文档库 最新最全的文档下载
当前位置:文档库 › 有源电力滤波器市场状况及趋势预测

有源电力滤波器市场状况及趋势预测

有源电力滤波器市场状况及趋势预测
有源电力滤波器市场状况及趋势预测

有源电力滤波器市场状况及趋势预测

一应用领域低压有源电力滤波应用领域1,电气化铁道及城市轨道交通行业2,石化和天然气行业3,电力行业

4,钢铁行业

5,冶金行业

6,水处理行业

7,水泥行业

8,汽车行业

9,烟草行业

10,造纸行业

11,过程控制行业

12,造船业

13,精密制造业

中压有源电力滤波应用领域

1,矿用提升机

2,电弧炉

3,扎机

4,风场并网

5,电力机车供电

6,远距离电力传输

7,城市二级变电站( 66/100KV )

8,其它

二有源电力滤波器的市场现状

1990 年代,国外的有源电力滤波在制造技术和控制技术上已走向成熟,一些国家,如日本和美国已完全实现了产业化服务。到目前为止,国外产品技术和制造工艺相当完善,不足之处在于价格非常高,配件也比较昂贵,服务费用高,

服务体系尚未完善。国外电力有源滤波器的主要生产厂商有:ABB、诺基亚、施耐德、东芝等品牌。

表国外大容量、中压有源电力滤波的运用实例

由于有源滤波器技术含量较高,在国内真正掌握且可投入复杂的工业环境运行的电力有源滤波器产品还处于起步状态。目前国内参与这一领域竞争的厂商大多还是以进口产品为主,能真正批量生产电力有源滤波器的企业很少,大部分是贴牌和代理为主,并没有自己真正的技术能力。而国内掌握此技术者均在几所高校,但离产品化还有一些距离,如西安交通大学、清华大学、哈尔滨工业大学等。国内主要生产厂商有:思源清能、哈尔滨威瀚、西安赛博、山大华天等,这些公司全是以高校为背景的新近成立的公司,由于市场原因发展都很迅速。

三电能质量控制产品市场预测

第一,目前我国电能质量产业总销售额为50亿元人民币左右/年。智能电网的建设将给电能质量产业带来150亿元人民币/年的新增销售份额,巨大的市场份额需求给我国电能质量研究和产业的发展带来了巨大机遇。(首届全国电能质量学术会议一李令冬)

表2: 2009年电能质量产业状况?(来自公司内部项目报告,名称未知)

第二,建设中国特色坚强智能电网计划,实现对用户可靠、经济、清洁、互动的电力供应和增值服务,电能质量产业带来150亿元人民币/年的市场份额。

第三,我国新能源的投入加大,其中柔性输变电技术是新能源、清洁能源的大规模接入电网系统的关键技术之一,为电能质量产业带来机遇。我国在2020 年以前,可再生能源(主要是风能和太阳能)发电的装机容量将达1亿kW以上,对电能质量控制产品的需求预测如下:谐波滤波器、无功补偿器和电压补偿器等电能质量控制装置容量为0.2亿KVA,以平均400元人民币/KVA计算,电能质

量控制装置的市场需求为80亿元人民币

表3:七省区2020年风电建设规划

总之,从各方面分析来看,如果贵方有心于我的APF项目,需要的是10?20万的资金投入,获得的将是数十亿市场的领跑产品。当然,肯定是有一定风险的,但是预期收益是十分巨大的。

有源电力滤波器的研究热点和发展

有源电力滤波器的研究热点和发展 1、引言 近年来,随着电力电子技术的广泛应用,电能得到了更加充分的利用。但电力电子装置自身所具有的非线性也使得电网的电压和电流发生畸变,这些高度非线性设备数量和额定容量的日益增大使得电力系统谐波污染问题日益严重,已成为了影响电能质量的公害,对电力系统的安全、经济运行造成极大的影响;而另一方面供电方及其电力系统设备、用户及其用电器对电能质量的要求越来越高,这一矛盾使得人们对谐波污染问题越来越重视。据《中国电力》报道,我国仅由电能质量问题造成的年电能损失就高达400多亿元,冶金、铁路、矿山等企业的谐波严重超标,因谐波问题导致的开关跳闸、大面积停电甚至电力系统解列等事故也屡见不鲜,因此对电力系统的谐波污染进行综合治理已成为摆在科技工作者面前的一个具有重要现实意义的研究课题。而有源电力滤波器 由于具有高度可控性和快速响应性,能对频率和幅值都变化的谐波进行跟踪补偿,因而受到广泛的重视,成为目前国内外供电系统谐波抑制研究的热点。 2、谐波治理的措施 目前,在电力系统中抑制或减少谐波主要从两个方面进行:第一方面是从产生谐波的谐波源装置本身入手。在这些装置设计时就考虑减小谐波的方法,增加谐波抑制环节,已减少电网的谐波注入量,在谐波源本身采取一些措施能大大减小电网谐波。但由于现代电力系统的复杂性以及电力半导体装置开关工作方式,不可能完全消除电网谐波。所以,谐波治理的第二个重要方面就是研究对系统中的谐波进行有效滤波和补偿的方法和措施。下面分别简要介绍这两方面工作的现状和发展。 2.1治理谐波源 近年来,随着几种电力电子装置的大量应用,可控和不可控整流器在电力系统中的应用越来越普遍。这类型整流器在带大电感 (rl)负载时电流近似为方波。带大电容(rc)负载时电流为尖脉冲,使电力系统中的电流严重畸变,成为目前电力系统中主要谐波源,也是目前治理的重点。针对这一类整流器减少谐波、提高功率因数的方法和措施,概括起来主要有以下几种: (1)多相整 脉宽调制pwmpulsewidthmodulation)整流技术; 2.2谐波滤波与补偿 采用主动治理谐波源的方式,可有效限制谐波的产生,但由于谐波源的多样性,要完全

有源电力滤波器的应用及效果.

