文档库 最新最全的文档下载
当前位置:文档库 › 振荡电路的工作原理.

振荡电路的工作原理.

振荡电路的工作原理.
振荡电路的工作原理.

振荡电路的工作原理

一般振荡电路由放大电路、正反馈网络、选频网络和稳幅电路四部分组成,如图6 - 29所示。放大电路是满足幅度平衡条件必不可少的,因为振荡过程中,必然会有能量损耗,导致振荡衰减。通过放大电路,可以控制电源不断地向振荡系统提供能量,以维持等幅振荡,所以放大电路实质上是一个换能器,它起补充能量损耗的作用。正反馈网络是满足相位平衡条件必不可少的,它将放大电路输出电量的一部分或全部返送到输入端,完成自激任务,实质上,它起能量控制作用。选频网络的作用是使通过正反馈网络的反馈信号中,只有所选定的信号才能使电路满足自激振荡条件,对于其他频率的信号,由于不能满足自激振荡条件,从而受到抑制,其目的在于使电路产生单一频率的正弦波信号。选频网络若由R、C元件组成,称RC正弦波振荡电路;若由L、C元件组成,则称LC 正弦波振荡电路;若用石英晶体组成,则称石英晶体振荡电路。稳幅电路的作用是稳定振荡信号的振幅,它可以采用热敏元件或其他限幅电路,也可以利用放大电路自身元件的非线性来完成。为了更好地获得稳定的等幅振荡,有时还需引入负反馈网络。

在分析振荡电路的工作原理时先检查电路是否具有放大电路、反馈网络、选频网络和稳幅环节,再检查放大电路的静态工作点是否能保证放大电路正常工作,然后分析电路是否满足自激振荡条件,即相位平衡条件与振幅平衡条件。

振荡电路的振荡条件包括平衡条件和起振条件两部分。

振荡电路的平衡条件就是振荡电路维持等幅振荡的条件。振荡电路的平衡条件包括幅度平衡条件和相位平衡条件两部分。从图6 -29可以看出,振荡电路乏所以能够在没有外加输入交流信号的情况下就有输出信号,是因为它用自身的正反馈信号作为输入信号了。所以,为了使振荡电路维持等幅振荡,必须使它的反馈信号Vf的幅度和相位与它的净输入信号Vid相同。振荡电路的幅度平衡条件是AF =1;振荡电路的相位平衡条件是cpA +(pf=+2n,7r(n=0,l,2,3--)。式中,如A表示基本放大电路的相移,9f表示正反馈网络的相移。对于一个振荡电路来说,必须同时满是振荡电路的幅度平衡条件和相位平衡条件,振荡电路才能维持等幅振荡。

振荡电路刚开始工作时,在接通电源的瞬间,电路中便产生了电流扰动。这些电流扰动可能是接通电源的瞬间引起的电流突变,也可能是三极管或电路内部的噪声信号。这个电流扰动中包含了多种频率的微弱正

弦波信号,这些信号就是振荡电路的初始输入信号。在振荡电路开始工作时,如果能满足AF>1,则通过振荡电路的放大与选频作用,就能将与选频网络频率相同的正弦波信号放大并反馈到放大电路的输入端,而其他频率的信号则被选频网络抑制掉。这样就能使振荡电路在接通电源后,从小到大的建立起振荡,直至AF =1时,振荡幅度定下来。所以AF>1称为振荡电路的起振条件。

利用三极管的非线性或在电路中采用负反馈等措施,即可使振荡电路从AF >1过渡到AF =1,达到稳定振幅的目的。

如果把振荡电路的维持条件和起振条件结合起来,写作AF≥1,这就是振荡电路的幅度平衡条件。也就是说,要保证振荡电路能够产生并维持等幅振荡,在满足维持条件的同时,还必须满足起振条件。综上所述,振荡电路的振荡条件为AF≥1:(;PA +(pf=t:2n-rr(n =0,l,2,3--)o

LC振荡电路-基本定义

LC振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC振荡电路和电容三点式LC振荡电路。LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。

