文档库 最新最全的文档下载
当前位置:文档库 › 圆周运动典型例题学生版(含答案)

圆周运动典型例题学生版(含答案)

圆周运动典型例题学生版(含答案)
圆周运动典型例题学生版(含答案)

知识点一、匀速圆周运动

1、定义:质点沿圆周运动,如果在相等的时间里通过的 相等,这种运动就叫做匀速周圆运

动。

2、运动性质:匀速圆周运动是 运动,而不是匀加速运动。因为线速度方向时刻在变化,向

心加速度方向,时刻沿半径指向圆心,时刻变化

3、特征:匀速圆周运动中,角速度ω、周期T 、转速n 、速率、动能都是恒定不变的;而线速

度v 、加速度a 、合外力、动量是不断变化的。

4、受力提特点: 。

随堂练习题

1.关于匀速圆周运动,下列说法正确的是( )

A .匀速圆周运动是匀速运动

B .匀速圆周运动是匀变速曲线运动

C .物体做匀速圆周运动是变加速曲线运动

D .做匀速圆周运动的物体必处于平衡状态

2.关于向心力的说法正确的是( )

A .物体由于作圆周运动而产生一个向心力

B .向心力不改变做匀速圆周运动物体的速度大小

C .做匀速圆周运动的物体的向心力即为其所受合外力

D .做匀速圆周运动的物体的向心力是个恒力

3.在光滑的水平桌面上一根细绳拉着一个小球在作匀速圆周运动,关于该运动下列物理量中

不变的是(A )速度 (B )动能 (C )加速度 (D )向心力

知识点二、描述圆周运动的物理量

⒈线速度 ⑴物理意义:线速度用来描述物体在圆弧上运动的快慢程度。

⑵定义:圆周运动的物体通过的弧长l ?与所用时间t ?的比值,描述圆周运动的“线速度”,

其本质就是“瞬时速度”。

⑶方向:沿圆周上该点的 方向

⑷大小:=v =

⒉角速度

⑴物理意义:角速度反映了物体绕圆心转动的快慢。

⑵定义:做圆周运动的物体,围绕圆心转过的角度θ?与所用时间t ?的比值

⑶大小:=ω = ,单位: (s rad )

⒊线速度与角速度关系: ⒋周期和转速: ⑴物理意义:都是用来描述圆周运动转动快慢的。

⑵周期T :表示的是物体沿圆周运动一周所需要的时间,单位是秒;转速n (也叫频率f ):

表示的是物体在单位时间内转过的圈数。n 的单位是 (s r )或 (m in r )f 的单位:

赫兹Hz ,T

f 1=

5、两个结论

⑴凡是直接用皮带传动(包括链条传动、齿轮咬合、摩擦传动)的两个轮子,两轮边缘上

各点的 大小相等;

⑵凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点 相等(轴上的点除外)(共

轴转动)。

6、向心加速度:

⑴物理意义:描述速度 变化快慢的物理量

⑵方向:总是指向 ,时刻在变化。

⑶大小:=a = = =

7、向心力(物体以v 做匀速率圆周运动,需要F 或者由几个力的合力提供向心力,线速度、角速度、半径、物体质量的改变引起了向心力的改变)

(1)定义:质点做圆周运动时,受到的总是沿着半径方向指向 的力,是 力。

(2)作用效果:产生 加速度,只改变线速度的 ,不改变线速度的 。

(3)大小:==ma F = = =

(4)来源:向心力是按 命名的力,不是某种 的力,可以由几个力的 力或某

一个力的 力提供;在匀速圆周运动中 力提供向心力;变速圆周运动中的合外力并不指向圆

心,这时合外力可以分解为互相垂直的两个力:跟圆周相切的分力r F 和指向圆心方向的分力n F ,

n F 产生了 加速度,与速度垂直,改变了速度 ,r F 产生 加速度,切向加速度与物

体的速度方向在一条直线上,它改变了速度的 。

练习题

1.一个物体以角速度ω做匀速圆周运动时,下列说法中正确的是 ( )

A .轨道半径越大线速度越大

B .轨道半径越大线速度越小

C .轨道半径越大周期越大

D .轨道半径越大周期越小

2.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的有 ( )

A .时针和分针角速度相同

B .分针角速度是时针角速度的12倍

C .时针和分针的周期相同

D .分针的周期是时针周期的12倍

3.质点做匀速圆周运动时,下列说法正确的是( )

A .线速度越大,周期一定越小

B .角速度越大,周期一定越小

C .转速越大,周期一定越小

D .圆周半径越小,周期一定越小

4.关于匀速圆周运动的角速度与线速度,下列说法中正确的是( )

A .半径一定,角速度与线速度成反比

B .半径一定,角速度与线速度成正比

C .线速度一定,角速度与半径成反比

D .角速度一定,线速度与半径成正比

5.A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A ∶s B =2∶3,转

过的角度之比?A ∶?B =3∶2,则下列说法正确的是( )

