文档库 最新最全的文档下载
当前位置:文档库 › @概率论与数理统计公式总结

@概率论与数理统计公式总结

@概率论与数理统计公式总结
@概率论与数理统计公式总结

第一章

P(A+B)=P(A)+P(B)- P(AB) 特别地,当

A 、

B 互斥时,

P(A+B)=P(A)+P(B) 条件概率公式

概率的乘法公式

全概率公式:从原因计算结果

Bayes 公式:从结果找原因

第二章

)

()()|(B P AB P B A P =

)|()()(B A P B P AB P =)

|()(A B P A P =∑

==

n

k k k B A P B P A P 1

)

|()()(∑==

n

k k k

i i k B A P B

P B A P B P A B P 1

)

|()()

|()()|(∑≤==

≤=x

k k X

P x X P x F )

()()(1

),(0≤≤y x F }

,{),(y Y x X P y x F ≤≤=

二项分布(Bernoulli 分布)——X~B(n,p)

泊松分布——X~P(λ)

概率密度函数

怎样计算概率

均匀分布X~U(a,b)

指数分布X~Exp (θ)

),...,1,0()1()(n k p p C k X P k

n k

k

n =-==-,,...)

1,0(!

)(==

=-k e k k X P k

,λ

λ

1

)(=?

+∞

-dx x f )

(b X a P ≤≤?

=

≤≤b

a

dx

x f b X a P )()()

0(1

)(/≥=

-x e

x f x θ

)

(1)(b x a a

b x f ≤≤-=

分布函数 对离散型随机变量

对连续型随机变量

分布函数与密度函数的重要关系:

二元随机变量及其边缘分布 分布规律的描述方法

联合密度函数 联合分布函数

联合密度与边缘密度

?∞-=≤=x

dt t f x X P x F )()()(?

-=

≤=x

dt

t f x X P x F )()()(),(y x f )

,(y x F 0

),(≥y x f 1

),(=??

+∞

-+∞

-dxdy y x f ?

+∞

-=

dy

y x f x f X ),()()

()('

x f x F =

离散型随机变量的独立性

连续型随机变量的独立性

第三章 数学期望

离散型随机变量,数学期望定义

连续型随机变量,数学期望定义

● E(a)=a ,其中a 为常数

● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量

随机变量g(X)的数学期望

?

+∞

-=

dx

y x f y f Y ),()(}

{}{},{j Y P i X P j Y i X P =====)

()(),(y f x f y x f Y X =∑+∞

-∞

=?=

k k

k

P x

X E )(?

+∞

-?=

dx

x f x X E )()(∑=

k

k

k

p x

g X g E )())((

常用公式

方差 定义式

常用计算

∑∑=i

j

ij

i p x X E )(dxdy

y x xf X E ??=

),()()

()()(Y E X E Y X E +=+∑∑=

i

j

ij

j

i

p y

x XY E )(dxdy

y x xyf

XY E ??=

),()()

()()(,Y E X E XY E Y X =独立时与当()?+∞

∞-?-=

dx

x f X E x X D )()()(2

[]

2

2

)()()(X E X E X D -=

常用公式

当X 、Y 相互独立时:

方差的性质

D(a)=0,其中a 为常数

D(a+bX)=b2D(X),其中a 、b 为常数 当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数

协方差的性质

))}

())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)

()()(Y D X D Y X D +=+)

()()(),(Y E X E XY E Y X Cov -=)

()(),(Y D X D Y X Cov XY =

ρ[][]{})

()()()()(Y E X E XY E Y E Y X E X E -=--())

()()(),(2

2

X D X E X E X X Cov =-=)

,(),(Y X abCov bY aX Cov =

独立与相关 独立必定不相关 相关必定不独立 不相关不一定独立 第四章 正态分

标准正态分布的概率计算 标准正态分布的概率计算公式

)()()(a a Z P a Z P Φ=<=≤

)(1)()(a a Z P a Z P Φ-=>=≥

)()()(a b b Z a P Φ-Φ=≤≤

1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P

一般正态分布的概率计算

)

,(),(),(Z Y Cov Z X Cov Z Y X Cov +=+)

,(~2σμN X 22

2)(21)(σ

μσ

π--=x e

x f 2

)(,

)(σ

μ==X D X E )

(1)(a a -Φ-=Φ)

1,0(~),(~2

N X Z N X σ

μ

σμ-=

?

