.15)

1.3.2 B31.3:化工厂和石油精炼管道标准

一次应力:B31.3并没有提供一个明确等式来对持续应力作出定义,但它仅要求工程师计算由于重力和压力引起的轴向应力并且要求它不超过S h,它通常表达式为:

S1=F AX/A m+[(i i M i)2+(i o M o)2]1/2/Z+Pdo/4t≤S h

其中:

F ax-由于持续载荷产生的轴向力

M i-由于持续载荷产生的平面内弯矩

M o-由于持续载荷产生的平面外弯矩

i i i o-平面内、平面外应力增强系数,依据B31.3标准附录D

二次应力:

S E=

其中:M i-由于温度(二次)载荷引起平面内的弯矩范围

M o-由于温度(二次)载荷引起平面外的弯矩范围

M T-由于温度(二次)载荷引起的扭转力矩

S c-在环境温度下材料的基本许用应力:依据B31.3附录A、

偶然应力:

B31.3 没有明确定义计算偶然应力的方程,在简单状态下,由于持续和偶然载荷引起的轴向应力的总和不应该超过S h的1.33倍。

1.3.3 B31.1与B31.3的区别

①B31.3增强了扭矩的作用,而B31.1没有

②B31.1中对持续和偶然载荷工况的计算理论没有明确的定义,而B31.1则明确地作出了规定。

③在大多数普通的注释中,B31.1忽略在持续载荷工况下的扭矩而B31.3则包括了进去。

④在缺省的描述中B31.1忽略了所有的力,在持续载荷工况中

B31.3包括了F ax

⑤各自标准中的许用应力值不同。

⑥在每一标准规范中,对于偶然载荷产生的应力增加是不同的。

1.3.4 CAESRII管道应力分析遵循的其它标准

ASME第三部分NC或ND核工业管道标准

B31.4 油气管道标准

B31.8 气体运输和分配系统的

加拿大的2183/2184油气管道标准

英国的BS806管道标准等

1.4 管系应力分析的工况组合

管道所按载荷按照载荷性质可分为静载荷,动载荷和温度载荷,静载荷主要有管道自重(包括阀门、管件及绝热层)管道内介质重量,设计压力,其它持续载荷如弹簧的弹性反力,波纹管的弹性反力等。

动载荷主要包括压力波动或冲击产生载荷,地震载荷,安全阀的泄放压力等。

CAESERII中的载荷工况有:

W-重力载荷工况

D-附加位移载荷工况

T-温度载荷工况

P-压力载荷工况

F-集中载荷工况

Wind-风载工况

上述工况根据分析结果的需要可以任意组合也可单独地进行应力计算,组合工况得到的各项结果是每种单独工况下计算结果的线性相加,如(OPE〕W+D+T+P+F工况为(SUS)W+P+F工况和(EXP)DS=D2-D1工况计算结果之和。

1.5 管道、管口应力分析评估

当管子的载荷作用在泵、压缩机、汽轮机和热交换器的管口处可能会由于载荷过大在设备管上引起较大变形,影响设备正常运转,故需对设备管咀受力进行限制,通常制造厂提供设备管咀可承受的允许载荷,否则可参考通用标准,如NEMASM-23(蒸汽轮机)、API610(离心泵)、API617(离心式压缩机),API661(空冷器)等。

连接在容器上的管道在容器上产生的薄膜应力和弯曲应力,可根据ASME锅炉和压力容器标准第8部分的第2节评估,精确结果可用有限元分析法,CAESARII 中WRC107部分可根据对计算的应力限制保守地给出容器管咀的允许承受载荷值。

1.5.1 转动设备管口载荷分析

大部分正确评估设备管口的承载能力是用试验实现,其次代替试验

的最好方法是用有限元分析。CAESARII提供ROT程序利用相应标准自动评估管咀载荷,在评估设备管咀受力时,管咀载荷取管道应力分析结果中冷态和热态工况下的较大值。设备标准包括:

①蒸汽轮机-国家电气制造协会(NEMA)标准SM23

②离心泵-美国石油学(API)标准610第6和第7版

③离心压缩机-API标准617

④空冷器-API标准661

⑤密闭式给水加热器-热交换学会(HEI)标准

使用这些程序时,用户需输入相关设备的结构尺寸和作用载荷。

1.5.2 根据管咀载荷计算容器应力

由于管咀载荷的容器应力计算

自从60年代初,焊接研究学会第107公告(WRC)已被设计工程师广泛地用于评估容器/附件接口的局部应力,CAESARII使用WRC107计算管咀载荷在容器上引起的应力, WRC107是一套由于附加载荷在容器上产生的有限元法分析结果的参数化法. WRC107含有方程式和无量钢曲线(基本参数:管嘴和容器直径比,容器直径与厚度之比等). 无量钢曲线是由求根系数来计算在容器上附加件连接处的应力。

WRC107可用来分析圆柱形或球形容器的附件处的应力,在用WRC107校核管嘴载荷时, 管嘴载荷取CAESARII应力分析结果中相应工况下的约束处的受力值。

1.5.3 容器应力的限制条件

管口载荷在容器壁上引起的应力满足下列条件

P m

P m+P l+P n<1.5KS mh

P m+P t+P b+Q<3S mavg

这里P m是总体薄膜应力、P t是局部薄膜应力、P b是局部弯曲应力、 Q是总体二次应力、K为偶然载荷应力因子、.S mb是设计温度下材料的许用应力、S marg是材料许用应力强度平均值(S mh+S mc)/2。

应力分类按ASME第8部分第2节定义,通过将靠近管咀或管咀附近容器壁上的弯曲应力定义为Q或二次应力,不管它们是否是由持续或膨胀载荷引起的,这将使P b消失,并导致更详细的应力分类。

P m:总体一次薄膜应力(主要由内压引起)

P l:局部一次薄膜应力:包括由内压力引起的薄膜应力,由于外加的持续的力和力矩引起的局部薄膜应力。

Q:二次应力:包括由内压引起的弯曲应力,由外力和力矩引起的弯曲应力,由外加热胀载荷引起的薄膜应力,由外加热胀力和力矩引起的弯曲应力。

以上分类定义的每个应力项包含三部分:垂直方向上的二个正应力和切线方向剪应力,然后按一定准则合成。

WRC107根据管咀载荷可计算出P l和Q,各种应力部分可从合成应力强度得到,而应力强度可由施加的持续,热胀和偶然载荷计算中求得;CAESARII使用的评估不同应力元素的方程式如下:

P m(SUS)