A .它们的半径之比R A ∶R

B =2∶3 B .它们的半径之比R A ∶R B =4∶9

C .它们的周期之比T A ∶T B =2∶3

D .它们的周期之比T A ∶T B =3∶2

6.如图所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的

距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、向

心加速度之比。

7.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,

2:1:=c A R R ,3:2:=B A R R 。假设在传动

过程中皮带不打滑,则皮

a

图3-4

带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之

比是 。

8.图示为某一皮带传动装置。主动轮的半径为r 1,从动轮的半径为

r 2。已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑。下

列说法正确的是( )。

A .从动轮做顺时针转动

B .从动轮做逆时针转动

C .从动轮的转速为

21r r n D .从动轮的转速为12r r n

9.图3-7中圆弧轨道AB 是在竖直平面内的1/4圆周,在B 点,轨道的

切线是水平的。一质点自A 点从静止开始下滑,不计滑块与轨道间的摩擦

和空气阻力,则在质点刚要到达B 点时的加速度大小为______,刚滑过B 点时的加速度大小为

_____。

10.甲、乙两名滑冰运动员,kg M 80=甲,kg M 40=乙,面对面拉着弹簧秤做匀速圆周运动的滑冰表演,两人相距0.9m ,弹簧秤的示数为9.2N ,下列判断中正确的是( )

A. 两人的线速度相同,约为40m/s

B. 两人的角速度相同,为6rad/s

C. 两人的运动半径相同,都是0.45m

D. 两人的运动半径不同,甲为0.3m ,乙为0.6m

11.在地球上,赤道附近的物体A 和北京附近的物体B 随地球的自转而做匀速圆周运动,则( )

A .物体A 与物体

B 的向心力都指向地心

B .物体A 的线速度的大小小于物体B 的线速度的大小

C .物体A 的角速度的大小小于物体B 的角速度的大小

D .物体A 的向心加速度的大小大于物体B 的向心加速度的大小

12.如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转

动而未滑动,

下列说法正确的是( )

A 、物体受重力、向心力、摩擦力三个力

B 、物体受重力、弹力、摩擦力三个力

C 、物体受重力、弹力、向心力、摩擦力

D 、物体受重力、弹力、向心力、三个力 13.如图所示,A、B、C三个物体放在旋转圆台上,动摩擦因数均为μ,A的质量为2m ,B、

C质量均为m ,A、B离轴R,C离轴2R,则当圆台旋转时(设A、B、C都没有滑动),A、

B、C三者的滑动摩擦力认为等于最大静摩擦力,下列说法正确的是( )

A. C物的向心加速度最大;

B. B物的静摩擦力最小;

C. 当圆台转速增加时,C比A先滑动;

D. 当圆台转速增加时,B比A先滑动。

14.在光滑的水平面上,用长为l 的细线拴一质量为m 的小球,以角速度ω做匀速圆周运动,下

图3-7 A

B

列说法中正确的是

A .l 、ω不变,m 越大线越易被拉断

B .m 、ω不变,l 越小线越易被拉断

C .m 、l 不变,ω越大线越易被拉断

D .m 不变,l 减半角速度加倍时,线的拉力不变

15.有一种大型游戏器械,它是一个圆筒形容器,筒壁竖直,游客进入容器后靠筒壁站立.当圆

筒开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下

去,这是因为

A .游客处于超重状态

B .游客处于失重状态

C .游客受到的摩擦力等于重力

D .筒壁对游客的支持力等于重力

16.关于变速圆周运动的向心力的说法中正确的是( )

A 物体除其他力外,还受到一个向心力的作用

B 物体所受的合力等于向心力

C 向心力的大小一直在变化

D 变速圆周运动的合力的方向不

指向圆心

17.如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中

做圆锥摆运动的精彩场面,目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g ,估算该女运动员 ( )

A .受到的拉力为 3 G

B .受到的拉力为2G

C .向心加速度为3g

D .向心加速度为2g

18.质量为m 的小球,用长为l 的细线悬挂在O 点,在O 点的正下方l 2

处有一光滑的钉子P ,把小球拉到与钉子P 等高的位置,摆线被钉子挡住.如图让小球从静止释放,当小球第一次经过最低

点时( )

A .小球运动的线速度突然减小

B .小球的角速度突然减小

C .小球的向心加速度突然减小

D .悬线的拉力突然增大

19.如图4-3-11所示,长为L 的细绳一端固定,另一端系一质量为m 的小

球.给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ.下列说法中正确的是

A .小球受重力、绳的拉力和向心力作用

B .小球只受重力和绳的拉力作用

C .θ越大,小球运动的速度越大

D .θ越大,小球运动的周期越大

20 长为L 的细线,拴一质量为m 的小球,一端固定于O 点,让其在水平面内做匀速圆周运动(这

种运动通常称为圆锥摆运动),如图所示,当摆线L 与竖直方向的夹角是α时,求:

(1)线的拉力F ;

(2)小球运动的线速度的大小;

(3)小球运动的角速度及周期。

21 .如图17所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒

高分别为R和H,筒内壁A点的高度为筒高的一半。内壁上有一质量为m的小物块。求

①当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;

②当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度。

22 如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小

球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()

B.球A的线速度一定大于球B的线速度

C.球A的运动周期一定小于球B的运动周期

D.球A对筒壁的压力一定大于球B对筒壁的压力

知识点三、竖直面内圆周运动的常用模型:

轻绳外轨道轻杆管道

无约束的

1.如图4-4所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动。现给小

球一初速度,使它做圆周运动,图3中a、b分别表示小球轨道的最低点和最高点,则杆图4-4

对球的作用力可能是 ( )