一般正态分布的概率计算公式

第五章

卡方分布

t 分布

F 分布

)

(

)()(σ

μ

-Φ=<=≤a a X P a X P )

(

1)()(σ

μ

-Φ-=>=≥a a X P a X P )

(

)(

)(σ

μ

σ

μ

-Φ--Φ=≤≤a b b X a P )

(~)1,0(~2

1

2n X

N X n

i i

χ∑=,则

若())

(~1

),

,(~2

1

2

2

2

n Y N Y n

i i χμσ

σμ∑=-则

若)

,(~//),

(~),

(~212

122

12

n n F n V n U n V n U 则

若χχ则

若),(~),

1,0(~2

n Y N X χ)

(~/n t n

Y X

正态总体条件下 样本均值的分布:

样本方差的分布:

两个正态总体的方差之比

第六章

点估计:参数的估计值为一个常数 矩估计 最大似然估计

似然函数

均值的区间估计——大样本结果

)

,

(~2

n

N X σ

μ)

1,0(~/N n

X σμ

-)

1(~)1(2

2

2

--n S

n χσ

)

1(~/

--n t n

s X μ)

1,1(~//2122

21

22

2

1--n n F S S σ

σ)

;(1

θi n

i x f L ∏

==

)

;(1

θi n

i x p L ∏

==

?? ?

z x σα2

/—

正态总体方差的区间估计

???

?

?

?

-±n p p z

p )1(2

/α正态分布的分位点

—大样本要求

样本容量—样本比例

—2/)

50(αz n n

p >已知

准差小样本、正态总体、标

σ?

?? ?

?

±n z x σα2/未知

准差小样本、正态总体、标σ?

?? ?

?

-±n s n t x )1(2/α分布的分位点

的自由度为—t n n t 1)1(2/--α(

)

2

2

)1()1(--S

n S

n 样本方差

—2

2S

两个正态总体均值差的置信区间 大样本或正态小样本且方差已知

两个正态总体方差比的置信区间

第七章 假设检验的步骤

① 根据具体问题提出原假设H0和备择假设H1 ② 根据假设选择检验统计量,并计算检验统计值

③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。 不可避免的两类错误

第1类(弃真)错误:原假设为真,但拒绝了原假设 第2类(取伪)错误:原假设为假,但接受了原假设 单个正态总体的显著性检验 ● 单正态总体均值的检验

大样本情形——Z 检验

正态总体小样本、方差已知——Z 检验 正态总体小样本、方差未知—— t 检验

()?

?

?

? ?

?

+

±-2221

2

1

2

/21n n z

x x σσα??

?

?

??----)1,1(/,

)1,1(/212/2

2

2121

2/2

221n n F S S n n F S S αα

● 单正态总体方差的检验

正态总体、均值未知——卡方检验

单正态总体均值的显著性检验 统计假设的形式

双边检验

左边检验

右边检验

单正态总体均值的Z 检验

拒绝域的代数表示 双边检验

左边检验 右边检验

比例——特殊的均值的Z 检验

10

0::)

1(μμμμ≠=H H 0

100::)

2(μμμμ<≥H H 0

10

0::)

3(μμμμ>≤H H n

X Z /0

σμ-=

代替)

未知时用(大样本情形

S σ2

/αZ Z ≥α

Z Z ≥n

p p p p Z /

)1(000--=

—样本比例

——总体比例—p p 0αZ Z -≤

单正态总体均值的 t 检验

单正态总体方差的卡方检验

拒绝域 双边检验

左边检验

右边检验

n

S X t /

0μ-=

2

2

2

)1(σχS

n -=

2

2

/1222/2ααχχχχ-≤≥或2

2

/12αχχ-≤2

2

/2

αχχ≥

完全平方公式经典题型 (1)