有源电力滤波器的应用 所在学院:信息科学与工程学院 专业班级: 学生姓名: 学生学号: 指导教师:

有源电力滤波器的应用 上学期我们学习了《电力电子技术》这门课,通过这门课的学习我了解到:以非线性负载为主产生的谐波会对电力系统形成很大的危害,而传统的电力电子装置本身就是产生谐波的主要污染源。要想抑制电力电子装置和其它谐波源造成的电力系统谐波,基本思路有两条:一是装设补偿装置,设法补偿其产生的谐波;而是对电力电子装置本身进行改进,使其不产生谐波,同时也不消耗无功功率,或者根据需要能对其功率因数进行控制,即采用高功率因数变流器。 装设LC 调谐滤波器是传统的补偿谐波的主要手段。LC 调谐滤波器虽然存在很多缺陷,但其结构简单,既可补偿谐波,又可补偿无功,一直被广泛应用与电力系统中谐波和无功功率补偿。目前的趋势是采用先进的电力电子装置进行谐波补偿,这就是有源电力滤波器(APF )。与LC 无源滤波器相比,有源滤波器具有明显的优越性能,能对变化的谐波进行迅速的动态跟踪补偿,而且补偿特性不受电网频率和阻抗的影响。有源电力滤波器的变流电路可以分为电压型和电流型。从与补偿对象的连接方式看,有源电力滤波器又可分为并联型和串联型。电压型和并联型在实际中应用较广。 本学期做了一个谐波的产生和抑制的实验,其中谐波是由三相桥式整流电路这一非线性负载产生的,在实验中采用了两种抑制谐波的方法,一种是并联无功补偿电容器和LC 滤波器,另一种是并联一个有源电力滤波器。目标是经过这两次滤波,使谐波电流的畸变率降到5%左右。 有源电力滤波器基本原理如下图1所示。设负载电流为l i ,谐波检测器从负载电流中检测出谐波电流h i ,令指令电流*c h i i =-,补偿电流控制算法控制逆变 器产生补偿电流*c c i i =,注入母线,抵消负载电流中的谐波,达到抑制谐波电流流向电源的目的。系统由四个主要部分组成有源滤波主电路、外围驱动板、谐波检测器 、DSP 器件。

有源电力滤波器的发展历史和研究现状概述

有源电力滤波器的发展历史和研究现状概述 1969 年,Bird 和Marsh 等人提出通过向电网注入三次谐波电流来减少电流中 的谐波成分,从而改善电流波形的思想,这就是有源电力滤波技术的萌芽 [11]。 1971 年,日本的H.Sasaki 和T.Machida 提出有源电力滤波器技术,首次完整地描述了有源电力滤波器的基本原理:通过产生与负载谐波和无功电流大小相 等方向相反的补偿电流,来抵消负载谐波和无功电流,从而达到净化电网的目 的。但是由于当时电力电子技术的发展水平不高,全控型器件功率小、频率 低,采用线性放大器产生补偿电流, 损耗大、成本高,因而有源电力滤波器仅局限于实验研究,未能在工业中应 用。 1976 年,L.Gyugyi 等人提出用大功率晶体管构成PWM 逆变器控制APF 来抑制谐波,引起了普遍关注,确立了有源电力滤波器的主电路的基本拓扑结构和控 制方法,从原理上阐明了有源电力滤波器是一个理想的电流发生器,并讨论了 实现方法和相应的控制原理,奠定了有源电力滤波器的基础。 80 年代以来,随着大中功率全控型半导体器件的成熟和脉宽调制(Pulse Width Modulation PWM)控制技术的进步,对有源电力滤波器的研究逐渐活跃起来。这 一时期的一个重大突破是,1983 年H.Akagi 等人提出了“三相电路瞬时无功 功率理论”[12],以该理论为基础的谐波和无功电流检测方法在有源电力滤波 器中得到了成功的应用,极大地促进了有源电力滤波器的发展。 随着电力电子技术的发展,特别是高功率大电流的半导体器件及可关断晶闸管(GTO)的发展以及瞬时无功功率理论提出的发展,国内外对谐波问题的研究也不 断有新的进展,近年来,国际上有关有害电流检测和抑制技术的研究更是十分 活跃,每年都有量的论文发表。这一方面说明了这一研究的重要性,另一方面 也预示着这一领域的研究有望取得重大突破。 国外对有源电力滤波装置的开发研究工作始于20 世纪90 年代初期,到现在已进入实用化阶段。有源电力滤波技术作为改善供电质量的一项关键技术,其补 偿范围包括谐波、无功、畸变电压等,补偿对象有工业整流负载、电弧炉以及 电气化铁道等。在日本、美国以及德国等工业发达国家已得到了高度重视和日 益广泛的应用,APF 被公认为是今后改善电力系统电能质量的发展方向,现在 也已出现具有快速响应、稳定性高的有源滤波装置。目前,世界上APF 的主要生产厂家有日本三菱电机公司、美国西屋电气公司、德国西门子公司等。文献 显示,从1981 年以来,仅日本就有500 多台APF 投入运行,容量范围在 50kVA-60MVA;而在欧洲,投入运行的工业用并联APF 最大容量已经达到 610KVA[13]。