A.a 处为拉力,b 处为拉力

B.a 处为拉力,b 处为推力

C.a 处为推力,b 处为拉力

D.a 处为推力,b 处为推力

答案A 、B 。

2. 如图,用长为l 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则下列说法中正

确的是 ( )

A .小球在圆周最高点时所受的向心力一定为重力

B .小球在最高点时绳子的拉力不可能为零

C .若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为gL

D .小球过最低点时绳子的拉力一定大于小球重力

3.长为L 的细绳,一端系一质量为m 的小球,另一端固定于某点,当绳竖直时小球静止,再

给小球一水平初速度0v ,使小球在竖直平面内做圆周运动,并且刚好能过最高点,则下列说法中

正确的是 ( )

A .球过最高点时,速度为零

B .球过最高点时,绳的拉力为mg

C .开始运动时,绳的拉力为2

v m L D

4如图6-11-3所示,一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球做半径为

R 的圆周运动,以下说法正确的是 ( )

A .球过最高点时,杆所受的弹力可以等于零

B

.球过最高点时,最小速度为C .球过最高点时,杆对球的弹力一定与球的重力方向相反

D .球过最高点时,杆对球的弹力可以与球的重力反向,此时重力一定大于杆对球的弹力 5.绳系着装水的水桶,在竖直平面内做圆周运动,水的质量m = 0.5kg ,绳长L = 40cm ,求:

(1)为使桶在最高点时水不流出,桶的最小速率?

(2)桶在最高点速率v = 3m/s 时,水对桶底的压力?

6.长L =0.5 m 质量可忽略的细杆,其一端可绕O 点在竖直平面内转动,另一端固定着一个

物体A .A 的质量为m =2 kg ,当A 通过最高点时,如图4-3-16所示,求在下列两种情况下杆对

小球的作用力:

(1)A 在最低点的速率为21 m/s ;

(2)A 在最低点的速率为6 m/s.

7.汽车过凸形桥,已知桥的半径为8m ,为了保证汽车对汽车的抓地力,汽车与地面的挤压不

能小于车重的0.2倍,则汽车过凸形桥顶的最大速度不能超过( )

A 、4m/s

B 、8m/s

C 、10m/s

D 、45m/s

8.汽车过凹形桥,汽车车身载重的弹簧板受承载能力是一定的,某汽车弹簧板能承载车重的

10倍力的作用,汽车要以高速过半径为40m 的凹形桥,则汽车在凹形桥最底端的最大速度是多少?

( )

A 、60m/s

B 、2010m/s

C 、2011m/s

D 、

40m/

6-11-3

G 9.半径为R 的光滑半圆球固定在水平面上,如图3-11所示。顶部有一小物体甲,今给它一

个水平初速度gR v 0,则物体甲将( )

A .沿球面下滑至M 点

B .先沿球面下滑至某点N ,然后便离开球面作斜下抛运动

C .按半径大于R 的新的圆弧轨道作圆周运动

D .立即离开半圆球作平抛运动 10.汽车质量m 为1.5×104 kg ,以不变的速率先后驶过凹形路面和凸形路面,路面圆弧半径

均为15 m ,如图3-17所示.如果路面承受的最大压力不得超过2×105 N ,汽车允许的最大速率

是多少?汽车以此速率驶过路面的最小压力是多少?

火车转弯问题

1.火车转弯时的运动特点:火车转弯时做的是________运动,因而具有向心加速度,需要向

心力。

2.为了消除火车车轮对路轨的侧向压力,铁路弯道处内、外轨不在同一

水平面上,即_______高、__________低。其高度差是根据转弯处轨道的半径和规定的行驶速度而设计的。

3.计算规定速度:

设火车质量m 、轨道平面倾角θ、轨道转弯处半径r 、规定的车速v ,

则应有 (写出表达式) 4.在转弯处:(1)若列车行驶的速率等于规定速度,则两侧轨道都不受车轮对它的侧向压力

(2)若列车行驶的速率大于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”).

(3)若列车行驶的速率小于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”).

1、火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是( )

A.轨道半径R=v 2/g

B.若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道

平面向外

C.若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内

D.当火车质量改变时,安全速率也将改变

2.在高速公路的拐弯处,通常路面都是外高内低。如图所示,在某路段汽车向左拐弯,司机

左侧的路面比右侧的路面低一些。汽车的运动可看作是做半径为R 的圆周运动。设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L 。已知重力加速度为g 。要使车轮与路面之间的横

向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于 ( B )

A .L gRh

B .d

gRh C

.h gRL D

.h gRd

知识点四、离心运动

h

质量为m 的物体,在半径为R 的圆弧上动时所需要的向心力R

v m F 2

需,物体能否维持这个运动,关键看其所受的外力能否提供其所需的向心力

⒈当外力恰好能提供其所需向心力,即供F 需F ,物体就做圆周运动;

⒉当外力小于其所需向心力时,即供F 需F ,物体做离心运动;

⒊当外力大于其所需向心力时,即供F 需F ,物体将做靠近圆心的运动,叫做近心运动。

1.下列关于离心现象的说法正确的是( )