完全平方(和、差)公式: 1. 公式:()2222a b a ab b ±=±+ 逆用:()2 222a ab b a b ±+=± 文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 口诀:首平方加尾平方,乘积二倍在中央。 其中,a b 可以是数字、单项式和多项式。其中22,a b 称为二次项,均为正项;2ab 为中间项,符号由括号里的符号确定。 扩展:()222222ax by a x abxy b y ±=±+ a,b 为x 、y 系数,那么展开式的中间项系数为2ab 。 例:1.229124a ab b -+= 2. 2244a ab b -+= 3. 2(23)x -= 4. 221()32x y -= 4. 2102= 6. 299= 题型解析: 一、添括号运用乘法公式计算: (1)2)(b a -- (2)2)(c b a ++ (4) ()()22 225x 4y 5x 4y --+ (5)2)12(-+b a (6)2)12(--y x 二、展开式系数的判断:公式逆用 1、要使k x x +-62是完全平方式,则k=________ 2、要使42++my y 成为完全平方式,那么m=________ 3、将多项式92+x 加上一个整式,使它成为完全平方式,这个整式可以是_______________ 4、多项式()2249a ab b -+是完全平方差公式,则括号里应填 。 5、将下列式子补充完整: (1)24x - xy +216y =( ) 2 (2)225a +10ab + =( )2 (3) -4ab + =(a - )2 (4)216a + + =( +)22b (5)2916x - + =( 223y ?-?? 三、利用公式加减变形 例.已知5=+b a 3ab =,求22b a +和 2)(b a -的值 1. 若a+b=0,ab=11,求a 2﹣ab+b 2的值。 2.已知 x + y = 8,xy = 12,求 x 2 + y 2 的值 3. 已知,(x+y )2=16,(x ﹣y )2=8,那么xy 的值是多少? 4. 如果,求和1a-a 的值。 5. 已知x 2+y 2=13,xy=6,则x+y 的值是多少?

概率论与数理统计总结

第一章 随机事件与概率 第一节 随机事件及其运算 1、 随机现象:在一定条件下,并不总是出现相同结果的现象 2、 样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω 表示基本结果,又称为样本点。 3、 随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表 示,Ω表示必然事件, ?表示不可能事件。 4、 随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。 5、 时间的表示有多种: (1) 用集合表示,这是最基本形式 (2) 用准确的语言表示 (3) 用等号或不等号把随机变量于某些实属联结起来表示 6、事件的关系 (1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事 件B 发生,则称A 被包含于B ,记为A ?B; (2)相等关系:若A ?B 且B ? A ,则称事件A 与事件B 相等,记为A =B 。 (3)互不相容:如果A ∩B= ?,即A 与B 不能同时发生,则称A 与B 互不相容 7、事件运算 (1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。 (2)事件A 与B 的交:事件A 与事件B 同时发生,记为A∩ B 或AB 。 (3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。用交并补可以 表示为B A B A =-。 (4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。 对立事件的性质:Ω=?Φ=?B A B A ,。 8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A∪C)、 A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)棣莫弗公式(对偶法则):B A B A ?=? B A B A ?=? 9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ 称为事件域,又称为σ代数。具体说,事件域ξ满足: (1)Ω∈ξ; (2)若A ∈ξ,则对立事件A ∈ξ; (3)若A n ∈ξ,n=1,2,···,则可列并 ∞ =1 n n A ∈ξ 。

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

初中数学完全平方公式题型总结

一、简单型 1、计算472﹣94×27+272. 2、1.23452+0.76552+2.469×0.7655=_________。 3、已知x2-2(m-3)x+9是一个多项式的平方,则m=_______。 二、x+y= xy= (x2+y2=)型(等式两边平方型) 1、已知x+y=3,xy=2,求x2+y2的值. 2、已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值. 3、已知x2+y2=25,x+y=7,且x>y,则x-y=________。 4、设a﹣b=﹣2,求的值.

三、观察特点,找出隐含条件。 1、已知a-b=b-c=53,a 2+b 2+c 2=1,则ab+bc+ca=___________。 2、已知x= b a b a -+,y=b a b a +- (b a ±≠),且19x 2+143xy+19y 2=2005,则x+y=_____。 3、若n 满足(n-2004)2+(2005-n )2=1,则(2005-n )×(n-2004)= ( ) 4、已知a= 201x+20,b=201x+19,c=201x+21,则代数式a 2+b 2+c 2-ab-bc-ac 的值是( ) 四、先变形再代入型 1、若x+y=2,且(x+2)(y+2)=5,求x 2+xy+y 2的值 2、已知ax+by=3,a y -bx=5,则(a 2+b 2)(x 2+y 2)=________。 3、已知实数a 、b 满足(a+b )2=1,(a ﹣b )2=25,求a 2+b 2+ab 的值. 4、已知a 2+a -1=0,求a 3+2a 2+2016的值