有源电力滤波器设计

1 引言 近年来,公用电网受到谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,谐波污染影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 滤波器在本质上是一种频率选择电路,通常用幅频响应和相位响应来表征一个滤波电路的特性。理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的相互位置不同,滤波器可分为低通、高通、带通、带阻、全通5类。有源滤波器采用有源器件需要使用电源,加上功耗较大且集成运放的带宽有限,因此目前有源滤波电路的工作频率难以做得很高,一般不能用于高频场合。但总的来讲有源滤波器在低频(低于1MHz)场合中使用有较无源滤波器更优的性能,因而目前在音频处理、工业测控等领域广泛应用。有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有以下几点突出的优点: (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。

电力有源滤波器的设计-开题报告

工程学院 本科毕业设计(论文)开题报告题目:电力有源滤波器的设计 专业: 班级:学号: 学生: 指导教师: 2014 年3月

文献综述1.3谐波的抑制方法 (1)无源滤波 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点。基本的无源滤波器的拓扑结构如下图所示: (2)有源滤波 目前,谐波抑制的一个重要趋势是采用电力有源滤波器(Active Power Filter-APF)[2]。有源电力滤波器也是一种电力电子装置。其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生与该谐波电流大小相等而极性相反的补偿电流,从而消除电网中的谐波。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且在日本等国得到广泛的应用。有源电力滤波器的基本思想在六七十年代就己经形成。80年代以来,由于大中功率全控型半导体器件的成熟,脉冲宽度调制(Pulse Width Modulation-PWM)控制技术的进步,以及基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,有源电力滤波器才得以迅速发展。

文 献 综 述 2.1按联接方式确定APF的种类 APF的结构形式很多,但其基本原理都是类似的,按电路拓朴结构可分为并联型APF、串联型APF和串--并联型APF。 (1)并联型APF 下图为并联型APF 基本结构。由于与系统并联, 可等效为一受控电流源。并联型APF 可产生与负荷电流大小相等、方向相反的谐波电流, 从而将电源侧电流补偿为正弦基波电流。主要适用于抵消非线性负载的谐波电流、无功补偿及平衡三相系统中的不平衡电流等。并联型APF 在技术上比较成熟[4]。 并联型有源滤波器结构图 2)串联型APF 图2.3为串联型APF基本结构。通过1个匹配变压器将APF串联在电源和负载之间, 以消除电压谐波, 平衡或调整负载的端电压。与并联型APF相比, 串联型APF损耗较大, 且各种保护电路也较复杂。因此, 很少单位使用串联型APF, 大多将其作为混合型APF 的一部分。 串联型有源滤波器结构图

有源电力滤波器品牌排行

有源电力滤波器(APF)品牌排行 当前,市场上生产有源电力滤波器的厂家很多,各个品牌参差不齐,且国家标准未正式出台,所以只能挑选出一些市场上一些主流的APF品牌,从质量、稳定性各方面介绍一下当前市场上主流有源电力滤波器品牌的市场情况: 合资主流品牌:霍尼韦尔、GE、诺基亚、ABB、施耐德、 传统的电气行业的几大合资品牌从稳定性、可靠性来说都依然是值得可靠信赖,但是技术参数比得上国内品牌,国内品牌因为竞争的缘故一味追求性能参数,产品稳定性大打折扣,合资品牌的价格都相对较高,一般市场标价达2000~4000元/A。传统的合资品牌西门子貌似还没有APF。 国产一线品牌:南京亚派麦克斯韦电气深圳盛弘上海思源赛博电气深圳英纳仕追日电气........数百家品牌 估计国内生产APF的厂家有上百家,以上品牌都是最近2年广告比较多的品牌,推广力度比较大而已。但是参差不齐。国产品牌的通病就是质量不稳定,国产品牌没有7年以上的应用案例,价格也不一定便宜,国产品牌的价格一般是合资的50%~100%。有源电力滤波器的核心器件比如IGBT、电容器、CPU等国内电子元件技术都不稳定,所以国内生产APF 的厂家大多依靠进口国外品牌的核心元器件,然后再在国内组装,所以成本总体也不低,主要是人工成本较低。另外国产有源电力滤波器的通病就是并联技术,IGBT并联技术还不过关。但是未来的趋势肯定是核心器件国产化后,国内APF厂家的价格也许才会真正降到很低。 另外,有源电力滤波器出来10年左右,市场上有部分打着国外欧美公司品牌(如意大利、美国)的旗号,游龙混杂,有些品牌名字看着大气,实际上是国内生产的,满足国内市场扬眉崇外的心理,所以要注意辨别。