A .当物体所受的离心力大于向心力时产生离心现象

B .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的圆周运动

C .做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线做直线运动

D .做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动

答案 C

2.如图所示,光滑水平面上,小球m 在拉力F 作用下作匀速圆周运动。若小球运动到P 点时,拉力F 发生变化,关于小球运动情况的说法正确的是

A .若拉力突然消失,小球将沿轨迹Pa 作离心运动

B .若拉力突然变小,小球将沿轨迹Pa 作离心运动

C .若拉力突然变大,小球将沿轨迹Pb 作离心运动

D .若拉力突然变小,小球将沿轨迹Pc 作离心运动

3.洗衣机的脱水桶采用带动衣物旋转的方式脱水,下列说法中错误

的是( )

A .脱水过程中,衣物是紧贴桶壁的

B .水会从桶中甩出是因为水滴受到的向心力很大的缘故

C .加快脱水桶转动角速度,脱水效果会更好

D .靠近中心的衣物的脱水效果不如周边的衣物的脱水效果好

高中物理必修二匀速圆周运动经典试题

1.一辆32.010m =?kg 的汽车在水平公路上行驶,经过半径50r =m 的弯路时,如果车速72v =km/h ,这辆汽车会不会发生测滑?已知轮胎与路面间的最大静摩擦力4max 1.410F =?N . 2.如图所示,在匀速转动的圆盘上沿半径放着用细绳连接着的质量都为1kg 的两物体,A 离转轴20cm ,B 离转轴30cm ,物体与圆盘间的最大静摩擦力都等于重力的0.4倍,求: (1)A .B 两物体同时滑动时,圆盘应有的最小转速是多少? (2)此时,如用火烧断细绳,A .B 物体如何运动? 3.一根长0.625m l =的细绳,一端拴一质量0.4kg m =的小球,使其在竖直平面内绕绳的另一端做圆周运动,求: (1)小球通过最高点时的最小速度? (2)若小球以速度 3.0m/s v =通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动. 4.在光滑水平转台上开有一小孔O ,一根轻绳穿过小孔,一端拴一质量为0.1kg 的物体A ,另一端连接质量为1kg 的物体B ,如图所示,已知O 与A 物间的距离为25cm ,开始时B 物与水平地面接触,设转台旋转过程中小物体A 始终随它一起运动.问: (1)当转台以角速度4rad/s ω=旋转时,物B 对地面的压力多大? (2)要使物B 开始脱离地面,则转台旋的角速度至少为多大?

h 5.(14分)质量m=1kg 的小球在长为L=1m 的细绳作用下在竖直平面内做圆周运动,细绳能承受的最大拉力T max =46N,转轴离地h=6m ,g=10m/s 2。 试求:(1)在若要想恰好通过最高点,则此时的速度为多大? (2)在某次运动中在最低点细绳恰好被拉断则此时的速度v=? (3)绳断后小球做平抛运动,如图所示,求落地水平距离x ? 6.汽车与路面的动摩擦因数为μ,公路某转弯处半径为R (设最大静摩擦力等于滑动摩擦力),求: (1)若路面水平,要使汽车转弯不发生侧滑,汽车速度不能超过多少? (2)若汽车在外侧高、内侧低的倾斜弯道上拐弯,弯道倾角为θ,则汽车完全不靠摩擦力转弯 的速率是多少? 7.质量0.5kg 的杯子里盛有1kg 的水,用绳子系住水杯在竖直平面内做“水流星”表演,转动 半径为1m ,水杯通过最高点的速度为4m/s ,g 取10 m/s 2,求: (1) 在最高点时,绳的拉力?(2) 在最高点时水对杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少? 8.质量为m 的火车在轨道上行驶,火车内外轨连线与水平面的夹角为α=37°,如图,弯道半径R =30 m ,g=10m/s 2.求:(1)当火车的速度为V 1=10 m /s 时,火车轮缘挤压外轨还是内轨? (2)当火车的速度为V 2 =20 m /s 时,火车轮缘挤压外轨还是内轨?

圆周运动典型例题学生版(含答案)

圆周运动专题总结 知识点一、匀速圆周运动 1、定义:质点沿圆周运动,如果在相等的时间里通过的 相等,这种运动就叫做匀速周圆运 动。 2、运动性质:匀速圆周运动是 运动,而不是匀加速运动。因为线速度方向时刻在变化,向 心加速度方向,时刻沿半径指向圆心,时刻变化 3、特征:匀速圆周运动中,角速度ω、周期T 、转速n 、速率、动能都是恒定不变的;而线速度 v 、加速度a 、合外力、动量是不断变化的。 4、受力提特点: 。 随堂练习题 1.关于匀速圆周运动,下列说法正确的是( ) A .匀速圆周运动是匀速运动 B .匀速圆周运动是匀变速曲线运动 C .物体做匀速圆周运动是变加速曲线运动 D .做匀速圆周运动的物体必处于平衡状态 2.关于向心力的说法正确的是( ) A .物体由于作圆周运动而产生一个向心力 B .向心力不改变做匀速圆周运动物体的速度大小 C .做匀速圆周运动的物体的向心力即为其所受合外力 D .做匀速圆周运动的物体的向心力是个恒力 3.在光滑的水平桌面上一根细绳拉着一个小球在作匀速圆周运动,关于该运动下列物理量中 不变的是(A )速度 (B )动能 (C )加速度 (D )向心力 知识点二、描述圆周运动的物理量 ⒈线速度 ⑴物理意义:线速度用来描述物体在圆弧上运动的快慢程度。 ⑵定义:圆周运动的物体通过的弧长l ?与所用时间t ?的比值,描述圆周运动的“线速度”, 其本质就是“瞬时速度”。 ⑶方向:沿圆周上该点的 方向 ⑷大小:=v = ⒉角速度 ⑴物理意义:角速度反映了物体绕圆心转动的快慢。 ⑵定义:做圆周运动的物体,围绕圆心转过的角度θ?与所用时间t ?的比值 ⑶大小:=ω = ,单位: (s rad ) ⒊线速度与角速度关系: ⒋周期和转速: ⑴物理意义:都是用来描述圆周运动转动快慢的。 ⑵周期T :表示的是物体沿圆周运动一周所需要的时间,单位是秒;转速n (也叫频率f ): 表示的是物体在单位时间内转过的圈数。n 的单位是 (s r )或 (m in r )f 的单位:

物理圆周运动经典习题(含详细答案).

圆周运动练习题 1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向 的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力 加速度为g =10 m/s 2,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2 图4-2-11 2.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故. 家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八 次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调 查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能内(东)高外(西)低 D .公路在设计上可能外(西)高内(东)低 图4-2-12 3. (2010·湖北部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的 边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度 为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( ) A .该盒子做匀速圆周运动的周期一定小于2πR g B .该盒子做匀速圆周运动的周期一定等于2πR g C .盒子在最低点时盒子与小球之间的作用力大小可能小于2mg D .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg 图4-2-13 4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转 速为n ,转动过程中皮带不打滑.下列说法正确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为r 1r 2n D .从动轮的转速为r 2r 1 n

圆周运动知识点及题型--简单--已整理

描述圆周运动的物理量及相互关系 匀速圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。 2、分类: ⑴匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,就叫做匀速圆周运动。 物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。 ⑵变速圆周运动: 如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 3、描述匀速圆周运动的物理量 (1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。 (2)线速度(v ): ①定义:质点沿圆周运动,质点通过的弧长S 和所用时间t 的比值,叫做匀速圆周运动的线速度。 ②定义式:t s v = ③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。 (3)角速度(ω,又称为圆频率): ①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。N ②大小:T t π? ω2= = (φ是t 时间半径转过的圆心角) ③单位:弧度每秒(rad/s ) ④物理意义:描述质点绕圆心转动的快慢 (4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。 (5)频率(f ,或转速n ):物体在单位时间完成的圆周运动的次数。 各物理量之间的关系: r t r v f T t rf T r t s v ωθππθωππ== ??? ??? ??====== 2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

圆周运动经典题型

第六讲 圆周运动经典题型 一、传动题型 1.A 、B 分别是地球上的两个物体,A 在北纬某城市,B 在赤道上 某地,如图所示。当它们随地球自转时,它们的角速度分别是ωA 、ωB ,它们的线速度大小分别是v A 、v B 下列说法正确的是 ( ) 2.下图是自行车传动机构的示意图,其中Ⅰ是半径为r1的大齿轮,Ⅱ是半径为r2的小齿轮,Ⅲ是半径为r3的后轮, 假设脚踏板的转速为n r/s ,则自行车前进的速度为( ) A. B. C. D. 二、飞檐走壁题型 3.如图所示,一光滑的圆锥内壁上,一个小球在水平面内做 匀速圆周运动,如果要让小球的运动轨迹离锥顶远些,则下列 各物理量中,不会引起变化的是( ) A .小球运动的线速度 B .小球运动的角速度 C .小球的向心加速度 D .小球运动的周期 三、圆锥模型 4.如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动, 关于A 的受力情况,下列说法中正确的是( ) A .摆球A 受重力、拉力和向心力的作用; B .摆球A 受拉力和向心力的作用; C .摆球A 受拉力和重力的作用; D .摆球A 受重力和向心力的作用。 .四、过桥题型 5.如图,已知汽车的质量是5t,当汽车通过半径是50m 的拱桥顶点的速度为10m/s 时,车对桥顶的压力是多少? Ⅰ Ⅱ Ⅲ 2 31r r nr π132r r nr π2312r r nr π13 22r r nr π

6.质量为m 的物体,沿半径为R 的圆形轨道滑下,如图所示, 当物体通过最低点B 时速度为V0,已知物体和轨道间的动摩擦 因数μ,则物体滑过B 点时受到的摩擦力大小为 . 五、磨盘题型 7.如图所示,A 、B 、C 三个物体放在旋转圆台上,动摩擦 因数均为μ,A 的质量是2m ,B 和C 的质量均为m ,A 、B 离 轴为R ,C 离轴为2R 。当圆台旋转时,则( ) A .若A 、B 、C 均未滑动,则C 的向心加速度最大 B .若A 、B 、C 均未滑动,则B 的摩擦力最小 C .若三者都相对圆台静止,则由静摩擦力提供向心力 D .圆台转速增大时,三者做圆周运动需要的向心力都增大 六、钉子题型 8.小球质量为m ,用长为L 的悬线固定在O 点,在O 点 正下方L/2处有一光滑圆钉C (如图所示)。今把小球拉到 悬线呈水平后无初速地释放,当悬线呈竖直状态且与钉相 碰时( ) A .小球的速度突然增大 B .小球的向心加速度突然增大 C .小球的向心加速度不变 D .悬线的拉力突然增大 七、单摆和槽球题型 9.如图所示,将完全相同的两个小球A 、B 用长L = 0.8m 的细线悬于以速度v = 4m/s 向右匀速运动的小车顶部,两球与小车的前、后壁接触, 由于某种原因,小车突然停止, 此时悬线的拉力之比FB ∶FA 为多少?(g = 10m/s2) 10.如图所示,一光滑的半径为R 的半圆形轨道放在水平面上,一个质量为m 的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道的压力恰好为零,则小球落地点C 距A 处多远?