LC振荡电路物理模型的满足条件

①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。

②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。

③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。

能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。

振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。

充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。

放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感

应电流达到最大。

充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。

放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。

在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。

占空比可调的方波振荡电路工作原理及案例分析

占空比可调的方波振荡电路工作原理及案例分析 参考电路图5.12所示,测试电路,计算波形出差频率。 电容 图5.12 方波发生电路(multisim) 通过上述电路调试,发现为方波发生器。 一、电路组成 如图5.13,运算放大器按照滞回比较器电路进行链接,其输出只有两种可能的状态:高电平或低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动的产生相互变换,所以电路中必须引入反馈;因为输出状态应按一定的时间,间隔交替变化,即产生周期性的变化,所以电路中要有延迟环节来确定每种状态维持的时间。 电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。电压传输特性如图6.8所示: U 0 U N U P U z U c R 3 R 2 R 1 R 图5.13方波发生电路 二、工作原理 从图5.13可知,设某一时刻输出电压U O =+U Z ,则同相输入端电位U P =+U T 。U O 通过R 对电容C 正向充电。反相输入端电位U N 随时间t 增长而逐渐升高,当t 趋近于无穷时,U N 趋于+U z ;

当U N =+U T ,再稍增大,U O 就从+U Z 越变为-U Z ,与此同时U p 从+U T 越变为-U T 。随后,U O 又通过R 对电容C 放电。 反相输入端电位U N 随时间t 增长而逐渐降低,当t 趋近于无穷时,U N 趋于-U Z ;当U N =-U T ,稍减小,U O 就从-U Z ,于此同时,U p 从-U T 跃变为+U T ,电容又开始正向充电。 上述过程周而复始,电路产生了自激振荡。 三、波形分析及主要参数 由于矩形波发生电路中电容正向充电与反向充电的时间常数均等于R3C,而且充电的总幅值也相等因而在一个周期内U O =+U Z 的时间与U O =-U Z 的时间相等,U O 对称的方波,所以也称该电路为对称方波发生电路。电容上电压U C 和电路输出电压U O 波形如图所示。矩形波的宽度T k 与周期T 之比称为占空比,因此U O 是占空比为1/2的矩形波。 利用一阶RC 电路的三要素法可列出方程,求出振荡周期。 3122(12/)T R C R R =+ 振荡频率为: 1/f T = 调整电压比较器的电路参数R 1,R 2和U Z 可以改变方波发生电路的振荡幅值,调整电阻R 1,R 2,R 3和电容C 的数值可以改变电路的振荡频率。 四、占空比可调电路 占空比的改变方法:使电容的反向和正向充电时间常数不同。利用二极管的单向导电性可以引导电流流经不同的通路,占空比可调的矩形波发生电路如图2-5所示,电容上电压和输出波形的如图 6.19 Z U ±O 图 5.14占空比可调电路 电路工作原理:当U O =+U Z 时,通过RW1,D1,和R3对电容C 正向充电,若忽略二极管导通时的等效电阻,则时间常数为:

LC正弦波振荡电路的仿真分析

摘要 振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 关键词:LC振荡回路;仿真;正弦波信号;Multisim软件;

目录 一、绪论 (1) 二、方案确定 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (3) 2.3 振荡平衡条件一般表达式 (4) 2.4起振条件和稳幅原理 (4) 三、LC振荡器的基本工作原理 (4) 四、总电路设计和仿真分析 (5) 4.1软件简介 (5) 4.2 总电路设计 (7) 4.3 进行仿真 (8) 4.4 各个原件对电路的影响 (11) 五、心得体会 (12) 参考文献 (13) 附录 (14) 电路原理图 (14) 元器件清单 (14)

一、绪论 在本课程设计中,对LC正弦波振荡器的仿真分析。正弦波振荡器用来产生正弦交流信号的电路,它广泛应用于通信、电视、仪器仪表和测量等系统中。在通信方面,正弦波震荡器可以用来产生运载信息的载波和作为接收信号的变频或调解时所需要的本机振荡信号。医用电疗仪中,用高频加热。在课程设计中,学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。 我利用了仿真软件对电路进行了一写的仿真分析,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,本设计中所涉及的仿真电路是比较简单的。但通过仿真得到的结论在实际的类似电路中有很普遍的意义。 二、方案确定 通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。我们这里研究的主要是LC三端式振荡器。