P m(SUS+OCC)<1.2S mb

P m(SUS)+P l(SUS)<1.55mh

P m(SUS+OCC)+P l(SUS+OCC)<1.5(1.2)S mh

P m(SUS+OCC)+P l(SUS+OCC)+Q(SUS+EXP+OCC)

<1.5(S mc+S mh)

1.5.3 容器管咀柔性计算

我们知道与容器相连的管咀载荷将引起容器器壁弯曲或其它变形,在一定条件下,容器连接处允许有一定的位移和转角,也就是说与容器相连的管咀有一定的柔性,如果用完全刚性模型来模拟管道与容器连接管咀,在热胀工况下计算出的管咀载荷是非常保守的,因此有时就需对连接处的实际刚度进行计算,或将其模拟为柔性管咀与所连设备一起建入模型中。CAESRII采用WRC297对管咀的柔性进行计算,WRC297适用范围:

d/D <0.5 d/t>20 205

这里d管咀外径mm

D:容器平均直径mm

t 管咀厚度mm

T 容器厚度mm

第二章管系模型的建立及分析

管子模型建立是将与所分析的管系相连的设备或容器以及管道上各种管件、约束的信息通过一定的方法建立成数学模型。模型复杂与简化视所分析问题的具体情况,如管系的柔性较好或设置有适当型式的膨胀节,就可将管系与设备和容器相连的管端作为固定约束或给出相应附加位移将管道与设备或容器脱开单独建立模型,管系模型建立具体内容如

下:

1、基本元件的表示

2、管系模型建立的技巧

3、膨胀节模型的建立及计算

4、设备管器的计算包括设备载荷的计算,设备管口及设备应力的

确定,设备及设备连接柔性的判断。

5、管系约束及结构模型的建立

6、其它内容(冷紧、地下管,塑料管、夹套管,法兰泄漏的分析等)

2.1 基本元件的表示法

管线基本元件用中心线或杆件表示,这些元件由两个节点来定义,每个节点有固定的坐标和六个自由度(三个位移自由度和三个转角自由度),CAESARII通过在现设备相连管端、弯头、大小头、三通支吊架处,有附加位移处,集中载荷,刚性元件,膨胀节等处编写节点号,建立与实际管系相符的数学模型。

建模步骤:

1、编写节点号

2、建立数据文件

(1)输入单元节点号

(2)输入单元坐标长度

(3)输入单元结构尺寸:管子外径,壁厚,腐蚀余量,保温厚度。

(4)输入设计条件:设计温度,设计压力。

(5)选取单元类型:弯头,三通,刚性件,膨胀节。

(6)输入约束类型。

(7)输入外加载荷。

(8)选取材料类型。

(9)输入管道材料密度,管内介质密度,保温材料密度。2.2 管系建模型技巧

根据精确度要求,管系可建成许多种模型

1、大口径的管线用两个弹簧支撑的模型建立

简化模型:在节点⑤处,选弹簧数量为2。这种模型约束配对的扭转反力没有考虑

精确模型:在节点⑤处引入(5〕-(10)(5〕-(15)刚性单元,零重,长为D/2,

在(10)(15)处设弹簧

2、大口径管底部刚性支架模型

简化模型节点⑤处设+Y约束没有考虑管道在径向的膨胀精确模

型,是从节点⑤引刚性单元⑤-(10)在节点(10)处设+Y约

束。

3、弯管支架模型

简单模型,节点⑤处设+Y约束模型中不考虑支承柱的柔性

支承柱没有支在弯管的曲线上的正确位置上,精确模型, 从节点⑤处引一假管单元

(5〕-(10)节点(10)处给约束条件+Y

4、炉内弯管模型建立

半圆弯管可用两上90°弯头描述且将弯头曲率半径改为实际曲率半径(5〕-(10)

DY=1200

BEND Y R=1200

(10)-(15) DX=2400 BEND Y R=1200

(15)-(20) DY=-1200

5、圈管上任意位置处设约束模型的建立

单元(5)-(10)

BEND B R6080 Angle# 22 Node 6

DZ 6080 Angle# 72 Node 7

RESTRAINTS Y

Node 6 +Y

Node 7 +Y

(10)-(13) SIF& TEES Y Node 13

TYPE

节点(13)设为三通与其它管道相连

(13)-(15)

BEND B RADIUS 6080

DX 6080 Angle# 10 Node @1 16

Angle# 68 Node @2 17

RESTRAINTS Y Node 16 +Y

Node 17 +Y

6、斜管上导向约束模型建立

斜管上的约束用方向向量和方向余法来定义约束方向,如果使用方向向量,CAESRII会马上将其转化为方向余弦

如图则约束作用线在坐标轴上的方向余弦为

Dx=-Sin40°Dz=COS40°

或Dx=Sin40°Dz=-Sin40°

2.3 膨胀节的建模及计算

建立膨胀节的精确模型,首先应了解各种膨胀节的结构型式和工作原理,膨胀节的主要类型有:

①普通轴向型膨胀节,主要吸收管系的轴向位移。

②横向型膨胀节(包括复式铰链型膨胀节,复式万向铰链膨胀节,复式拉杆型膨胀节),主要吸收管系的模向位移和少量轴向位移,拉杆、铰链板承受压力推力。

③铰链型膨胀节(单式铰链型和万向铰链型)主要以两个或三个配套使用吸收平面管系或空间管系的模向位移。

④压力平衡膨胀节(直管压力平衡型膨胀节和弯管压力平衡型膨胀节、前者吸收管道轴向位移,后者吸收管系的轴向位移,横向位移和角位移,不会使支架或相连设备受到压力推力的作用。

膨胀节基本结构一般包括接管,波纹管和结构件(拉杆、铰链板)三部分、所收膨胀节的建模包括如下内容:

①接管单元,按一般管单元模拟。

②波纹管单元,必须精确给出波纹管单元所要求给出的刚度值、应注意刚度的单位,波纹管的刚度按EJMA标准公式计算,波纹管的参数中,刚度项可仅给出轴向刚度K x横向刚度K y或弯曲刚度Kθ、Kθ和K y可仅给一项,另一项程序可自动计算出。

这里应注意对一定长波纹管输入的弯曲刚度应为计算刚度的四倍,因为弯曲刚度是作用在膨胀节的自由端上的力矩(M T)计算而来的,且自由端移动了一个角度(θ),但是在建模时,认为弯曲刚度与一端固定。没有直线位移的膨胀节的转动力矩成正比,对于零长波纹管,弯曲刚度为实际计算值。