有源电力滤波器装置主要应用于什么场合

有源电力滤波器装置主要应用于什么场合 安科瑞王志彬2019.03 小编给大家分享下有源电力滤波器装置主要应用场合领域: 随着国内外电力电子技术的发展,大量由电力电子开关构成的、具有非线性特性的用电设备广泛应用于冶金、钢铁、交通、化工等工业领域,如电解装置、电气机车、轧制机械、高频炉等,故国内外电网中的谐波污染状况日益严重。电网中的高次谐波会造成旋转电机和变压器过热,使电力电容器组工作不正常,甚至造成热击穿损坏;对电力系统中的发电机、调相机、继电保护自动装置和电能计量等也有很大危害,严重时会引发设备误动作,造成重大事故;谐波污染对通信、计算机系统、高精度加工机械,检测仪表等用电设备也有严重的干扰。因此,必须采取有效的措施来消除电网中的高次谐波。 在低压配电网中这些谐波污染问题显得尤为突出,严重影响到各种类大型厂矿的正常生产,如钢铁、煤矿、化工、纺织等企业,以及IT和大规模微电子集成电路企业,造成产品报废,生产线停产,生产设备的寿命骤减甚至损坏。 目前用户通常采用并联型无源滤波器来抑制谐波,但存在不少缺陷。现在的趋势是采用电力电子装置进行谐波补偿,即有源电力滤波器(APF)与前者相比apf有源滤波器能对变化的谐波进行迅速的动态跟踪补偿,而且补偿特性不受电网阻抗的影响。有源电力滤波器装置必定是消除谐波的主导产品 安科瑞ANAPF有源电力滤波器 1、概述 1.1谐波的产生 电力系统中理想的电压、电流波形都是频率为50Hz的正弦波,但是非线性电力设备(大功率可控硅、变频器、UPS、开关电源、中频炉等)的广泛应用产生了大量畸变的谐波电流,谐波电流耦合在线路上产生谐波电压。对非正弦的畸变电流作傅立叶级数分解,其中频率与工频相同的分量为基波,频率是基波频率整数倍的分量为谐波。谐波是电能质量的重要指标。 1.2谐波的危害 ●谐波使公用电网中的元件产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,甚至引起火灾。 ●谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等;使变压器局部严重过热;使电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏。 ●引起电网谐振,使得谐波电流放大几倍甚至数十倍,会对系统,特别是对电容器和与之串联的电抗器形成很大的威胁,经常使电容器和电抗器烧毁。 ●谐波会导致继电保护,特别是微机综合保护器与自动装置误动作,造成不必要的供电中断和生产损失。谐波还会使电气测量仪表计量不准确,产生计量误差,给用电管理部门或电力用户带来经济损失。 ●临近的谐波源或较高次谐波会对通信及信息处理设备产生干扰,轻则产生噪声、降低通信质量、计算机无法正常工作,重则导致信息丢失,使工控系统崩溃。

有源电力滤波器仿真研究(有参考)

0引言 随着电力电子装置的广泛应用,各类非线性负载产生的谐波和无功功率对电网的危害也日益严重。有源电力滤波器APF(ActivePowerFilter)作为一种理想的谐波无功补偿装置,能够对频率和幅值均发生变化的谐波和无功进行补偿,弥补了传统无源电力滤波器的不足,具有比无源电力滤波器更好的补偿性能,因而得到了迅速的发展,在国外已开始应用于实际生产中。 目前,我国对APF的研究和开发尚处于实验阶段,暂时没有大容量的成熟产品投入使用,因此对APF的研究具有十分重要的意义[1]。 1APF工作原理[2-3] APF由2大部分组成:谐波和无功电流检测电路 及补偿电流发生电路(由补偿电流控制电路、驱动隔离电路和主电路3个部分构成),APF工作原理示意图如图1所示。前者的作用是检测出负载电流中的谐波和无功电流等分量;后者的作用是根据检测出来的谐波和无功电流等产生相应的补偿电流。其中, 补偿电流控制电路是补偿电流发生电路的核心环 节,负责根据补偿电流指令信号,由控制算法计算得到主电路每相桥臂各功率开关器件的触发脉冲;隔离与驱动电路负责驱动主电路IGBT开关;主电路用来产生补偿电流。与APF并联的高通滤波器HPF(HighPassFilter)能滤除APF所产生的补偿电流中开关频率附近的谐波。 APF的基本工作原理是:谐波无功电流检测电路将负载电流iL中的谐波电流iLh和无功电流iLq分离出来,然后把它们反相并产生出补偿电流ic的调制波信号ic*,亦即指令信号ic*=iLh+iLq。补偿电流控制电路根据ic*的值输出触发脉冲,通过驱动隔离电路驱动主电路的功率开关,使其创建出补偿电流ic,ic要跟踪ic*,故ic≈-ic*,因此 is=iL+ic=iL+ic*=iL-(iLh+iLq)=iLp (1)即电源电流is中只含有基波有功分量iLp,从而达到消除谐波和补偿无功功率的目的。根据此原理,对于三相APF,还能对电流的不对称度和负序电流等进行补偿。另外,作为主电路的PWM变流器,在产生补偿电流时,主要作为逆变器工作,在电网向APF直流侧储能元件充电时作为整流器工作,由于其既能工作在逆变状态又能工作在整流状态,故可称作变流器。 APF控制系统中谐波无功电流的检测和补偿电流控制2部分控制方法的选取是影响APF性能的关键。 2APF谐波和无功电流检测方法 准确、实时地检测出电网中瞬态变化的畸变电流是APF进行精确补偿的关键。谐波电流检测方法主要有以下几种[2-3]:模拟带通滤波器(或陷波器)检测法、基于频域分析的快速傅里叶变换FFT(FastFourier Transformation)检测法、 基于现代控制理论的检测法、瞬时波形比较法、自适应检测法和基于瞬时无功功率理论的检测法。其中,常用的是基于瞬时无功功 有源电力滤波器仿真研究 华晓萍,王 奔,孟凌凌,兰金茹,孟庆波 (西南交通大学电气工程学院,四川成都610031) 摘要:叙述了有源电力滤波器APF(ActivePowerFilter)的基本原理,分别介绍了组成APF的谐波和无功电流检测电路、补偿电流发生电路的构成和功能,在此基础上,介绍了常用的APF的谐波和无功电流检测方法、补偿电流控制方法和直流侧电压控制方法。为了验证APF的补偿功能同时加深对其控制方法的认识和理解,用Matlab6.5/Simulink下的SimPowerSystemsBlockset对整个三相并联电压型APF系统进行了仿真研究。仿真结果表明,电压空间矢量脉宽调制SVPWM(SpaceVector PulseWidthModulation)控制的APF能对负载电流中的谐波和无功分量进行快速精确的补偿。 关键词:有源电力滤波器;谐波和无功电流检测;补偿电流控制;Matlab仿真中图分类号:TN713;TM714.3 文献标识码:A 文章编号:1006-6047(2007)01-0042-04收稿日期:2006-03-15;修回日期:2006-07-01 电力自动化设备 ElectricPowerAutomationEquipment Vol.27No.1Jan.2007 第27卷第1期2007年1月 图1APF基本工作原理 Fig.1Principleofactivepowerfilter 负载 驱动隔离电路 补偿电流控制电路 谐波无功电流检测电路 es is RL HPF APF iL ic ic*