环形振荡器的工作原理

环形振荡器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

环形振荡器的工作原理 环形振荡器是利用门电路的固有传输延迟时间将奇数个反相器首尾相接而成,该电路没有稳态。因为在静态(假定没有振荡时)下任何一个反相器的输入和输出都不可能稳定在高电平或低电平,只能处于高、低电平之间,处于放大状态。 假定由于某种原因v11产生了微小的正跳变,经G1的传输延迟时间tpd后,v12产生了一个幅度更大的负跳变,在经过G2的传输延迟时间tpd后,使v13产生更大的正跳变,经G3的传输延迟时间tpd后,在vo产生一个更大的负跳变并反馈到G1输入端。可见,在经过3tpd后,v11又自动跳变为低电平,再经过3tpd之后,v11又将跳变为高电平。如此周而复始,便产生自激振荡。如图2所示,可见振荡周期为 T=6tpd 环形振荡器的改进原因 环形振荡器的突出优点是电路极为简单,但由于门电路的传输延迟时间极短,TTL门电路只有几十纳秒,CMOS电路也不过一二百纳秒,难以获得较低的振荡频率,而且频率不易调节,为克服这个缺点,有几种改进电路,下面给出对照图。如图3和图4所示。 环形振荡器的改进原理 接入RC 电路以后,不仅增大了门G2的传输延迟时间tpd2有助于获得较低的振荡频率。而且通过改变R 和C 的数值可以很方便地实现对频率的调节。 环形振荡器的实用电路 如图4,为了进一步加大RC和G2的传输延迟时间,在实用电路中将电容C 的接地端改接G1的输出端。如图10.3.5所示。例如当v12处发生负跳变时,经过电容C使v13首先跳变到一个负电平,然后再从这

振荡电路的原理

高频放大器 使用高频功率放大器的目的是放大高频大信号使发射机末级获得足够大的发射功率。 高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。 原理 放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。如果放大电路的通频带小于信号的频带,由于信号的低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。 For personal use only in study and research; not for commercial use 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻变换和选频滤波功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 本级振荡电路 本级振荡电路图 本级振荡电路采用改进型晶体振荡电路(克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。 混频器 工作频率 混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。

高频课程设计_LC振荡器_克拉泼.(DOC)

高频电子线路课程设计报告设计题目:高频正弦信号发生器 2015年 1月 6 日

目录 一、设计任务与要求 (1) 二、设计方案 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (2) 2.3克拉波电路振荡器 (6) 三、设计内容 (8) 3.1LC振荡器的基本工作原理 (8) 3.2克拉泼电路原理图 (9) 3.2.1振荡原理 (9) 3.3克拉泼振荡器仿真 (10) 3.4.1软件简介 (10) 3.4.2进行仿真 (10) 3.4.3电容参数改变对波形的影响 (11) 四、总结 (17) 五、主要参考文献 (18) 六、附录.................................................................................... .. (18)

一、设计任务与要求 为了熟悉《高频电子线路》课程中所学到的知识,在本课程设计中,我和队友(石鹏涛、甘文鹏)对LC正弦波振荡器进行了分析和研究。通过对几种常见的振荡器(电感反馈式三端振荡器、电容反馈式三端振荡器、改进型电容反馈式振荡器)进行分析论证,我们最终选择了克拉泼振荡器。 在本次课程设计中,设计要求产生10~20Mhz的振荡频率。振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我们选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 最后我们利用了仿真软件对电路进行了一写的仿真分析,如改变电容的参数,分析对电路产生的影响等,再考虑输出频率和振幅的稳定性,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 二:设计方案 通过学习高频电子线路的相关知识,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路)等。通过老师所讲和查阅相关资料可知,克拉泼振荡电路具有该电路频率稳定性非常高,振幅稳定,适合做波段振荡器等优点。所以在本设计中拟采用改进型电容反馈式--克拉泼电路振荡器。 下面对几种振荡器进行分析论证: 2.1电感反馈式三端振荡器