圆周运动经典习题带详细答案

1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重 力加速度为g =10 m/s 2 ,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2 图4-2-11 2.中央电视台《今日说法》栏目最近报道了一起发生在某区湘府路上的离奇交通事故. 家住公路拐弯处的先生和先生家在三个月连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能(东)高外(西)低 D .公路在设计上可能外(西)高(东)低 图4-2-12 3. (2010·部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的边长 略大于球的直径.某同学拿着该盒子在竖直平面做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( ) A .该盒子做匀速圆周运动的周期一定小于2πR g B .该盒子做匀速圆周运动的周期一定等于2πR g C .盒子在最低点时盒子与小球之间的作用力大小可能小于2mg D .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg 图4-2-13 4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转 速为n ,转动过程中皮带不打滑.下列说确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为r 1r 2n D .从动轮的转速为r 2 r 1 n

圆周运动经典题型归纳

一、圆周运动基本物理量与传动装置 1共轴传动 例1.如图所示,一个圆环以竖直直径AB为轴匀速转动,则环上M、N两 点的角速度之比为_____________,周期之比为___________,线速度之比 为___________. 2皮带传动 例二.图示为某一皮带传动装置。主动轮的半径为r1,从动轮的半径为r2。已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。下列说法正确的是 A.从动轮做顺时针转动 B.从动轮做逆时针转动 C.从动轮的转速为n D.从动轮的转速为n 3齿轮传动 例3如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在 过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴每分钟转 速为n1.求: (1)B齿轮的转速n2; (2)A、B两齿轮的半径之比; (3)在时间t内,A、B两齿轮转过的角度之比 4、混合题型 图所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两 轮用皮带传动,三轮半径关系是rA=rC=2rB;若皮带不打滑,则A、B、 C轮边缘的a、b、c三点的角速度之比ωa:ωb:ωc= ; 线速度之比va:vb:vc= 二、向心力来源 1、由重力、弹力或摩擦力中某一个力提供 例1:洗衣机的甩干桶竖直放置.桶的内径为20厘米,工作被甩的衣物 贴在桶壁上,衣物与桶壁的动摩擦因数为.若不使衣物滑落下去,甩干 桶的转速至少多大 2、在匀速转动的水平盘上,沿半径方向放着三个物体A,B,C,Ma=Mc=2Mb,他们与盘间的摩擦因数相等。他们到转轴的距离的关系为Ra<Rb<Rc,当转盘的转速逐渐增大时,哪个物体先开始滑动,相对盘向哪个方向滑 A. B先滑动,沿半径向外 B B先滑动,沿半径向内 C C先滑动,沿半径向外 D C先滑动,沿半径想内 3、一质量为的小球,用长的细线拴住在竖直面内作圆周运动,(1)当小球恰好能通过最高点时的速度为多少(2)当小球在最高点速度为4m/s时,细线的拉力是多少(取g=10m/s 2 ) 2、向心力由几个力的合力提供 (1)由重力和弹力的合力提供

(完整版)高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。 3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是

物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力 (三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等 图1 解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向

(完整版)圆周运动经典习题

1.物体做匀速圆周运动的条件是[] A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用 B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用 C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用 D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用 2.小球m用细线通过光滑水平板上的光滑小孔与砝码M相连,且正在做匀速圆周运动。如果适当减少砝码个数,让小球再做匀速圆周运动,则小球有关物理量的变化情况是 A.向心力变小 B.圆周半径变小 C.角速度变小 D.线速度变小 3.物体质量m,在水平面内做匀速圆周运动,半径R,线速度V,向心力F,在增大垂直于线速度的力F量值后,物体的轨道 A.将向圆周内偏移 B.将向圆周外偏移 C.线速度增大,保持原来的运动轨道 D.线速度减小,保持原来的运动轨道 4.关于洗衣机脱水桶的有关问题,下列说法中正确的是 ( ) A.如果衣服上的水太多脱水桶就不能进行脱水 B.脱水桶工作时衣服上的水做离心运动,衣服并不做离心运动 C.脱水桶工作时桶内的衣服也会做离心运动。所以脱水桶停止工作时衣服紧贴在桶壁上 D.白色衣服染上红墨水时,也可以通过脱水桶将红墨水去掉使衣服恢复白色 5,下列关于骑自行车的有关说法中,正确的是 ( ) A.骑自行车运动时,不会发生离心运动 B.自行车轮胎的破裂是离心运动产生的结果 C.骑自行车拐弯时摔倒一定都是离心运动产生的 D.骑自行车拐弯时速率不能太快,否则会产生离心运动向圆心的外侧跌倒 6.火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是[] A.火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损 B.火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损 C.火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损 D.以上三种说法都是错误的 7.一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图3所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过[] 8.甲、乙两球做匀速圆周运动,向心加速度a随半径r变化的关系图像如图6所示,由图像可知: A. 甲球运动时,角速度大小为2 rad/s B. 乙球运动时,线速度大小为6m/s C. 甲球运动时,线速度大小不变 D. 乙球运动时,角速度大小不变 9.如图11,轻杆的一端与小球相连接,轻杆另一端过O 平面内做圆周运动。当小球达到最高点A、最低点B时,杆对 小球的作用力可能是: A. 在A处为推力,B处为推力 B. 在A处为拉力,B处为拉力 a r 图6 8 2 甲 乙 /m·s-2 /m B O O A 11 A