有源电力滤波器参考文献

重庆科技学院学生毕业设计(论文) 文献综述 题目有源电力滤波器技术 院(系)电子信息学院 专业班级自普本05 学生姓名金涛学号2005441140 指导教师(签字)

有源滤波技术文献综述 摘要: 随着各种功率器件的广泛应用,大量的谐波和无功电流注入电网,引起电网污染,造成电网电能质量问题日益严重但电力电子装置自身所具有的非线性也使得电网的电压和电流发生畸变。过去,国内外大量采用无源滤波装置来进行谐波抑制和无功补偿,提高功率因数。但无源滤波装置也存在着自身无法克服的不足和缺陷,有源电力滤波器由于具有高度可控性和快速响应性,能对频率和幅值都变化的谐波进行跟踪补偿,因而受到广泛的重视,成为目前国内外供电系统谐波抑制研究的热点。 关键词:有源电力滤波器逆变器 1 引言 随着电力电子技术的飞速发展,越来越多的电力电子装置被广泛应用到各个领域,近年来配电网中整流器、变频调速装置、电弧炉等非线性负荷不断增加,这些负荷的非线性、冲击性和不平衡的用特性,使电网中暂态冲击、无功功率、高次谐波及三相不平衡问题日趋严重,对公用电网的供电质量造成了严重影响,因此,消除电网中的谐波污染已成为电能质量研究中的一个重要课题。 有源电力滤波器(APF)是一种消除电网谐波的有效装置,具有高度可控和快速响应的特性,它不仅能补偿各次谐波,还可抑制闪变、补偿无功,有一机多能的特点。其滤波特性不受系统阻抗的影响,同时还具有自我适应功能,可自动跟踪补偿变化的谐波。

有源滤波技术现状 有源电力滤波器的基本工作原理是由HSasaki和HMachida于1971年首先提出的[1]。他们首次提出了有源滤波器的原始结构模型,并建立了有源滤波器的基本理论。他们提出的有源电力滤波器向电网注入一个与负载谐波电流 幅值相等、相位相反的电流,从而抵消了电网中的谐波电流。但由于当时是采用线性放大的方法产生小补偿电流,其损耗大,成本高,因而仅在实验室研究,未能在工业中实用。1976年,LGyugyi和ECStyaula提出了用PWM逆变器构成的有源电力滤波器[2]。这些采用PWM逆变器构成的有源电力滤波电路现已成为有源电力滤波器的基本结构。20世纪80年代,随着电力电子技术和PWM控制技术的发展,对有源电力滤波器的研究逐渐活跃起来,成为电力电子技术领域的研究热点之一。1983年赤木泰文等人提出的“三相电路瞬时无功功率理论”[3]极大的推动了有源电力滤波器的发展及其工 程应用。 在国外,有源电力滤波器已开始在工业和民用设备上得到广泛使用,并且谐波补偿的次数逐步提高,有的可以高达25次谐波;单机装置的容量逐步提高。如在日本和美国,应用领域可以接受的APF的容量已增加到50MVA,其应用领域从补偿用户自身的谐波向改善整个电力系统供电质量的 方向发展。

有源电力滤波器的要求及应用

有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。 有源电力滤波器是现代化工业的主要副产品之一,随着工业现代化程度提高,谐波的问题日益严重。这主要是现代化工业的用电方式发生了巨大的变化。传统工业的主要电力负荷是电动机和电阻加热设备,这些设备是线性负载,不会产生谐波电流。而现代化工业的主要电力负荷是电流变换器,包括变频器、中频炉、直流电机驱动器等,这些负荷都是非线性负载,工作时产生严重的谐波。 另一方面,大部分配电系统,包括变压器、开关柜、继电保护器、无功补偿柜等,都是按照线性负荷设计的。当实际负荷为非线性负荷时,对配电系统造成严重的危害,轻则导致系统过热、不稳定,重则损坏配电设备。 解决这个问题的最好方法就是在非线性设备的电源输入端安装有源电力滤波器,将非线性负荷转变为线性负荷,谐波导致的各种问题便迎刃而解。这种安装在设备的电源输入端的谐波滤波器就是设备级谐波滤波器。 有源电力滤波器的特殊要求 设备级有源电力滤波器与母线级谐波滤波器有不同的要求。设备级有源电力滤波器与所配的设备一同构成一个完整的系统,谐波滤波器的作用是保证这个系统的谐波电流发射满足特定的标准,例如,GB17625标准。因此,设备级有源电力滤波器要满足一下四个方面的要求: 1)不与系统发生不良作用:配装了谐波滤波器的设备可能在任何系统中使用,而任何情况下都不允许与系统之间发生不良的相互作用,例如与系统发生谐振,放大谐波电流。 2)不会导致超前的功率因数:设备配装了滤波器,功率因数要达到0.98以上,不允许出现过大的感性无功功率和容性无功功率; 3)滤波效果确定:滤波器与特定设备组合起来后,谐波电流发射必须是确定的,与系统的参数无关,这样才能确保设备安装了滤波器后,满足特定的要求;