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

高频电子线路课程设计-电容三点式LC振荡器的设计与制作

高频课设实验报告 实验项目电容三点式LC振荡器的设计与制作系别 专业 班级/学号 学生姓名 实验日期 成绩 指导教师

电容三点式 LC 振荡器的设计与制作 一、实验目的 1.了解电子元器件和高频电子线路实验系统。 2.掌握电容三点式LC 振荡电路的实验原理。 3.掌握静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响4.了解负载变化对振荡器振荡幅度的影响。 二、实验电路实验原理 1.概述 2.L C振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。 3.LC振荡器的频率稳定度 频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:△f0/f0来表示(f0为所选择的测试频率:△f0为振荡频率的频率误差,Δf0=f02 -f01:f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高 Q 值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4.LC振荡器的调整和参数选择 以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图1-1 所示。 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏有一定的影响。偏置电路一般采用分压式电路。当振荡器稳定工作时,振荡管工作在非线性

状态,通常是依靠晶体管本身的非线性实现稳幅。若选择晶体管进入饱和区来实现稳幅,则将使振荡回路的等效 Q 值降低,输出波形变差,频率稳定度降低。因此,一般在小功率振荡器中总是使静态工作点远离饱和区靠近截止区。 (2)振荡频率 f 的计算 式中 CT为 C1、C2和 C3的串联值,因 C1(300p)>>C3(75p),C2(1000P)>> C3(75p),故 CT≈C3,所以,振荡频率主要由 L、C 和 C3 决定。 (3)反馈系数F的选择 反馈系数 F不宜过大或过小,一般经验数据 F≈0.1~0.5,本实验取F=0.3 5.克拉波和西勒振荡电路 图 1-2 为串联改进型电容三点式振荡电路——克拉泼振荡电路。图1-3 为并联改进型电容三点式振荡电路——西勒振荡电路。 6.电容三点式 LC 振荡器电路 电容三点式LC振荡器电路如图1-4所示。图中1K01打到“S”位置(右侧)时,为改进型克拉泼振荡电路,打到“P”位置(左侧)时,为改进型西勒振荡电路。开关IS03控制回路电容的变化。调整1W01可改变振荡器三极管的电源电压。1Q02为射极跟随器。1TP02为振荡器直流电压测量点。1W02用来改变输出幅度。 二、实验目的

RC正弦波振荡电路图文分析原理

RC正弦波振荡电路图文分析原理参考电路图5.7所示,搭建一个100KHz的正弦波振荡电路。 U O (a)测试电路(b)输出波形 图5.7 RC正弦波振荡电路(multisim) LC振荡电路的振荡频率过低时,所需的L和C就很大,这将使振荡电路结构不合理,经济不合算,而且性能也变坏,在几百千赫兹以下的振荡电路常采用RC振荡电路。由RC 元件组成的选频网络有RC称相型,RC串并联型,RC双T型等结构。这里主要介绍RC串并联型网络组成的振荡电路,即RC桥式正弦波振荡电路。 一、RC串并联型网络的选频特性 RC桥式电路如图5.8所示,设R1=R2=R,C1=C2=C, 11 1 2 1 2 11 1 2 11 2 j CR Z R j C j C R j C R Z j CR R j C ω ωω ω ω ω + =+= == + + 则反馈系数 2 12 1 1 3() f o U Z F U Z Z j CR CR ω ω === ++-

令 01C R ω= ,即 012f RC π= 则式(7-13)可写为 000 001 1 3( )3() F f f j j f f ωωωω = = +-+- 其频率特性曲线如图5.9(a )、(b )所示。 从图中可看出,当信号频率f =f 0时,u f 与u 0同相,且有反馈系数 01 3 f U F U = =为最大。 (a)幅频特性 (b)相频特性 图5.8 RC 串并联网络 图5.9RC 串并联网络的频率特性 二、RC 桥式振荡电路 1、电路组成 图5.9所示电路是文氏电桥振荡电路的原理图,它由同相放大器A 及反馈网络F 两部分组成。图中RC 串并联电路组成正反馈选频网络,电阻R f 、R 是同相放大器中的负反馈回路,由它决定放大器的放大倍数。 RC 桥式振荡电路的起振条件 同相放大器的输出电压0U 与输入电压i U 同相,即0a ?=,从分析RC 串并联网络的选频特性知,当输入RC 网络的信号频率f =f 0时,0U 与f U 同相,即0f ?=,整个电路的相移0f a ???=+=,即为正反馈,满足相位平衡条件。 放大器的放大倍数1f u R A R =+ ,从分析RC 串联网络的选频特性知,在R 1=R 2=R ,C 1=C 2=C 的条件下,当f=f 0时,反馈系数F=1/3达到最大,此时,只要放大器的电压放大倍数略大 于连(即R f ≥2R ),就能满足AF >1的条件,振荡电路能自行建立振荡。 R 1 C 1R 1 C 2 -U o + - + U f Z 1 Z 2