概率论与数理统计(经管类)公式

概率论与数理统计必考知识点 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A AB += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==-

概率论与数理统计小结

概率论与数理统计主要内容小结 概率部分 1、全概率公式与贝叶斯公式 全概率公式: )()|()(11B P B A P A P = ++)()|(22B P B A P )()|(n n B P B A P + 其中n B B B ,,,21 是空间S 的一个划分。 贝叶斯公式:∑== n j j j i i i B A P B P B A P B P A B P 1 ) |()() |()()|( 其中n B B B ,,,21 是空间S 的一个划分。 2、互不相容与互不相关 B A ,互不相容0)(,==?B A P B A φ 事件B A ,互相独立))(()(B A P B A P =? ; 两者没有必然联系 3、几种常见随机变量概率密度与分布律:两点分布,二项分布,泊松分布,均匀分布,二项分布,指数分布,正态分布。 ),,1(~p b X 即二点分布,则分布律为.1,0,)1(}{1=-==-k p p k x P k k ),,(~p n b X 即二项分布,则分布律为.,...,1,0,)1(}{n k p p C k x P k n k k n =-==- ),(~λπX 即泊松分布,则分布律为,......1,0,! }{== =-k k e k x P k λ λ ),,(~b a U X 即均匀分布,则概率密度为.,0),(,1 )(??? ??∈-=其它 b a x a b x f ),(~θE X 即指数分布,则概率密度为.,00 ,1)(?? ???>=-其它x e x f x θ θ ),,(~2σμN X 即正态分布,则则概率密度为+∞<<-∞= - x e x f x ,21)(2 2π .

概率论与数理统计答案,祝东进

习题 1. 写出下列随机试验的样本空间: (1) 掷两颗骰子,观察两颗骰子出现的点数. (2) 从正整数中任取一个数,观察取出数的个位数. (3) 连续抛一枚硬币,直到出现正面时为止. (4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或 检查四个产品就停止检查,记录检查的结果. (5) 在单位圆内任意取一点,记录它的坐标. 解:(1){(,)|1,2,,6,1,2, ,6}i j i j Ω===; (2){|0,1, ,9}i i Ω==; (3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反, 正), … }; (4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次, 正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)}; (5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤. 2. 在掷两颗骰子的试验中写出下列事件的集合表示: (1) A =”出现的点数之和为偶数”. (2) B =”出现的点数之和为奇数, 但没有骰子出现1点”. (3) C =”至少掷出一个2点”. (4) D =”两颗骰子出现的点数相同”. 解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A = {(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=; (2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =; (3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =; (4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =. 3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:

概率论和数理统计知识点总结[超详细版]

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计公式定理整理汇编

概率论与数理统计公式集锦 一、随机事件与概率

二、随机变量及其分布 1、分布函数性质 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt 2、离散型随机变量及其分布 3、连续型随机变量及其分布

4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j i i j g x y P Y y p i L , 连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y 单调 三、多维随机变量及其分布 1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P X x Y y p i j L 分布函数(,)i i ij x x y y F X Y p 边缘分布律:()i i ij j p P X x p ()j j ij i p P Y y p 条件分布律:(),1,2,ij i j j p P X x Y y i p L ,(),1,2,ij j i i p P Y y X x j p L 2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数: x y dudv v u f y x F ),(),( 性质:2(,) (,)1,(,),F x y F f x y x y ((,))(,)G P x y G f x y dxdy ②边缘分布函数与边缘密度函数 分布函数: x X dvdu v u f x F ),()(密度函数: dv v x f x f X ),()( y Y dudv v u f y F ),()( du y u f y f Y ),()( ③条件概率密度 y x f y x f x y f X X Y ,)(),()(, x y f y x f y x f Y Y X ,) () ,()(

福州大学概率论与数理统计课后习题答案高等教育出版社

福州大学概率论与数理统计课后习题答案 高等教育出版社 习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数 之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -.