(完整版)圆周运动典型例题及答案详解

“匀速圆周运动”的典型例题 【例1】如图所示的传动装置中,A、B两轮同轴转动.A、B、C三轮的半径大小的关系是R A=R C=2R B.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少? 【例2】一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么 [ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向指向圆盘中心

C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同 D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反 E.因为二者是相对静止的,圆盘与木块之间无摩擦力 【例3】在一个水平转台上放有A、B、C三个物体,它们跟台面间的摩擦因数相同.A的质量为2m,B、C各为m.A、B离转轴均为r,C为2r.则 [ ] A.若A、B、C三物体随转台一起转动未发生滑动,A、C的向心加速度比B大 B.若A、B、C三物体随转台一起转动未发生滑动,B所受的静摩擦力最小 C.当转台转速增加时,C最先发生滑动 D.当转台转速继续增加时,A比B先滑动 【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L0=0.1m.长L=1m 的柔软细线一端拴在A上,另一端拴住一个质量为500g的小球.小球的初始位置在AB连线上A的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上. 若细线能承受的最大张力T m=7N,则从开始运动到细线断裂历时多长? 【说明】圆周运动的显著特点是它的周期性.通过对运动规律的研究,用递推法则写出解答结果的通式(一般表达式)有很重要的意义.对本题,还应该熟练掌握数列求和方法.

圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为() A.1∶4 B.2∶3 C.4∶9 D.9∶16 2.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两 个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。两小环同 时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为() A.(2m+2M)g B.Mg-2mv2/R C.2m(g+v2/R)+Mg D.2m(v2/R-g)+Mg 3.下列各种运动中,属于匀变速运动的有() A.匀速直线运动B.匀速圆周运动C.平抛运动 D.竖直上抛运动 4.关于匀速圆周运动的向心力,下列说法正确的是( ) A.向心力是指向圆心方向的合力,是根据力的作用效果命名的 B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C.对稳定的圆周运动,向心力是一个恒力 D.向心力的效果是改变质点的线速度大小 5.一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v=0.2m/s , 那么,它的向心加速度为______m/s2,它的周期为______s。 6.在一段半径为R=15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ =0.70倍,则汽车拐弯时的最大速度是m/ s 7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直方向 的夹角为θ ,试求小球做圆周运动的周期。 8如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所 受拉力达到F=18N时就会被拉断。当小球从图示位置释放后摆到悬 点的正下方时,细线恰好被拉断。若此时小球距水平地面的高度h=5m, 重力加速度g=10m/s2,求小球落地处到地面上P点的距离?求落地速 度?(P点在悬点的正下方) 9如图所示,半径R= 0.4m的光滑半圆轨道与粗糙的水平面相切于A点,质量为m= 1kg的小物体(可视为质点)在水平拉力F的作用下,从C点运动到A点, 物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通 过最高点B后作平抛运动,正好落在C点,已知AC = 2m,F = 15N,g取10m/s2,试求:物体在B点时的速度以及此时半圆 轨道对物体的弹力? 20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质 量均为m的小球A、B以不同速率进入管内,A通过最高点C

圆周运动与向心力知识点训练(经典题型)

圆周运动与向心力知识点训 练(经典题型) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(4 题) (第8题) (第9题) (3题) (第7 题) 圆周运动与向心力训练题 1、关于向心力,以下说法中不正确的是( ) A .是除物体所受重力、弹力以及摩擦力以外的一种新的力 B .向心力就是做圆周运动的物体所受的合力 C .向心力是线速度变化的原因 D .只要物体受到向心力的作用,物体就做匀速圆周运动 2、如右上图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动。若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是( ) A .物体所受弹力增大,摩擦力也增大 B .物体所受弹力增大,摩擦力减小 C .物体所受弹力减小,摩擦力减小 D .物体所受弹力增大,摩擦力不变 3、如右上图所示,A 、B 、C 三个物体放在旋转圆台上,动摩擦因数均为μ,A 的质量是2m ,B 和C 的质量均为m ,A 、B 离轴为R ,C 离轴为2R 。当圆台旋转时,则 ( ) A .若A 、 B 、 C 均未滑动,则C 的向心加速度最大 B .若A 、B 、C 均未滑动,则B 的摩擦力最小 C .当圆台转速增大时,B 比A 先滑动 D . 圆台转速增大时,C 比B 先滑动 4、如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动。则下列说法正确的是( ) A .球A 的线速度必定大于球 B 的线速度 B .球A 的角速度必定小于球B 的角速度 C .球A 的运动周期必定小于球B 的运动周期 D .球A 对筒壁的压力必定大于球B 对筒壁的压力 5、下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 ( ) A .物体除其他的力外还要受到—个向心力的作用 B .物体所受的合外力提供向心力 C .向心力是一个恒力 D .向心力的大小—直在变化 6、下列关于向心力的说法中正确的是 ( ) A .物体受到向心力的作用才可能做圆周运动 B .向心力是指向圆心方向的合力,是根据力的作用效果来命名的,但受力分析时应该画出 C .向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某一种力或某几种力的合力 D .向心力只改变物体运动的方向,不改变物体运动的快慢 7、如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是 ( ) A .摆球A 受重力、拉力和向心力的作用; B .摆球A 受拉力和向心力的作用; C .摆球A 受拉力和重力的作用; D .摆球A 受重力和向心力的作用。 8、如图所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是 ( )