③对于直管压力平衡型。在参数栏中不输有效直径,这时程序就不会计算压力推力。

④结构单元及约束条件模型建立

对于膨胀节结构件如支座板,铰链板,拉杆可用刚性单元模拟,然后将结构件的重量均分给刚性件的重量。

铰链板与销轴处约束为三个线位移和两个角位移

如(5) Cnode (10)

RESTRINTS X Y Z Rx Ry

拉杆螺栓与球面垫圈之间仅约束三个线位移

(5)Cnode (10)

RESTRNTS X Y Z

2.4 钢结构模型的使用

钢结构模型的建立与管系模型类型,建完模型后可对钢结构单独进行计算,也可将钢结构模型Include进管道模型中与管系一起运算,它

们的主要区别是:

1、几乎甩有管道元件间的连接都被假设为固定连接(如:在相邻的管道元件之间,三个方位的力和三个方位的力矩是可以互相传递的)。对于钢结构,根据实际连接形式,在相邻的元件之间,只能有选择地进行载荷传递。

2、钢结构的一般特点是在一个方向的承载能力较强,在另一个方向上的承载能力较弱。所以建模时,钢结构元件的局部方位非常重要,钢结构元件和局部方位由ANGLE参数确定,它指定了钢结构元件相对于“标准”方位的偏转角度,在CAESSRII中钢结构模型的“标准”方位定义如下:

a)水平布置的钢结构元件(梁),它的弱轴为空间的Y轴

b)垂直布置的钢结构(柱),它的弱轴为空间Z轴

c)倾斜布置的钢结构(斜撑),它在垂直方向上投影的弱轴为空间Y轴。

钢结构的正确方位可通过使用钢结构模型的“PL0T”命令校核

建立钢结构模型时注意事项。

1、CAESARII中所带的钢结构库是美国钢结构协会AISC标准和德国DIN标准,与我国钢结构标准相差很大,这就要求我们必须自定义所使用的钢结构相关参数。

材料的物理性能参数为:

线胀系数 ALPHA mm/mm℃

弹性模量 YM 2.1×108 KPa

剪切模量 G 8.1×107 KPa

泊松比 P0IS 0.3

容重 DENS 0.00785 kg/cm3

结构尺寸参数

截面积 AREA mm2

惯性矩 STRONG mm4

高度 BOXH mm

宽度 DOXW mm

2、对于管线与结构连接处在结构文件和管系文件输入同一个节点号,或者将管系文件中接触点设一CNODE号这个附加的节点号就是对应接触处钢结构的节点号。

在将建好的结构模型Include进管道模型时,由于程序中没有给出两模型节点号的差值项Increment。管道模型之间相加时有此项,所以在建钢结构模时,应注意将模型中的节点号与管道模型错开。

2.5 带衬里管线的建模

带衬里管线的建模与一般管线基本相同,不同之处在于管道壁厚和许用应力需按标准求出当量壁厚和许用应力,因为衬里层(隔热层和耐磨层)有一定的刚度所以会影响到管道的刚度和变形,所以在建模时首先应根据隔热层和耐磨层的相应参数计算出衬里管道的当量壁厚,然后计算出衬里管道的许用应力。

第三章弹簧支吊架设计

3.1可变弹簧支吊架设计基础

当管子移动时,弹簧载荷稍微发生变化,但从应力的观点看:当管于从冷态变化到热态时,弹簧载荷有一些变化是允许的。一个预设在某个位置的可变弹簧支吊架,在管子运动的全过程都对管子提供支撑。当管子向上移动时,弹簧支吊架上的承重板上移,允许弹簧伸长,因而降低弹簧作用在管子上的载荷;当管子向下移动时,弹簧支吊架上的承重板也下移,使弹簧压缩,因而使弹簧作用在管子上的载荷增大。

弹簧支吊架设计的目的是选择一个符合下列要求的弹簧:

①当管子从冷态(安装状态)变化到热态(操作状态)后,弹簧提供必要的重力载荷支撑以平衡管系。

②从冷态到热态的总位移在允许的范围内。

③当弹簧载荷从冷载荷变化到热载荷时,不会在管系中造成过大的膨胀应力。

因为当管于从冷态到热态时,可变弹簧支吊架的载荷是变化的,并且弹簧支吊架设计的一个目的是提供必要的重量支撑载荷以平衡在热态位置的管系,因而有必要用不平衡的“冷态载荷”来安装弹簧支吊架。

3.2.载荷变化率

在某些情况下,管道规范推荐通过限制载荷变化率为10%或25%来使弹簧载荷的变化为最小。因为热态载荷和热位移取决于管系的结构,所以一个弹簧支吊架的可变性只能通过改变弹簧刚度来控制。大多数制造商对于每个载荷值提供三种(或更多)不同弹簧刚度的弹簧,分别推荐用于短程。中程和长程的位移。因为在一个给定载荷值下的所有弹

簧,在它们的全部行程中支承相同的载荷变化,通常长程弹簧的刚度(及其载荷变化率)是中程弹簧的一半,而后者又是短程弹簧的一半。

3.3.弹簧选型表

弹簧是从弹簧表中选出来的。弹簧表显示了每一号弹簧在工作范围内的负载能力,以及每一号的短、中、长程弹簧的弹簧刚度。在已知热态载荷、热位移和变化率的条件下,从表中选择弹簧的步骤为:

1 计算最大许用弹簧刚度;K=Var*HL|^th|

K—最大需用弹簧刚度

Var—荷载变化率

HL—热态荷载

Th—弹簧行程

②在弹簧表的各列中找到热态载荷(HL),来确定弹簧载荷的大

小;

③针对载荷大小,选择弹簧刚度小于或等于上面计算值的弹簧系列;

④计算冷态载荷(CL=HL+K^th)并确认冷态载荷也落在弹簧的工作范围内;

⑤如果不能满足条件,换相同号码的不同弹簧系列或邻近号的弹簧再试。

3.4.弹簧设计过程一约束重量,热态吊零及其它

上面描述的过程都是假设弹簧选型所需的热态载荷和热位移已知,但是工程师怎样来计算热态载荷和热位移呢?整个弹簧支吊架设计的步骤如下所述。

①利用标准跨距原理来选择管架位置。假设在这点有一个刚性Y向

桩身应力测试分析报告

精心整理第一章工程概况

根据**院提供的岩土工程勘察报告,该场地工程地质条件如下:

三、检测桩位示意图 四、钢筋应力计在桩身埋设位置示意图 钢筋应力计在各试桩中位置示意图

二、测试设备及钢筋测力计的埋设 1、每桩钢筋应力计设置在各土层交界面处,每一个截面设2只钢筋测力计(基本呈180°对称布置),各钢筋应力计埋设截面的平、剖面图如前图; 2、JTM-V1000振弦式钢筋应力计采用焊接法固定在钢筋笼主筋上,并与桩身纵轴线平行;