完全平方公式经典习题

完全平方公式练习题 一、点击公式 1、2 a b = ,2 a b = ,a b b a = . 2、222a b a b + =2a b + . 3、22a b a b = . 二、公式运用 1、计算化简 (1)2222x y x y x y (2)2)())((y x y x y x (3)2 )21(1x (4)z y x z y x 3232(5)2121 a b a b 2、简便计算: (1)(-69.9)2 (2)472-94×27+272 3、公式变形应用: 在公式(a ±b )2=a 2±2ab+b 2中,如果我们把a+b ,a-b ,a 2+b 2,ab 分别看做一个整体,那么只要知道其中两项的值,就可以求出第三项的值. (1)已知a+b =2,代数式a 2-b 2+2a+8b+5的值为,已知11 25 ,,7522x y 代数式 (x+y )2-(x-y )2的值为,已知2x-y-3=0,求代数式12x 2-12xy+3y 2的值是,已知x=y +4,求代数式2x 2-4xy+2y 2-25的值是. (2)已知3b a ,1ab ,则22b a =,44a b = ;若5a b ,4ab ,则2 2b a 的值为______;28a b ,2 2a b ,则ab=_______. (3)已知:x+y =-6,xy=2,求代数式(x-y )2的值.

(4)已知x+y =-4,x-y=8,求代数式x 2-y 2的值.(5已知a+b =3,a 2+b 2 =5,求ab 的值. (6)若222315x x ,求23x x 的值. (7)已知x-y=8,xy=-15,求的值. (8)已知:a 2+b 2=2,ab=-2,求:(a-b )2 的值.4、配方法(整式乘法的完全平方公式的反用) (1)如果 522x x y ,当x 为任意的有理数,则y 的值为()A 、有理数 B 、可能是正数,也可能是负数 C 、正数 D 、负数(2)多项式192x 加上一个单项式后成为一个整式的完全平方,那么加上的这个单项式是 .(填上所有你认为是正确的答案)(3)试证明:不论 x 取何值,代数x 2+4x+92的值总大于0.(4)若2x 2-8x+14=k ,求k 的最小值.

完全平方公式所有题型分类超全

板块一:配方思想 【例1】 填空:222_____4(2)x y x y ++=+; 【例2】 填空:2229_____121(3___)a b a -+=-; 【例3】 填空:2244____(2___)m mn m ++=+; 【例4】 填空:2_____6______(3)xy x y ++=+. 【例5】 如果多项式219 x kx ++是一个完全平方式,那么k 的值为 【例6】 如果2249x axy y ++是完全平方式,试求a 的值. 【例7】 若243(2)25x a x --+是完全平方式,求a 的值. 【例8】 甲、乙两个公司用相同的价格购粮,他们各购两次,已知两次的价格不同,甲公司每次购粮1 万千克,乙公司每次用1万元购粮,则两次平均价格较低的是 公司. 例题精讲 配方思想及竞赛中简单公式的应用

【例10】 若a ,b 为有理数,且2222480a ab b a -+++=,则ab = . 【例11】 求224243a b a b +--+的最值. 【例12】 求下列式子的最值:当x 为何值时,2615x x -+-有最大值. 【例13】 设225P a b =+,224Q ab a a =--,若P Q >,则实数a ,b 满足的条件是 . 板块二:立方公式 立方和公式:2233()()a b a ab b a b +-+=+; 立方差公式:2233()()a b a ab b a b -++=-; 和的完全立方公式:33223()33a b a a b ab b +=+++; 差的完全立方公式:33223()33a b a a b ab c -=-+-. 【例14】 计算:2224(2)(42)m n m mn n +-+ 【例15】 计算:2422(32)(964)x y x x y y -++; 【例16】 计算:22()()m n m mn n x x x x x +-+; 【例17】 计算:2222(2)(24)x y x xy y +?-+;