浅谈有源电力滤波器设计

综述 随着大容量电力电子装置在高压交流电力系统中日益广泛的应用,谐波和无功等问题严重地威胁着系统自身的安全稳定运行。针对10~35kV高压交流电力系统,国内外目前主要采用无源电力滤波器来抑制谐波并补偿无功功率。无源电力滤波器具有诸多的缺陷,难以达到理想的性能。受功率半导体开关器件的约束,有源电力滤波器常规技术方案的应用限制在低压交流电力系统。提出一种基于基波磁通补偿的串联型有源电力滤波器新原理,通过电力电子变换器的控制,使串联变压器对基波呈现很小的一次侧漏阻抗,对谐波呈现很大的励磁阻抗。通过电力电子变换器的控制,变压器一次侧呈现连续无极可调的电抗。借鉴基波磁通补偿理论及磁通可控的可调电抗器原理,根据串并联的对偶特性,本文提出一种新型的基于阻抗可控的并联混合型有源电力滤波器。在电力电子变换器的控制下,变压器对谐波电流呈现近似为零的低阻抗,从而输导电力系统中的谐波电流,同时对基波电流呈现连续无极可调的电抗,与无源电力滤波器相结合,实时补偿系统的无功功率。通过变压器隔离降压,确保该滤波器安全、可靠、稳定地工作。

1 工作原理 1.1 变压器的结构 变压器的结构如图1所示。其一次侧AX与二次侧ax的匝数分别为W1、W2,变比k=W1/W2,一次侧与二次侧的互感为M。一次侧绕组的电阻为r1,自感为L11。变压器采用非晶态合金铁心,为了确保变压器工作在B-H曲线的线性区,铁心开有气隙。利用电压型逆变器向变压器二次侧绕组中注入补偿电流i2且满足i2=-α*∑i1(n)-β*i1(1) 式中:α为谐波补偿系数;∑i1(n)为实时检测的变压器一次侧谐波电流;β为基波补偿系数;i1(1)为实时检测的变压器一次侧基波电流。 1.2 谐波抑制原理 从AX端看,变压器n次谐波电压方程为ù1(n)=(r1+jW n L11)/ì1(n)+jW n Mì2(n) 若α满足谐波补偿条件α=L11/M 则从AX端看,变压器对谐波电流的等效阻抗为Z AX(n)=ù1(n)/ì1(n)=r1通常r1可忽略,因此,在满足谐波补偿条件时,变压器对谐波电流呈现近似为零的低阻抗。谐波等效电路如图2所示。

有源滤波器的概念原理与设计说明

一、基本概念: 有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,之所以称为有源, 顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高! 二、基本原理: 有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号`,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。 三、基本应用: 谐波主要危害: ? 增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失; ? 引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行; ? 产生脉动转矩致使电动机振动,影响产品质量和电机寿命; ? 由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化; ? 谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命; ? 零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组内产生环流,使绕组电流超过额定值,严重时甚至引发事故。 ? 谐波会改变保护继电器的动作特性,引起继电保护设施的误动作,造成继电保护等自动装置工作紊乱;

施耐德有源电力滤波器应用案例

施耐德电气 AccuSine有源电力滤波器应用案例介绍

目录 前言 (2) AccuSine 在通信行业的应用 (4) AccuSine 在半导体行业的应用 (6) AccuSine 在石化行业的应用 (8) AccuSine 在化纤行业的应用 (10) AccuSine 在钢铁/中频加热行业的应用 (12) AccuSine 在汽车制造行业的应用 (14) AccuSine 在海上石油平台项目的应用 (16) AccuSine 在直流电机谐波治理项目的应用 (18) AccuSine 在实验室/自动化生产线的应用 (20) AccuSine 在医院项目的应用 (22) AccuSine 在剧场/体育馆项目的应用 (24) 1