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

LC振荡器

摘要 振荡器(英文:oscillator)是用来产生重复电子讯号(通常是正弦波或方波)的电子元件,能将直流电转换为具有一定频率交流电信号输出的电子电路或装置。其构成的电路叫振荡电路。其中,LC振荡器因其使用方便和灵活性大而得到广泛的应用。因此,了解LC振荡器电路的特性显得尤为重要。本次实验将讨论各个LC振荡电路各元件与反馈系数|F|、角频率w之间的关系。 关键词:LC振荡;MATLAB;反馈系数;频率

Abstract The oscillator is used to generate repeat electronic signal (usually a sine wave or square wave) of electronic components, can the DC conversion to electronic circuit or device with a certain frequency AC signal output. Constitute a circuit called the oscillation circuit. Among them, the LC oscillator because of its convenience and flexibility and has been widely applied. Therefore, to understand the characteristics of LC oscillator circuit is very important. This study will discuss the relationship between the various LC oscillation circuit components and feedback coefficient |F|, frequency . Keywords: LC oscillation; MATLAB; frequency feedback coefficient;

振荡电路工作原理详细分析

振荡电路工作原理详细分析注:这只是我个人的理解,仅供参考,如不正确,请原谅! 1、电路图和波形图 2、工作原理:晶体管工作于共发射极方式。集电极电压通过变压器反馈回基级,而变压器绕组的接法实现正反馈。其工作过程根据三极管的工作状态分为三个阶段:t1、t2、t3(如上图): 说明:此分析过程是在电路稳定震荡后,以一个完整波形周期为例进行分析,即起始Uce=12v。而对于电路刚接通时,工作原理完全相同,只是做波形图时,起始电压Uce=0v。 1)、电路接通后,进入t1阶段(晶体管为饱和状态)。 在t1的初始阶段,电路接通,流过初级线圈的电流不能突变,使得集电极电压Uce急速减小,由于时间很短,在波形中表现为下降沿很陡。而经过线圈耦合,会使基极电压Ube急速增大。此时,三极

管工作在饱和状态(Ube>=Uce)。基极电流ib失去对集电极电流ic 的控制。之后,随着时间增加,Uce会逐渐增加,Ube通过基极与发射机之间的放电而逐渐减少。基极电压Ube下降使得ib减小。 2)、当ib减小到ic /β时, 晶体管又进入放大状态,即t2阶段。 于是,ib的减小引起ic的减小,造成变压器绕组上感应电动势方向的改变,这一改变的趋势进一步引起ib的减小。如此又开始强烈的循环,直到晶体管迅速改变为截止状态。这一过程也很快,对应于脉冲的下降沿。在此过程中,电流强烈的变化趋势使得感应线圈上出现一个很大的感应电动势,Ube变成一个很大的负值。 3)、当晶体管截止后(t3阶段),ic=0,Uce经初级线圈逐渐上升到12v(变压器线圈中储存有少量能量,逐渐释放)。此时,直流12v电源通过27欧电阻和反馈线圈对基极电压充电,Ube逐渐上升,当Ube上升到0.7v左右时,晶体管重新开始导通(硅管完全导通的电压大约是0.7v)。于是下一个周期开始,重复上述各个阶段。其震荡周期T=t1+t2+t3;

实验2 正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器) 一.实验目的 1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC振荡器幅频特性的测量方法; 3.熟悉电源电压变化对振荡器振荡幅度和频率的影响; 4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。二.实验内容 1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率; 2.测量LC振荡器的幅频特性; 3.测量电源电压变化对振荡器的影响; 4.观察并测量静态工作点变化对晶体振荡器工作的影响。 三.实验步骤 1.实验准备 插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。 2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。) (1)西勒振荡电路幅频特性的测量 3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。调整电位器3W02,使输出最大。开关3K05拨至“P”,此时振荡电路为西勒电路。四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。四个开关接通的不同组合,可以控制电容的变化。例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。 表2-1 根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并