《概率论与数理统计》课程学习心得

《概率论与数理统计》课程学习感想 概率论与数理统计是研究随机现象统计规律的科学,既是重要的基础理论,又是实践性很强的应用科学。 概率论与数理统计是现代数学的一个重要分支。近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。 实用性赋予了概率论与数理统计强大的生命力。17世纪概率论与数理统计作为学科诞生后,其方法就被英国古典政治经济学创始人佩蒂引进到社会经济问题的研究中,他提倡让实际数据说话,其对资本主义经济的研究从流通领域进入生产领域,对商品的价值量做了正确的分析。 生活中会遇到这样的事例:有四张彩票供三个人抽取,其中只有一张彩票有奖。第一个人去抽,他的中奖概率是25%,结果没抽到。第二个人看了,心里有些踏实了,他中奖的概率是33%,结果他也没抽到。第三个人心里此时乐开了花,其他的人都失败了,觉得自己很幸运,中奖的机率高达50%,可结果他同样没中奖。由此看来,概率的大小只是在效果上有所不同,很大的概率给人的安慰感更为强烈。但在实质上却没有区别,每个人中奖的概率都是50%,即中奖与不中奖。 同样的道理,对于个人而言,在生活中要成功做好一件事的概率是没有大小之分的,只有成功或失败之分。但这概率的大小却很能影响人做事的心态。 如果说概率有大小之分,那应该不是针对个体而言,而是从一个群体出发,因为不同的人有不同的信念,有不同的做事方法。把地球给撬起来,这在大多数

完全平方公式经典习题.doc

2 213.计算:(1) (―2。+5。)2; ⑵(十2_§)2; (3)(工一3y —2)(尤+3y —2); (4) (x~2y) (x 2—4>,2)(尤+2y); 完全平方公式一 1. (。+2人)2 =决+ ______ +4人2; (3Q —5) 2=9Q 2+25— _______ 2. (2尤— ___ ) 2= ________ —Axy-^y 1; (3m 2+ ______ .)2 = ______ +12冰〃+ ___ 3. JC —xv+ = (x~ - )2; 49a 2- + 81^2= ( +%) 2 4. ( ~2m —3n) 2 = ; (£+圮)2 = ? 4 3 5. 4决+4。+3= (2Q +1) 2+ ? (。——人) 2= (Q +Z?) 2— 6.疽 +》2= (Q + 人)2_ =(a~b) 2 — _____ ■ 7. (。—b+c) 2 =. 8. (a 2— 1 ) 2— (Q 2+1)2=[(Q 2— 1)+ (Q 2+])][( Q 2— 1)—() ]= 9. 代数式xy-x 2--y 2等于 .................. ( ) 4 (A) (x~-y) 2 (B) (—x —-y) 2 (C) (-y —x) 2 (D) — (x~-y) 2 2 2 2 2 10. 已知 j (x 2— 16) +。= (X 2—8) 2,则 Q 的值是.................... ( ) (A) 8 (B) 16 (C) 32 (D) 64 11. 如果4Q 2—N 泌+8场2是一个完全平方式,则N 等于 ..................... ( ) (A) 18 (B) ±18 (C) ±36 (D) ±64 12. 若(a+b) 2=5, (a-b) 2=3,则 a 2+b 2与沥的值分别是 ...................... ( ) (A) 8 与上 (B) 4-^- (C) 1 与4 (。)4与1

概率论与数理统计作业及解答

概率论与数理统计作业及解答

概率论与数理统计作业及解答 第一次作业 ★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为 ;E ABC ABC ABC ABC =+++或;AB AC BC =U U 或;AB AC BC =U U 或;AB ACBC =或().ABC ABC ABC ABC =-++ (和A B +即并A B U ,当,A B 互斥即AB φ=时,A B U 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率. 22 1M m M C C --或1122 (21)(1)m M m m M C C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率. A ={8只鞋子均不成双}, B ={恰有2只鞋子成双}, C ={恰有4只鞋子成双}. 61682616()32()0.2238,143C C P A C ===1414 8726 16()80 ()0.5594,143C C C P B C === 22128626 16()30 ()0.2098.143 C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求: (1)其中无次品的概率; (2)其中恰有一件次品的概率. (1)34535014190.724.1960C C == (2)21455350990.2526.392 C C C == 5. 从1~9九个数字中, 任取3个排成一个三位数, 求: (1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率. (1){P 三位数为偶数}{P =尾数为偶数4 },9= (2){P 三位数为奇数}{P =尾数为奇数5 },9 = 或{P 三位数为奇数}1{P =-三位数为偶数45 }1.99 =-= 6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率. 记事件A ={最小号码为5}, B ={最大号码为5}. (1) 253101();12C P A C ==(2) 2 43101 ().20 C P B C == 7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次, 求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}. 311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8 ()1(),9 P D P B =-=