目的 本资料将有助于您: ——了解到严重的谐波问题已经成为不同行业用户高效使用电能的障碍; ——意识到严重的谐波问题无处不在,或许已经存在于各自企业的配电系统当中; ——了解到施耐德电气AccuSine 有源电力滤波器已在各行业成功应用,解决复杂的电能质量问题。电网的谐波污染 当正弦波电压施加在非线性负载上,电流就变成了非正弦波,非正弦波电流在电网阻抗上产生压降,会使电压波形也变为非正弦波。对非正弦波作傅立叶级数分解,其中频率与工频相同的分量称为基波,频率大于工频的分量称为谐波。 如今广泛使用的负载大部分为非线性负载,如整流器、变频器、UPS 、电梯、空调、节能灯、复印机、家用电器等。这些非线性负载会产生大量谐波电流并注入电网中,使电压波形产生畸变。这种电压谐波污染会对电网和所有后端用户产生严重的危害。另外,冲击性、波动性负载,比如:电弧炉、焊接设备等,在运行中不仅会产生大量的高次谐波,而且造成电压波动、闪变和三相不平衡等电能质量问题,危害电网的安全运行。 谐波限值相关标准 ● 公用电网谐波标准 根据《电能质量 公用电网谐波》(GB/T 14549-1993),公用电网(380V 系统)谐波电压(相电压)限值见下表: 电网标称电压 kV 电压总谐波畸变率 %各次谐波电压含有率:%奇数 偶数 0.38 5.0 4.0 2.0 注入公共连接点的谐波电流允许值见下表: 当电网公共连接点的最小短路容量不同于上表的基准短路容量时,按下式修正表中的谐波电流允许值式中 S k1 —— 公共连接点的最小短路容量,MVA ;S k2 —— 基准短路容量,MVA ;I hp —— 上表中的第h 次谐波电流允许值,A ;I h —— 短路容量为Sk1时的第h 次谐波电流允许值,A ; 前 言标称电压 (kV) 基准短路容量(MVA)谐波次数及谐波电流允许值(A)23456789101112130.38 107862396226441921162813241415161718192021222324250.381011129.7188.6167.88.97.114 6.512I h S k1I hp S k22

有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类 1.有源电力滤波器的基本原理 有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。 图1 有源滤波器示意图 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感阻上将产生较大损耗,所以目前较少采用。 图2 电压型有源滤波器

图3 电流型有源滤波器 2.有源电力滤波器的分类 按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。 图4 并联型有源滤波器 图4所示为并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,它也是当前应用最为广泛的一种有源滤波器拓补结构。 图5 串联型有源滤波器 图5所示为串联型有源滤波器的基本结构。它通过一个匹配变压器将有源滤波器串联于电源和负载之间,以消除电压谐波,平衡或调整负载的端电压。与并联型有源滤波器相比,串联型有源滤波器损耗较大,且各种保护电路也较复杂,因此,很少研究单独使用的串联型有源滤波器,而大多数将它作为混合型有源滤波器的一部分予以研究。 图6 混合型有源滤波器 图6所示为混合型有源滤波器的基本结构。它是在串联型有源滤波器的基础上使用一些

有源电力滤波器

顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高! 二、基本原理: 有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。 三、基本应用: 谐波主要危害: ? 增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失; ?引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行; ? 产生脉动转矩致使电动机振动,影响产品质量和电机寿命; ? 由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化; ? 谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命; ? 零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组内产生环流,使绕组电流超过额定值,严重时甚至引发事故。 ? 谐波会改变保护继电器的动作特性,引起继电保护设施的误动作,造成继电保护等自动装置工作紊乱;