3、连接在应力计的电缆线用柔性材料保护,绑扎在钢筋笼内侧并 引至地面; 4、所有应力计均用明显标记编号; 5、仪器设备:检测仪器设备采用JTM-V1000振弦式钢筋应力计、JTM-V10B 型频率读数仪、集线箱等组成。 三、测试原理 1位2ε c1j = εεs1j 3E cj 、E sj —砼弹性模量、钢筋弹性模量[E s 取2.0×108(kPa)] A cj 、A sj —同一截面处砼面积、钢筋总面积。 εcj 、εsj —同一截面处砼与钢筋的应变 4、钢筋应力计受力的计算公式: ) 2()(' 2 02 ----------------??=-?=Si Sij S i ij Sij A E F F k P ε

式中: P Sij —第i 量测截面处在j 级荷载下应力计所受轴向力(kN ) F ij —第i 量测截面处在j 级荷载下应力计的实测频率值(Hz) F i0—i 截面处钢筋应力计的初始频率值(Hz ) K A si ’—56f ij P ij —i A i 12、弦式钢筋应力计宜放在两种不同性质土层的界面处,以测量桩在不同土层中的分层摩阻力。在地面处(或以上)应设置一个测量断面作为钢筋应力计传感器标定断面。钢筋应力计埋设断面距桩顶和桩底的距离不宜小于1倍桩径。在同一断面处对称设置2个钢筋应力计。钢筋计应按主筋直径大小选择。仪器的可测频率范围应大于桩在最大加载时的频率的1.2倍; 3、使用前应对钢筋计逐个标定,得出压力(拉力)与频率之间的关系。带有接长 ) 3()(' -------------------------?= Si S Sij Sij A E P ε

通信网理论基础复习提纲

通信网理论基础复习提纲 1.一个基本的通信网络通常由用户通信终端,物理传输链路和链路的汇聚点组成。 1.网络节点(交换设备,路由器)主要 功能:1将多个用户的信息复接到骨 干链路上或从骨干链路上分离出用户的信息;2使用户可以降低成本共享 骨干链路,降低成本实现任意用户间的信息交换。 2.路由器是网络互联的核心设备,它复 杂分组的转发和为各个分组选择适当的传输路径。 其基本功能:a根据路由表将分组发送到正确的目的点b维持和决定分组传输 路径的路由表。 4 数据传输链路是指在物理传输媒介上利用一点的传输标准,形成的传输规定速率的数据比特传输通道。 5 数据传输链路分类:a用户到网络节点之间的链路(接入链路):Modem链路,XDSL,ISDN,无线局域网链路 b网络节点到网络节点之间的链路( 网络链路):帧中继,SDH,WDM等 。 SDH(同步数字系统)是在美国贝尔实验室提出的SONET(光同步数字网)的基础上指定的技术标准。 WDM(光波分复用)技术是在一根光纤中能同时传输多个波长光的信号的一种技术。 6 数据传输网络的基本功能:通信中的交换机为运载用户业务的分组选择合适的传输链路,从而使这些分组迅速可靠地传送到目的的用户。 7 分组交换网需要完成的三个基本过程:a 分段和重装的过程b 选择传输过程c各网络节点的交换过程。 8 ATM网络:采用全网统一固定长度的分组进行传输和交换,ATM网络中,信元长度为53字节,其中5个字节为 信元头,48个字节用来运载信息。 9 实现全网互联需要两个基本条件:一是全网统一偏址;二是路由算法。 10 通信网络协议可按照分层的概念来设计。分层概念的基础是“模块”的概念,模块提供的功能通常称之为“服务”。 11 ISO定义的OSI参考模型: A物理层:关注的物理媒介上比特流的传输,处理接入物理媒介的机械电气功能和过程特性。 B数据链路层:为信息跨越物理层链路提供可靠的传输,发送带有必要的同步,查错控制和流量控制信息的数据块。C网络层:使搞错的功能独立用来链接网络节点的传输和交换技术,负责建立维护和终止连接。 D运输层:在两个端点之间提供可靠透明的数据运输,提供端到端的差错恢复和流量控制。 E会话层:负责控制应用程序间的通信,为协同工作的应用程序之间建立管理和终止连接。 F表示层:定义信息的表示方法,向应用程序和终端处理程序提供一系列的数据传输转换服务,从而使应用程序与数据表示的差异性无关。 G应用层:为用户提供接入OSI的环境,并提供分布式信息服务。 12 马尔科夫链:Ftn,t1,t2……..tn- 1(x1,x2,…..,xn-1)=Ftn,tn-1(Xn|Xn- 1),则称x(t)为马尔科夫过程。该过程 的特点是无后效性。 13 独立增量过程:设X(t0)-X(t1)=X(t1-

基于元ANS的压力容器应力分析报告

压力容器分析报告

目录 1 设计分析依据 0 1.1 设计参数 0 1.2 计算及评定条件 0 1.3 材料性能参数 0 2 结构有限元分析 (1) 2.1 理论基础 (1) 2.2 有限元模型 (1) 2.3 划分网格 (1) 2.4 边界条件 (2) 3 应力分析及评定 (2) 3.1 应力分析 (2) 3.2 应力强度校核 (2) 4 分析结论 (3) 4.1 上封头接头外侧 (4) 4.2 上封头接头内侧 (5) 4.3 上封头壁厚 (7) 4.4 筒体上 (9) 4.5 筒体左 (10) 4.6 下封头接着外侧 (12) 4.7 下封头壁厚 (14)

1 设计分析依据 (1)压力容器安全技术监察规程 (2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版 1.1 设计参数 表1 设备基本设计参数 1.2 计算及评定条件 (1)静强度计算条件 表2 设备载荷参数 载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。 1.3 材料性能参数 材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。 表3 材料性能参数性能