实验三电容三点式LC振荡器

实验三电容三点式LC 振荡器 」、实验目的 1、 掌握电容三点式LC 振荡电路的实验原理; 2、 了解静态工作点、耦合电容、反馈系数、品质因数 Q 值对振荡器振荡幅度 和频率的影响; 3、 了解负载变化对振荡器振荡幅度的影响。 二、实验原理 1、电路与工作原理 (1) 图3-2克拉泼振荡电路中,串联电容 C1、C2和C 构成总电容。因为 C1( 300p) >>C( 75p), C2( 1000P >>C ( 75p),故总电容约等于 C, 所以振荡频率主要由L 和C 决定。 (2) 图3-3西勒振荡电路中,电容C1、C2和C3的串联值后与电容C 相并。 因为 C1(300p)>>C3(75p),C2 ( 1000P)>>(75p),故总电容约等 于C+C3所以振荡频率主要由L 、C 和C3决定。 (3) 反馈系数F=F1: F2,反馈系数F 不宜过大或过小,一般经验数据 F~ 0.1?0.5, 本实验取0.3 2、实验电路 如图3-4所示,1K01打到“串S ”位置时,为改进型克拉泼振荡电路,打到 图3-2克拉泼振荡电路 图3-3西勒振荡电路

“并P”位置时,为改进型西勒振荡电路。开关1S03控制回路电容的变化;调 整1W01可改变振荡器三极管的电源电压;1Q02为射极跟随器;1TP02为振荡器直流电压测量点,1W02用来改变输出幅度。 |{iM3 三、实验内容 1测量“并P”西勒振荡电路幅频特性; 2、测量“串S”克拉泼振荡电路幅频特性; 3、测量波段覆盖系数。 四、实验步骤 (一)模块上电 将LC振荡器模块③接通电源,即可开始实验。 (二)测量振荡电路的幅频特性 1、西勒振荡电路幅频特性的测量

lc振荡电路分析_lc振荡电路工作原理及特点分析

lc振荡电路分析_lc振荡电路工作原理及特点分析 LC振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC 振荡电路和电容三点式LC振荡电路。LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电LC,利用这个放大元件,通过各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。频率计算公式为f=1/[2(LC)], 其中f为频率,单位为赫兹(Hz);L为电感,单位为亨利(H);C为电容,单位为法拉(F)。 lc振荡电路工作原理及特点分析LC电磁振荡过程涉及的物理量较多,且各个物理量变化也比较复杂。实际分析过程中,如果注意到电场量(电场能、电压、电场强度)和磁场量(磁场能、电流强度、磁感应强度)的异步变化,电场量、磁场量各自的同步变化,充分利用包含电场能、磁场能在内的能量守恒,由能量变化辐射其他物理变化,就可快速地弄清各物理量的变化情况,判断电路所处的状态。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。由于所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,所以实际上的LC振荡电路都需要一个放大元

(完整版)555振荡器工作原理

555 多谐振荡器 工作原理 原理 1、555定时器内部结构 555定时器是一种模拟电路和数字电路相结合的中规模集成电路,其内部结构如图(A ) 及管脚排列如图(B )所示。 它由分压器、比较器、基本R--S 触发器和放电三极管等部分组成。分压器由三个5K 的等值电阻串联而成。分压器为比较器1A 、2A 提供参考电压,比较器1A 的参考电压为23cc V ,加在同相输入端,比较器2A 的参考电压为13 cc V ,加在反相输入端。比较器由两个结构相同的集成运放1A 、2A 组成。高电平触发信号加在1A 的反相输入端,与同相输入端的参考电压比较后,其结果作为基本R--S 触发器_ D R 端的输入信号;低电平触发信号加在2A 的同相输入端,与反相输入端的参考电压比较后,其结果作为基本R —S 触发器_D S 端的输入信号。基本R--S 触发器的输出状态受比较器1A 、2A 的输出端控制。 多谐振荡器工作原理 由555定时器组成的多谐振荡器如图(C)所示,其中R 1、R 2和电容C 为外接元件。其工作波如图(D)所示。