有源电力滤波器的研究综述

想要使项目建设成本控制达到真正的有效控制,就必须严格按照一定的经济责任制要求,贯彻实施责任和权利相匹配的原则类型,只有这样在项目建设过程中完全有效的确定各成本发生中心体系,它们都是有效控制成本的载体。 (四)营房建设项目管理成本控制的方法 随着实践和科学研究的不断进行,到现在为止工程建设项目用来成本控制的基本方法和理论依据不断的增加,但是这些方法适合于不同的情况或者说是背景类型,在不同的建设背景下实施不同的控制方法将会产生不同的效果类型。营房建设项目成本控制的基本方法类型包括以下几种: 1.制度控制 制度控制是从最基本的施工单位角度对项目成本实施过程中的总体进行宏观有效的控制。它规定和约定了项目建设成本控制的有效方法和内容,用来解决项目施工建设过程中和成本控制管理中出现的可以有章可循、有例可根的重要问题的解决方法。 2.额度控制 为了控制建设项目最终成本的核算结果,建设或者承包单位必须及时获取或者调查完整的市场材料等价格信息资料。这些最基本的市场资料类型,对比以往历史资料按照一定比例予以控制和计算,由此用于确定建筑安装工程过程中材料基础定额。 3.合同控制 为了有效的控制建设过程中的成本,除采取上述的办法用来控制成本外,还经常采取与以上方法相配套的合同控制的办法。用合同来控制建设成本是指建设企业实施成本建设控制的重要方向之一。合同管理与其他控制办法的最主要不同之处就在于前面的控制方法大多属于行政控制。然而项目建设合同控制管理是指建设合作双方在合同自愿协商、自愿负责控制的基础上,产生的按照法律程式和方法具有约束力的有效控制办法。 作者简介:毕胜,1979年生,工作于中国人民解放军65139部队,现在长春工业大学攻读硕士研究生,项目管理专业。 摘要:随着电力电子技术的发展,电力电子装置在电力系统中的应用越来越广泛,应运而生的非线性和冲击性负载产生的谐波及无功电流对公共电网的污染也日渐严重。在解决谐波问题的众多方法中,有源电力滤波器(APF)是一种相当具有发展前景的谐波抑制装置。在国外,有远点滤波器早已进入了工业实用化阶段;而在国内,由于起步较晚,虽然在理论上已相当成熟,但在工业上却还没有得到广泛的应用。 关键词:有源电力滤波器串联混合型有源电力滤波器并联混合型有源电力滤波器 一、有源电力滤波器的发展历史及分类 有源电力滤波器最早被提出是在B.M.Bird和J.F.Marsh发表的论文(1969年)中,该论文所描述的方法是将三次谐波电流通入交流电网来减少电源中电流的谐波成分,从而改善电源电流波形。 在此之后,L.Gyugyi等人提出了用PWM变换器构成有源电力滤波器的方法,从而确立了有源电力滤波器的概念包括主电路的拓扑结构和控制方法。但由于技术水平还不高,有源电力滤波器仍然只能处于实验研究阶段。 80年代后,电力电子技术和PWM控制技术得到了长足的发展,在此基础上“三相电路瞬时无功功率理论”也被日本学者赤木泰文等人提出,其衍生出来的无功电流检测方法也成功的在有源电力滤波中得到了应用,直到现在该理论任然是有源电力滤波器研究的主要理论。 20世纪90年代末国外学者在此基础上进一步提出了一种新型的有源电力滤波器—— —统一电能质量调节器(UPQC),这种APF同时具有串、并联APF的功能而且具有较高的性价比,虽然目前任然处于试验阶段,但是这也将成为以后有源电力滤波器的一个重要研究方向。 有源电力滤波器从最早的单独使用的并联型,经过多年发展后,分化为现在的串联混合型和并联混合型。为适应对不同电网的补偿,进一步提出了串联型有源电力滤波器等。其本质是根据有源电力滤波器接入电网的方式的不同,将其分为并联型和串联型两大类。 二、有源电力滤波器的国内外研究现状 目前对有源电力滤波器的研究较为成熟的国家主要是日本及一些欧美国家,然而日本学者对拓扑结构的研究更为深入。 有源电力滤波器的主要生产厂商有三菱公司、西屋电气公司、西门子公司、ABB公司等,对有源滤波器的研究也领先于其他生产公司。其中一些产品已经相当成熟,已进入了实用化生产阶段。据日本电气学会对有源电力滤波器在日本应用情况的调查显示,在工业应用中,有源电力滤波器主要用于补偿谐波,占71.7%。而我国对于谐波问题的研究远远落后于其他国家,直到80年代末才有这方面的文章出现,直到现在国内对有源电力滤波器的研究任然处于理论及实验室阶段,虽然近几年有越来越多的单位在进行有源电力滤波器的研究,但研究方向却集中在并联型和混合型上,其中并联混合型有源电力滤波器的研究最成熟。其中包括了功率理论的定义,谐波的检测方法、有源电力滤波器的稳态和动态特性分析等。进几年来国内对谐波问题重视越来越高,利用有源电力滤波器对电能质量的改进潜藏着巨大的市场应用价值,有源电力滤波器在补偿滤波、不平衡电流、中线电流和无功功率等方面必将得到更为广泛的应用。 三、有源电力滤波器的发展方向 有源电力滤波器的主要使用方法是通过对PWM调制来提高开关器件的效率,通常采用IGBT及PWM技术进行谐波补偿和GTO和多重化技术来对谐波进行补偿。 从经济上考虑,大功率滤波装置可采用有源电力滤波器与LC无源滤波的并联使用来减小有源电力滤波器的容量,从而降低成本、提高效率。目前的主要应用趋势是将一种名为“统一电能质量调节器"的有源电力滤波器安装在供电系统的供电侧。 随着高速数字信号处理器(DSP)的出现,使有源电力滤波器的数字化控制也成为一种发展趋势,采数字方法可对谐波和无功电流进行实时计算,而且通过DSP还可以实现数字控制方,可将开关控制信号直接通过I/O接口和PWM接口发出,解决了模拟方法所不能解决的不少问题,同时使系统的抗干扰能力也得到了极大的提高。 在未来的研究中,我们可以从有源滤波器的拓扑结构,补偿性能,控制系统结构和降低成本等几个方面对有源滤波器进行更深一步的研究。 四、评述总结: 为了适应快速增长的电力需求,我国电力系统目前正沿着高电压、大容量、远距离的方向发展。随着电网的迸一步扩大,电力系统的结构日益复杂,需要补偿的谐波和无功容量急剧增加,电力系统对有源电力滤波器装置的容量、性能的要求也越来越高。因此,如何利用有源电力滤波器解决复杂电力系统和复杂负载中的谐波和无功抑制问题,以及如何提高有源电力滤波器的容量和滤波性能是目前有源电力滤波器需要解决的问题。现如今,对并联混合型有源电力滤波器的研究已相当的成熟,并在国外已得到了广泛的应用,在理论上的进一步研究也受到生产能力的限制。再之,其本身存在不能抑制谐振的缺陷,并联混合型有源电力滤波器的进一步研究的空间已经相当的小了。然而串联混合有源电力滤波器就很好的弥补了这一缺陷,并且其研究起步晚,理论也相当的不成熟,其研究的空间还相当的大。 参考文献: [1]周国梁,石新春.经济型有源电力滤波器的分析[J].电力科学与工程, 2004,6(3):34-36. [2]颜晓庆,王兆安.电力有源滤波器及其新发展[J].电工技术杂志,1998,7:3-5. [3]罗安,付青等.变电站谐波抑制与无功补偿的大功率混合型电力滤波器[J].中国电机工程学报,2004,24(9):l16-123. [4]薛文平,刘国海。基于同步参考坐标变换的改进型谐波检测法[J].电力电子技术,2006,40(1):47-49. [5]周柯,罗安等.一种大功率混合注入式有源电力滤波器的工程应用[J].中国电机工程学报,2007,27(22):80-86. 有源电力滤波器的研究综述 王文凯肖亚李茂罗欣沂杨凡弟谢延义 重庆邮电大学自动化学院 上接第265页 257

相关文档