2 结构有限元分析 2.1 理论基础 传统的压力容器标准与规范,一般属于“常规设计”,以弹性失效准则为理论基础,由材料力学方法或经验得到较为简单的适合于工程应用的计算公式,求出容器在载荷作用下的最大主应力,将其限制在许用值以内,即可确认容器的壁厚。对容器局部区域的应力、高应力区的应力不做精细计算,以具体的结构形式限制,在计算公式中引入适当的系数或降低许用应力等方法予以控制,这是一种以弹性失效准则为基础,按最大主应力理论,以长期实践经验为依据而建立的一类标准。 塑性理论指出,由于弹性应力分析求得的各类名义应力对结构破坏的危险性是不同的,随着工艺条件的苛刻和容器的大型化,常规设计标准已经不能满足要求,尤其是在应力集中区域。若不考虑应力集中而只按照简化公式进行设计,不是为安全而过分浪费材料就是安全系数不够。基于各方面的考虑,产生了“分析设计”这种理念。采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹性失效”相结合的“弹塑性失效”准则,要求对容器所需部位的应力做详细的分析,根据产生应力的原因及应力是否有自限性,分为三类共五种,即一次总体薄膜应力( Pm) 、一次局部薄膜应力( Pc) 、一次弯曲应力( Pb) 、二次应力( Q) 和峰值应力( F) 。 对于压力容器的应力分析,重要的是得到应力沿壁厚的分布规律及大小,可采用沿壁厚方向的“校核线”来代替校核截面。而基于弹性力学理论的有限元分析方法,是一种对结构进行离散化后再求解的方法,为了获得所选“校核线”上的应力分布规律及大小,就必须对节点上的应力值进行后处理,即应力分类,根据对所选“校核线”上的应力进行分类,得出各类应力的值,若满足强度要求,则所设计容器是安全的。 按照JB4732-1995进行分析,整个计算采用ANSYS13.0软件,建立有限元模型,对设备进行强度应力分析。 2.2 有限元模型 由于主要关心容器开孔处的应力分布规律及大小,为减少计算量,只取开孔处作为分析对象,且取其中较为关心的大孔进行分析校核。分析设计所用的几何模型如图1所示。在上下封头和筒体之间存在不连续的壁厚,由于差距和影响量较小,此处统一采用上下封头的设计厚度。 图1 压力容器模型 2.3 划分网格 在结构的应力分析中,采用ANSYS13.0中的solid187单元进行六面体划分,如图2所示。图3~图5

通信网理论基础(修订版)习题解答

2.2 求M/M/m (n )中,等待时间w 的概率密度函数。 解: M/M/m (n )的概率分布为: 1 101 0011!)(! )(--=--? ?????--+=∑m r m n m k m m p k m p ρρρρ ??? ?? ??>≤≤-≤≤=n k n k m p k m m k p k m p k m k k 0!10!)(00 ρρ 假定n>m ,n ≥0,现在来计算概率P{w>x},既等待时间大于x 的概率。 ∑ =>?= >n j j j x w P p x w P 0 }{}{ 其中,P j {w>x}的概率为: n j m x w P n j m i x m e x w P m j x w P j m j i i x m j j ≤≤=>-≤≤? = >-≤≤=>∑-=-1 }{1! )(}{1 00 }{0 μμ 可得: x m m n n i m m n i i x m m n m j n m j i i x m j m n n m j m j i i x m j e m m P x w P 则若n P i x m e P m m i x m e P m m P i x m e P x w P )(01 1 01 ! )(1}{1!)(! ! )(!! )(}{λμμμμρρ ρ ρ ρμρμρμ--+--=--=-=--=-=-?-= >∞→+--? =? ? ????+? ? =+? ?= >∑ ∑∑ ∑∑ 特别的,新到顾客需等待的概率为: ! )(1}0{0m m P W P m ρρ ?-=>

] )! 1() ()! 1() (!)() ([) 1(!)(而 1 2 1 0--------= ----=---∑ m n m m m n x m i x m e m P m x f m n n m n i m n m i m x m m w μλμρ λμρ λλμρ ρμ n m k k x m m m w P w P P w P 注: e m m P m x f 在n =∞== =--= ∞→∑-=--}{}0{)() 1(!)(1 )(0λμλμρ ρ 2.4求M/D/1排队问题中等待时间W 的一、二、三阶矩m 1、m 2、m 3,D 表示服务时间为定值b ,到达率为λ。 解: ) ()1()(S B s s s G λλρ+--= 其中 sb st e dt e b t s B -∞ -=-= ? )()(δ 从而 sb e s s s G -+--= λλρ)1()( 又 ∑∞ == )(i i i s g s G )1(!)(00 ρλλ-=??? ? ? ? -?+-??? ??∴∑∑∞ =∞=s j sb s s g j j i i i b g λρ--= 110 2 2 1) 1(2)1(b b g λρλ---= 34 2 3 2) 1(12) 2)(1(b b b g λλλρ-+-= 3 4332 3 222 114 4 3) 1(4)21(6)0() 1(6)2(2)0()1(2)0() () 1(24)1)(21(ρλρρλρρλρλλλρλ-+= ?='''-=-+= ?=''=-= -='-==--+-= b g G m b g G m b g G m b b b b g 2.5 求M/B/1,B/M/1和B/B/1排队问题的平均等待时间W ,其中B 是二阶指数分布: 1 00 ,)1()(212121<<>-+=--αλλλααλλλt t e e t f

8章应力分析·强度理论

材 料 力 学 ·170 · 第8章 应力分析·强度理论 8.1 概 述 前面几章中,分别讨论了轴向拉伸与压缩、扭转和弯曲等几种基本变形构件横截面上的应力,并根据相应的实验结果,建立了危险点处只有正应力或只有切应力时的强度条件 []max σσ≤或[]max ττ≤ 式中:max σ或max τ为构件工作时最大的应力,由相关的应力公式计算;[]σ或[]τ为材料的许 用应力,它是通过直接实验(如轴向拉伸或纯扭),测得材料相应的极限应力,再除以安全因数获得的,没有考虑材料失效的原因。这些强度条件的共同特点是:其一,危险截面的危险点只有正应力或只有切应力作用;其二,都是通过实验直接确定失效时的极限应力。 上述强度条件对于分析复杂情形下的强度问题是远远不够的。例如,仅仅根据横截面上的应力,不能分析为什么低碳钢试样拉伸至屈服时,表面会出现与轴线成45°角的滑移线;也不能分析铸铁圆试样扭转时,为什么沿45°螺旋面断开;根据横截面上的应力分析和相应的实验结果,不能直接建立既有正应力又有切应力存在时的强度条件。 实际工程中,构件受力可能非常复杂,从而使得受力构件内截面上一点处往往既有正应力,又有切应力。对于这些复杂的受力情况,一方面要研究通过构件内某点各个不同方位截面上的应力变化规律,从而确定该点处的最大正应力和最大切应力及其所在的截面方位;另一方面需要研究材料破坏的规律,找出材料破坏的共同因素,通过实验确定这一共同因素的极限值,从而建立相应的强度条件。 本章主要研究受力构件内一点的应力状态,应力与应变之间的关系(广义胡克定律)以及关于材料破坏规律的强度理论,从而为在各种应力状态下的强度计算提供必要的理论基础。 8.2 一点的应力状态·应力状态分类 受力构件内一点处不同截面上应力的集合,称为一点的应力状态。为了描述一点的应力状态,在一般情况下,总是围绕这点截取一个3对面互相垂直且边长充分小的正六面体,这一六面体称为单元体。当受力构件处于平衡状态时,从构件内截取的单元体也是平衡的,单元体的任何一个局部也必是平衡的。所以,当单元体3对面上的应力已知,就可以根据截面法求出通过该点的任一斜截面上的应力情况。因此,通过单元体及其3对互相垂直面上的应力,可以描述一点的应力状态。 为了确定一点的应力状态,需要先确定代表这一点的单元体的6个面上的应力。为此,在单元体的截取时,应尽量使其各面上应力容易求得。