设电容的初始电压c U =0,t =0时接通电源,由于电容电压不能突变,所以高、低触 发端TH V =TL V =0<13 VCC,比较器A1输出为高电平,A2输出为低电平,即_1D R =,_0D S =(1表示高电位, 0表示低电位),R S -触发器置1,定时器输出01u =此时_ 0Q =,定时器内部放电三极管截止,电源cc V 经1R ,2R 向电容C充电,c u 逐渐升高。当c u 上升到 13cc V 时,2A 输出由0翻转为1,这时__1D D R S ==,R S -触发顺保持状态不变。所以0

LC与晶体振荡器实验

LC与晶体振荡器实验 一、实验目的 1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。 2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。 3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。 4)、比较LC与晶体振荡器的频率稳定度。 二、实验预习要求 实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。 四、实验设备 TKGPZ-1型高频电子线路综合实验箱;双踪示波器;频率计;繁用表。 五、实验内容与步骤 开启实验箱,在实验板上找到与本次实验内容相关的单元电路,并对照实验原理图,认清各个元器件的位置与作用,特别是要学会如何使用“短路帽”来切换电路的结构形式。 作为第一次接触本实验箱,特对本次实验的具体线路作如下分析,如图1-6所示(见图1-6)。 电阻R101~R106为三极管BG101提供直流偏置工作点,电感L101既为集电极提供直流通路,又可防止交流输出对地短路,在电阻R105上可生成交、直流负反馈,以稳定交、直流工作点。用“短路帽”短接切换开关K101、K102、K103的1和2接点(以后简称“短接K xxx╳-╳”)便成为LC西勒振荡电路,改变C107可改变反馈系数,短接K101、K102、K1032-3,并去除电容C107后,便成为晶体振荡电路,电容C106起耦合作用,R111为阻尼电阻, R101 R102 22K

图1-6 LC与晶体振荡器实验电原理图 用于降低晶体等效电感的Q值,以改善振荡波形。在调整LC振荡电路静态工作点时,应短接电感L102(即短接K104 2-3)。三极管BG102等组成射极跟随电路,提供低阻抗输出。本实验中LC振荡器的输出频率约为1.5MHz,晶体振荡器的输出频率为10MHz,调节电阻R110,可调节输出的幅度。 经过以上的分析后,可进入实验操作。接通交流电源,然后按下实验板上的+12V总电源开关K1和实验单元的电源开关K100,电源指示发光二极管D4和D101点亮。 (一)、调整和测量西勒振荡器的静态工作点,并比较振荡器射极直流 电压(U e、U eq)和直流电流(I e、I eq): 1、组成LC西勒振荡器:短接K1011- 2、K1021-2、K103 1-2、K1041-2,并 在C107处插入1000p的电容器,这样就组成了与图1-4完全相同的LC西勒振荡器电路。用示波器(探头衰减10)在测试点TP102观测LC振荡器的输出波形,再用频率计测量其输出频率。 2、调整静态工作点:短接K104 2-3(即短接电感L102),使振荡器停振, 并测量三极管BG101的发射极电压U eq;然后调整电阻R101的值,使U eq=0.5V,并计算出电流I eq(=0.5V/1K=0.5mA)。 测量发射极电压和电流:短接K104 1-2,使西勒振荡器恢复工作, 测量BG102的发射极电压U e和I e。 调整振荡器的输出:改变电容C110和电阻R110值,使LC振荡器的 输出频率f0为1.5MHz,输出幅度V Lo为1.5V P-P。 (二)、观察反馈系数K fu对振荡电压的影响: 由原理可知反馈系数K fu=C106/C107。按下表改变电容C107的值,在TP102处测量振荡器的输出幅度V L(保持U eq=0.5V),记录相应的数据,并绘制V L=f(C)曲线。