完全平方公式和平方差公式法习题(内含答案)

完全平方公式和平方差公式法习题(内含答案)二次根式的运算知识点 知识点一:二次根式的乘法法则:,即两个二次根式相乘, 根指数不变,只把被开方数相乘. 要点诠释:在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b 都必须是非 负数;(在本章中,如果没有特别说明,所有字母都表示非负数) (1)该法则可以推广到多个二次根式相乘的运算: (3)若二次根式相乘的结果能写成的形式,则应化简,如. ,即积的算术平方根知识点二、积的算术平方根的性质 等于积中各因式的算术平方根的积. 要点诠释: (1)在这个性质中,a 、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a 移到根号外面. (3)作用:积的算术平方根的性质对二次根式化简 (4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式②利用积的算术平方根的性质 ③利用(一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式 移到根号外 ④被开方数中每个因数指数都要小雨2 (5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简 知识点三、 二次根式的除法法则: 把被开方数相除.

要点诠释:,即两个二次根式相除,根指数不变, (1)在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意,其中 ,因为b 在分母上,故b 不能为0. (2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号. 知识点四、商的算术平方根的性质 ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题. (2)步骤①利用商的算术平方根的性质 ② a ,b 利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化 (3)被开方数是分数或分式可用商的算术平方根的性质对二次根式化简 知识点五:最简二次根式 1. 定义:当二次根式满足以下两条: (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式. 把符合这两个条件的二次根式,叫做最简二次根式. 在二次根式的运算中,最后的结果必须化为最简二次根式或有理式. 要点诠释: (1)最简二次根式中被开方数不含分母; (2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能 为1次. 2. 把二次根式化成最简二次根式的一般步骤:

概率论与数理统计 重要公式

一、随机事件与概率 公式名称 公式表达式 德摩根公式 B A B A =,B A B A = 古典概型 ()m A P A n = =包含的基本事件数基本事件总数 几何概型 () ()()A P A μμ= Ω,其中μ为几何度量(长度、面积、体积) 求逆公式 )(1)(A P A P -= 加法公式 P(A ∪B)= P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0(A 、B 互斥)时,P(A ∪B)=P(A)+P(B) 减法公式 P(A-B)=P(A)-P(AB),B A ?时P(A-B)=P(A)-P(B) 条件概率公式 乘法公式 )() ()(A P AB P A B P = ()()()()()P AB P A P B A P B P A B == ()()()()P ABC P A P B A P C AB = 全概率公式 1 ()()()n i i i P A P B P A B ==∑ 从原因计算结果 贝叶斯公式 (逆概率公式) 1 ()() ()()() i i i n i i i P B P A B P B A P B P A B == ∑ 从结果找原因 两个事件 相互独立 ()()()P AB P A P B =;()()P B A P B =;)()(A B P A B P =;

二、随机变量及其分布 1、分布函数 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt ≤-∞ ?=?=≤=<≤=-???∑? 概率密度函数 计算概率: 2、离散型随机变量及其分布 分布名称 分布律 0-1分布 X ~b(1,p) 1,0,)1()(1=-==-k p p k X P k k 二项分布(贝努利分布) X ~B(n,p) n k p p C k X P k n k k n ,,1,0,)1()( =-==- 泊松分布 X ~p(λ) (),0,1,2,! k P X k e k k λλ-== = 3、续型型随机变量及其分布 分布名称 密度函数 分布函数 均匀分布 x ~U(a,b) ?? ?? ?<<-=其他,0,1 )(b x a a b x f 0, (),1, =-0 , 00,)(x x e x f x λλ ???? ?≤>-=-0 , 00 , 1)(x x e x F x λ 正态分布 x ~N(2,σμ) 2 2 ()21()2μσπσ -- = -∞<<+∞ x f x e x 22 ()21 ()d 2μσπσ -- -∞ = ?t x F x e t 标准正态分布 x ~N(0,1) 2 2 1()2?π - = -∞<<+∞ x x e x 212 1 ()2t x x e dt π --∞ Φ= ? 1 )(=? +∞ ∞ -dx x f ?=≤≤b a dx x f b X a P )()(

相关文档
相关文档 最新文档