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

球罐应力分析报告模板

XXX球罐应力分析报告 设备名称:XXX球罐 设备位号:XXX 应力分析报告

目录 1基本设计参数 (4) 2计算数据 (6) 2.1 计算条件 (6) 2.2材料性能数据 (7) 3主要受压元件计算 (8) 4整体结构分析计算 (9) 4.1 力学模型和有限元模型 (9) 4.2 载荷工况分析 (11) 4.3 载荷边界条件 (12) 4.4 位移边界条件 (15) 4.5 应力强度分布云图及路径选取 (15) 4.6 应力线性化及强度评定 (20) 4.7 整体结构强度评定汇总 (33) 5局部结构分析计算 (34) 5.1 人孔与接管N1/N4局部结构分析 (34) 5.1.1 力学模型和有限元模型 (34) 5.1.2载荷边界条件 (36) 5.1.3位移边界条件 (38) 5.1.4应力分布云图及路径选取 (39) 5.1.5 应力线性化及强度评定 (40) 5.1.6 人孔与接管N1/N4应力线性化及强度评定 (48) 5.2 人孔与接管V1/K3/K4局部结构分析 (48) 5.2.1 力学模型和有限元模型 (48) 5.2.2载荷边界条件 (51) 5.2.3位移边界条件 (53) 5.2.4应力分布云图及路径选取 (54) 5.2.5 应力线性化及强度评定 (55)

5.2.6 人孔与接管V1/K3/K4应力线性化及强度评定 (63) 5.3 人孔与接管K1/K2局部结构分析 (63) 5.3.1 力学模型和有限元模型 (63) 5.3.2载荷边界条件 (66) 5.3.3位移边界条件 (68) 5.3.4应力分布云图及路径选取 (69) 5.3.5 应力线性化及强度评定 (70) 5.3.6 人孔与接管K1/K2应力线性化及强度评定 (78) 5.4 人孔与接管N2局部结构分析 (78) 5.4.1 力学模型和有限元模型 (78) 5.4.2载荷边界条件 (81) 5.4.3位移边界条件 (83) 5.4.4应力分布云图及路径选取 (84) 5.4.5 应力线性化及强度评定 (85) 5.4.6 人孔与接管N2应力线性化及强度评定 (93) 5.5 人孔与接管N5局部结构分析 (93) 5.5.1 力学模型和有限元模型 (93) 5.5.2载荷边界条件 (96) 5.5.3位移边界条件 (99) 5.5.4应力分布云图及路径选取 (100) 5.5.5 应力线性化及强度评定 (101) 5.5.6 人孔与接管N5应力线性化及强度评定 (109) 6结论 (109) 附录 (109) 球罐SW6计算文件

ANSYS基础教程——应力分析报告

ANSYS基础教程——应力分析 关键字:ANSYS 应力分析 ANSYS教程 信息化调查找茬投稿收藏评论好文推荐打印社区分享 应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要容有:分析步骤、几何建模、网格划分。 应力分析概述 ·应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析。 ANSYS 的应力分析包括如下几个类型: ●静态分析 ●瞬态动力分析 ●模态分析 ●谱分析 ●谐响应分析 ●显示动力学 本文以一个线性静态分析为例来描述分析步骤,只要掌握了这个分析步骤,很快就会作其他分析。 A. 分析步骤 每个分析包含三个主要步骤:

·前处理 –创建或输入几何模型 –对几何模型划分网格 ·求解 –施加载荷 –求解 ·后处理 –结果评价 –检查结果的正确性 ·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;

·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入; ·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。也可以使用前处理器PREP7 施加载荷。 ·通常先定义分析对象的几何模型。 ·典型方法是用实体模型模拟几何模型。 –以CAD-类型的数学描述定义结构的几何模型。 –可能是实体或表面,这取决于分析对象的模型。 B. 几何模型 ·典型的实体模型是由体、面、线和关键点组成的。 –体由面围成,用来描述实体物体。 –面由线围成,用来描述物体的表面或者块、壳等。 –线由关键点组成,用来描述物体的边。 –关键点是三维空间的位置,用来描述物体的顶点。

通信网理论基础试题及答案

通信网理论基础试题及答案 (2005) 1. 请选择正确答案。(30分) (1) 在通信网中,无环的链称为: a. 链 b. 环 c. √径 d. 路 e. 树 f. 圈 (2) 若图Gc 是去掉图Ga 和Gb 所共有的端和边、仅保留图Gb 所特有的端和 边、并保留边的关联端所得出的一个新图,则图Gc 是: a. Ga ∪Gb b. Ga~Gb c. Ga –Gb d.(Ga ∪Gb)~(Ga ∩Gb) e. Ga ∩Gb f. √Gb~Ga g. Gb-Ga h. Ga Gb i. Ga~(Ga ∩Gb) j. √Gb~(Ga ∩Gb) (3) n 端无向全联结网的边数为: a. )2)(1(21--n n b. )2)(1(--n n c. 2)1(21-n d. )1(2 1 -n n √ (4) 右图是一个: 。 a. 非联结图 b. √联结图 c. √不可分图 d. 尤拉图 e.√M 图 f. 全联结图 g. 正则图 h. 树 i.√平面图 j.√H 图 (5) 源宿端间的割量取决于: a. 正向边和反向边上的流量 b. 正向边的容量√ c. 正向边和反向边的容量 d. 正向边的容量与反向边的流量 (6) 实际通信网平均运行寿命的指标一般取: a. 寿命 b. √无故障时间 c. 平均修复时间 d. 故障率 (7) 一个拥有m 条线路(m > 1)的通信系统,空闲概率为P 0,m 条线路均被 占用的概率为P m ,则系统效率为 a. 1- P 0 b. P 0 c. 1- P m d. P m e. √其他值 注:单窗口时系统效率为:1- P 0。