压控振荡器原理和应用说明

压控振荡器(VCO 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj随反向偏置电压VT变化而变化的特点(VT=0V时Cj是最大值,一般变容管VT落在2V-8V压间,Cj呈线性变化,VT在8-10V则一般为非线性变化,如图1 所示,VT 在10-20V时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO 0 压控振荡器的调谐电压 VT要针对所要求的产品类别及典型应用环境(例如用户提供调谐要求,在锁相环使用中泵源提供的输出控制电压范围等)来选择或设计,不同的压控振荡器, 对调谐电压VT有不同的要求,一般而言,对调谐线性有较高要求者,VT选在1-10V,对宽 频带调谐时,VT则多选择1-20V或1-24V。图1为变容二极管的V— C特性曲线。 三压控振荡器的基本参数 1工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“MHz或 “GHz 0 2输出功率:在工作频段内输出功率标称值,用 Po表示。通常单位为“ dBmWo 3输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△P表示,通常 单位为“ dBmWo 4调谐灵敏度:定义为调谐电压每变化1V寸,引起振荡频率的变化量,用MHz/ △ VT 表示,在线性区,灵敏度最高,在非线性区灵敏度降低。 5谐波抑制: 6推频系数: MHz/V表示。 7相位噪 声:的带内, 各杂散能量的总和按fin平均值+15f0点频谱能量之比,单位为dBC/Hz相位噪声特点是频谱能量定义在测试频点,二次谐波抑制 =10Log(P基波/P谐波)(dBmw)。 定义为供电电压每变化1V寸,弓I起的测试频点振荡频率的变化量,用 可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振f0为fm Cj(PF)

振荡器的工作基本原理

常见振荡器的工作原理 振荡器应用在在许多不同类型的电子设备中。比如说,石英表使用石英晶体振荡器跟踪时间。还有调幅收音机发射机使用振荡器为电台创建载波,调幅收音机接收机使用称为谐振电路的特殊形式的振荡器进行调谐。以及在计算机、金属探测仪甚至眩晕枪中都有振荡器。 下面我们就要从生活中找到振荡器,并且分析其工作原理。 比如说最常见的振荡器之一就是时钟的钟摆。如果推动钟摆开始摆动,它就会以某种频率振荡——每秒钟会来回摆动一定的次数。控制频率的主要是钟摆的长度。要使物体振荡,能量必须在两种形态之间来回转换。例如,在钟摆中,能量在势能和动能之间转换。当钟摆位于摆动的一端,其能量全部是势能,并准备落下。当钟摆在循环的中间,所有势能转换为动能,钟摆以最快的速度移动。当钟摆向另一侧运动时,所有动能又转为势能。这两种形态间的能量的转换就是导致振荡的原因。 最后由于摩擦的作用,任何物理振荡都会停止。要继续运动,必须在每次循环中添加少许能量。在摆钟里,保持钟摆移动的能量来自弹簧。钟摆在每次敲钟时都得到一点推力,以弥补因摩擦而失去的能量。 电子振荡器的工作原理与之相同。振荡器要正常工作,能量必须在两种形态之间来回转换。将电容器和电感器连接在一起,即可制成一个非常简单的振荡器。如果您阅读过电容器工作原理和电感器工作原理,就会知道电容器和电感器都能储存能量。电容器以静电场的形式储存能量,而电感器则使用磁场。假设有这样一个电路:

如果用电池为电容器充电,然后将电感器插入电路,将会发生以下情况: 1.电容器将通过电感器开始放电。同时电感器将建立磁场。 2.一旦电容器放电完毕,电感器将尝试保持电路中的电流,为电容器的另一个板充电。 3.当电感器的磁场消失后,电容器已再次充电(但充电极性相反),将再次通过电感器 放电。 这种振荡将持续,直到金属线中的电阻耗完能量为止。该振荡频率取决于电感器和电容器的大小。在简单的晶体收音机中,一个由电容器或电感器组成的振荡器充当收音机的调谐器。它通过以下方式连接到天线和地线: 然后来自于不同电台的成千上万的正弦波会到达我们使用的天线。电容器和电感器要以一个特定的频率谐振。符合此特定频率的正弦波将被谐振电路放大,而所有其他频率都将被忽略。在收音机中,谐振电路中的电容器或电感器都是可调的。当我们转动收音机上的调谐旋钮时,就是在进行调节,比如调节可变电容。改变电容器会改变谐振电路的谐振频率,由此也会改变谐振电路所放大的正弦波频率。这就是我们如何“收听”收音机的不同电台!真是运用的振荡器的工作原理达到的这样一个效果。 电子电器频道https://www.wendangku.net/doc/d26104626.html,/jishu-dianzidianqi-cp-isp-mat

相关文档
相关文档 最新文档