(8) 右图的联结度和结合度分别为: 。 a. 1,1 b. 2,1 c. 2,3 d. √3,3 e. 4,4 f. 1,2 g. 2,2 h. 3,2 i. 3,4 j. 其它 (9) n 端非联结图G 有k 个部分,则图G 的阶是: 。 a. n-k-1 b. √ n-k c. n-k+1 d. n-k+2 e. n-k-2 (10) 对于n 个端m 条边的图,其环阵是一个 的矩阵。 a. n n b. (m-n+1) (n-1) c. (m-n+1) (m-n+1) d. (n-1) (n-1) e. (n-m-1) (n-1) e. √(n-m+1) m f. n m g. (n-1) m h. (n-1) (m-n+1) (11) 一个顾客流,在时间t 内到达的顾客数k 服从泊松分布:t k k e k t t P λλ-?=! )()(,则相邻到达的顾客的间隔时间T 服从: a. 参数为λ的泊松分布 b. 参数为μ的负指数分布 c. 正态分布 d. k 阶爱尔朗分布 e. √参数为λ的负指数分布 f. 确定型分布 g. 参数为λ的均匀分布 (12) m 个用户公用m 条线路,采用即时拒绝方式,则该系统 a. 有呼损,有阻塞 b. 无呼损,有阻塞√ c. 有呼损,无阻塞 d. 无呼损,无阻塞 注:当系统处于拒绝状态时,系统是阻塞的。 (13) 爱尔朗分布族可以描述: a.√负指数分布 b.√泊松分布 c.√正态分布 d.√确定型分布 e. 二项分布 f.√贝努力分布 g. 均匀分布 h. √瑞利分布 2. 简述我国电话通信网的分级结构、各级的名称及其与长途区号的对应关系, 并画图表示。(10分) 答:我国电话通信网为五级结构,分别是: (1) 一级C1:大区中心,或省间中心。使用两位长途区号。 (2) 二级C2:省中心。 使用三位长途区号。 (3) 三级C3:县间中心。 使用三位长途区号。 (4) 四级C4:县中心。 使用四位长途区号。

通信网理论基础答案

通信网理论基础 第二章习题 求M/M/m (n )中,等待时间w 的概率密度函数。 解: M/M/m (n )的概率分布为: 假定n>m ,n ≥0,现在来计算概率P{w>x},既等待时间大于x 的概率。 其中,P j {w>x}的概率为: 可得: 特别的,新到顾客需等待的概率为: 求M/D/1排队问题中等待时间W 的一、二、三阶矩m 1、m 2、m 3,D 表示服务时间为定值b ,到达率为λ。 解: ) () 1()(S B s s s G λλρ+--= 其中 sb st e dt e b t s B -∞ -=-=?0 )() (δ 从而 sb e s s s G -+--= λλρ) 1()( 又 ∑∞ ==0 ) (i i i s g s G 求M/B/1,B/M/1和B/B/1排队问题的平均等待时间W ,其中B 是二阶指数分布: 100 ,)1()(212121<<>-+=--αλλλααλλλt t e e t f 解:M/B/1 B/M/1 B/B/1 设到达的概率密度函数为t t e e t f 2121)1()(λλλααλ---+= 设离去的概率密度函数为t t e e t f 4343)1()(λλλααλ---+= 假设423 121 λλλλααα====

()[] []2 1222 2122212221212121' 021210 2121212142221214 22 212221 2211 22112211 )1(2)2()1())1(()()()())(()() ()()(lim ) )(()()() )(()()() )()()(())()()(()1(1)1()1(1)()()1()()(λλααλααλαλααλλλλλλλλλλλλλλλλλλλλλλλλλλααλλλ λλαλαλλλαλαλλλαλαλ---+-=-+-+= +-= -=+++= Φ= =Φ=---= Φ+++= Φ++---=++----+-+= -??? ? ??+-++???? ??--+-=--+-++= ==++→-+t 其中 t t s S w s t s s k s S s k s w t s s k s s s t s s s s s t s s 取 s s s s s s t s s s s s s s s s s s B s A s s s B s A s w w s 在D/D/1排队问题中,顾客到达的时间间隔为a ,服务时间为b ,均为恒定值,且a>b , 求:稳定状态时系统的队列长度为k 的概率p k ,顾客到达时队列的长度为k 的概率v k ,顾客离去时队列的长度d k ,以及平均等待时间,并用G/G/1上界公式求出此时的平均等待时间,评论计算结果,并讨论a ≤b 的情况。 解: 由于是D/D/1问题,故子系统运行情况完全确定,第一个顾客到达后,系统无顾客,经过b 后,服务完毕,顾客离去,再经过a-b 后,下一个顾客到达。 此时有: 顾客不等待时 0=w G/G/1上界公式 ) 1(20 ) ()() ()() 1(22 22 222=∴=-+≤∴==∴-=-=-+≤ w t w b t t p a p t w t t t r ρσσσσδτδτρσσττΘ 当aτ ,将造成呼损,t ≤τ时无呼损。 在优先级别队列中,A 队为优先级,不拒绝,B 队为非优先级,只准一人排队等待(不计在服务中的),且当A 队无人时才能被服务,求各状态概率,A 队的平均等待时间和B 队的拒绝概率。 解: 说明: 0状态代表系统中无顾客状态; i ,j 状态代表系统中正在服务且A 队中有i 个顾客,B 队列中有j 个顾客排队的状态。

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

通信网理论基础Projrct

Project No. 1-1 求一个map/multimap,其中元素是度数(为出度和入度之和)和顶点编号构成的Pair。 要求按照度数的降序排列。 Project No. 1-2 构建邻接链表,用一个map来表示。键值为顶点编号,每个顶点对应的是一个list,该list存储了该顶点邻接(包括出度和入度邻接)的所有其他顶点 Project No. 1-3 构建邻接矩阵,用二维的vector来表示,即vector>。注意,需要构造一个表达空边的对象。 Project No. 1-4 给定一个顶点,求一个list,该list中存储了与该顶点关联的所有出度边。 Project No. 2-1 给出求解单源单宿问题的代码。要求设计一个CPath类,从Dijkstra计算得到的CVertex 中重构出一个CPath对象,并输出。 Project No. 2-2 给定加权图G,边上权重代表通过率。给定顶点S,求从顶点S出发到其他顶点的最大通过率路径。 Project No. 2-3 给出求解带宽约束最短路问题的代码。要求设计一个CGraph的成员函数来实现边的删除。(给出加权图G,每条边上既有权重,也有容量(capacity),给定源点S,以及带宽需求C,求从S出发到其他顶点的带宽大于C的最小权重路径) 研究性Project No. 3:(二选一) 1、对比/定量研究Dijkstra算法和dial算法的性能。 2、对比/定量研究Dijksta算法和双向Dijkstra算法的性能。 Project No. 4-1 分别用线性规划模型SPM1和整数规划模型SPM2建模单源单宿最短路问题。用Lingo 软件求解这两个模型,比较求解时间和求解的结果。 用Dijkstra算法求解同样的问题,比较求解时间和结果。 Project No. 4-2 用Lingo软件求解SDPP-1 ~ 3这3个模型。比较求解时间和求解的结果。 Project No. 5 1.每个节点对间的流量为150M 2.每条链路容量如图中所示 3.每条链路的代价为1 4.优化目标是最小化最大链路利用率 要求: ●分别使用node-link和link-path的方式对该问题进行建模,求解出使得最大链路利用率 最小的业务路由和流量分配方案。 ●Link-path模型求解时如果备选路径集合给定3条,5条,7条的情况下分析求出的解的 变化情况,以及求解时间的变化情况并分析原因。 ●对比link-path模型(3条备选路时)和node-link模型求出的优化目标值是否一样,如 果不一样请说明原因。 ●对比link-path模型(3条备选路时)和node-link模型求解时间哪个更长,并分析原因.

第三强度理论.

第七章 应力和应变分析 强度理论 §7.1应力状态概述 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 §7.2二向和三向应力状态的实例 §7.3二向应力状态分析—解析法 1.任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0s i n )s i n (c o s )s i n (=-+αασαατdA dA y yx αασαατ τsin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += xy τyx τn α t

ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取得极值。且绝对值小的角度所对应平面为最大正应力所在的平面,另一个是最小正应力所在的平面。求得最大或最小正应力为 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= ??? 0α代入剪力公式,0ατ为零。这就是说,正应力为最大或最小所在的平面,就是主平 面。所以,主应力就是最大或最小的正应力。 将切应力公式对α求导,令 02sin 22cos )(=--=ατασσα τα xy y x d d 若1αα=时,能使导数0=α τα d d ,则在1α所确定的截面上,剪应力取得极值。通过求导可得 02sin 22cos )(11=--ατασσxy y x xy y x tg τσσα221-= 求得剪应力的最大值和最小值是: 2 2min max )2 ( xy y x τσσττ+-±=??? 与正应力的极值和所在两个平面方位的对应关系相似,剪应力的极值与所在两个平面方

应力状态分析和强度理论

第八章 应力状态和强度理论 授课学时:8学时 主要内容:斜截面上的应力;二向应力状态的解析分析和应力圆。三向应力简介。 $8.1应力状态概述 单向拉伸时斜截面上的应力 1.应力状态 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 2.单向拉伸时斜截面上的应力 横截面上的正应力 A N =σ 斜截面上的应力 ασα cos cos ===A P A P p a a 斜截面上的正应力和切应力为 ασασ2cos cos ==a a p ασ ατ2sin 2 sin = =a a p 可以得出 0=α时 σσ=max 4 π α= 时 2 m a x σ τ= 过A 点取一个单元体,如果单元体的某个面上只有正应力,而无剪应力,则此平面称为主平面。主平面上的正应力称为主应力。 主单元体 若单元体三个相互垂直的面皆为主平面,则这样的单元体称为主单元体。三个主应力中有一个不为零,称为单向应力状态。三个主应力中有两个不为零,称为二向应力状态。三个主应力中都不为零,称为三向应力状态。主单元体三个主平面上的主应力按代数值的大小排列,即为321σσσ≥≥。 P P a a α

$8.2二向应力状态下斜截面上的应力 1. 任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0sin )sin (cos )sin (=-+αασαατdA dA y yx αασααττ sin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取 xy τyx τn α t

通信网理论基础答案

通信网理论基础 第二章习题 2.2 求M/M/m (n )中,等待时间w 的概率密度函数。 解: M/M/m (n )的概率分布为: 1 1010011!)(!)(--=--?? ? ???--+=∑m r m n m k m m p k m p ρρρρ ??? ? ???>≤≤-≤≤=n k n k m p k m m k p k m p k m k k 0!10!)(00ρρ 假定n>m ,n ≥0,现在来计算概率P{w>x},既等待时间大于x 的概率。 ∑=>?=>n j j j x w P p x w P 0 }{}{ 其中,P j {w>x}的概率为: n j m x w P n j m i x m e x w P m j x w P j m j i i x m j j ≤≤=>-≤≤? =>-≤≤=>∑-=-1 }{1! )(}{1 00 }{0 μμ 可得: x m m n n i m m n i i x m m n m j n m j i i x m j m n n m j m j i i x m j e m m P x w P 则 若n P i x m e P m m i x m e P m m P i x m e P x w P )(010 010010 ! )(1}{1!)(!!)(!! )(}{λμμμμρρρρρμρμρμ--+--=--=-=--=-=-?-=>∞→+--?=?? ????+??=+??=>∑∑∑∑∑ 特别的,新到顾客需等待的概率为: ! )(1}0{0m m P W P m ρρ? -=>

] )! 1()()!1()(!)()([)1(!)(而 1 2 10--------=----=---∑m n m m m n x m i x m e m P m x f m n n m n i m n m i m x m m w μλμρλμρλλμρρμ n m k k x m m m w P w P P w P 注: e m m P m x f 在n =∞===--=∞→∑-=--}{}0{)() 1(!)(10 )(0 λμλμρρ 2.4求M/D/1排队问题中等待时间W 的一、二、三阶矩m 1、m 2、m 3,D 表示服务时间为定值b ,到达率为λ。 解: ) () 1()(S B s s s G λλρ+--= 其中 sb st e dt e b t s B -∞ -=-= ? )()(δ 从而 sb e s s s G -+--=λλρ) 1()( 又 ∑∞ ==0 )(i i i s g s G )1(! )(00ρλλ-=??? ? ??-?+-??? ??∴∑∑∞=∞=s j sb s s g j j i i i b g λρ--=110 2 21) 1(2)1(b b g λρλ---= 34232)1(12)2)(1(b b b g λλλρ-+-= 3 4 3323 222 114 43)1(4)21(6)0()1(6)2(2)0() 1(2)0() ()1(24)1)(21(ρλρρλρρλρλλλρλ-+= ?='''-=-+= ?=''=-= -='-==--+-=b g G m b g G m b g G m b b b b g 2.5 求M/B/1,B/M/1和B/B/1排队问题的平均等待时间W ,其中B 是二阶指数分布: 100 ,)1()(212121<<>-+=--αλλλααλλλt t e e t f 解:M/B/1