高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

高一物理必修2圆周运动复习知识点总结及经典例题详细 剖析 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。

3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力

带电粒子在磁场中的圆周运动经典练习题(含答案详解).

电粒子在磁场中的圆周运动 1.处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( ) A .与粒子电荷量成正比 B .与粒子速率成正比 C .与粒子质量成正比 D .与磁感应强度成正比 答案 D 解析 假设带电粒子的电荷量为q ,在磁场中做圆周运动的周期为T =2πm qB ,则等效电流i =q T =q 2B 2πm ,故答案选D. 带电粒子在有界磁场中的运动 2.如图377所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( ) 图377 A .1∶2 B .2∶1 C .1∶ 3 D .1∶1 答案 B 解析 正、负电子在磁场中运动轨迹如图所示,正电子做匀速圆周运动在磁场中的部分对应圆心角为120°,负电子圆周部分所对应圆心角为60°,故时间之比为2∶1. 回旋加速器问题

图378 3.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场中,如图378所示,要增大带电粒子射出时的动能,下列说法中正确的是( ) A .增加交流电的电压 B .增大磁感应强度 C .改变磁场方向 D .增大加速器半径 答案 BD 解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r ,得v =qBr m . 若D 形盒的半径为R ,则R =r 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 2 2m .所以要提高加 速粒子射出的动能,应尽可能增大磁感应强度B 和加速器的半径R .

圆周运动经典练习(有问题详解)

《圆周运动》练习题(一) 1.关于匀速圆周运动,下列说法正确的是() A.线速度不变 B.角速度不变 C.加速度为零 D.周期不变 2.如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球 A 和 B紧贴着内壁分别在图中所示的水平面内作匀速圆周运动,则下列说法正确的是() F N A F A G A F N B F B G Bα A.球 A 的线速度必定大于球 B 的线速度 B.球 A 的角速度必定小于球 B 的角速度 C.球 A 的运动周期必定小于球 B 的运动周期 D.球 A 对筒壁的压力必定大于球 B 对筒壁的压力 3.甲、乙两名滑冰运动员,M 甲80kg , M 乙40kg ,面对面拉着弹簧秤做匀速圆周运动的滑冰表演,如图 5 所示,两人相距0.9m ,弹簧秤的示数为9.2N ,下列判断中正确的是() A.两人的线速度相同,约为40m/s B.两人的角速度相同,为6rad/s C. 两人的运动半径相同,都是0.45m D. 两人的运动半径不同,甲为0.3m,乙为 0.6m 甲乙 图5 4. 下列说法正确的是() A.做匀速圆周运动的物体的加速度恒定 B.做匀速圆周运动的物体所受合外力为零 C.做匀速圆周运动的物体的速度大小是不变的 D.做匀速圆周运动的物体处于平衡状态 5.如图 1 所示,把一个长为 20cm,系数为 360N/m 的弹簧一端固定,作为圆心,弹簧的另一端连接一 个质量为0.50kg 的小球,当小球以360 r/ min的转速在光滑水平面上做匀速圆周运动时,弹簧的伸长 应为() A. 5.2cm B. 5.3cm C. 5.0cm D. 5.4cm m O

高中物理圆周运动典型例题解析(教育试题)

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)mg mv /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)mg mv /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)mg mv /R v mg 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v=0时,支承物对小球的支撑力等于小球的重力mg,这是有支承 物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO′旋转,盘上的水平杆 上穿着两个质量相等的小球A和B.现将A和B分别置于距轴r和2r处,并用 不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m.试分析角速 度ω从零逐渐增大,两球对轴保持相对静止过程中,A、B两球的受力情况如何 变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A和B均只靠自身静摩擦 力提供向心力. A球:mω2r=f A;B球:mω22r=f B. 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B=f m,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.1 2 m11 2r f T f mr m /2 A球:mω2r=f A+T;B球:mω22r=f m+T. 由B球可知:当角速度ω增至ω′时,绳上张力将增加△T,△T=m·2r(ω′2-ω2).对于A球应有m·r(ω′2-ω2)=△f A+△T=△f A+m·2r(ω′2-ω2). 可见△f A<0,即随ω的增大,A球所受摩擦力将不断减小,直至f A=0

平抛运动和圆周运动典型例题

平抛运动、圆周运动 一、 平抛运动 1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。 2、条件: a 、只受重力; b 、初速度与重力垂直. 3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。g a = 4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性. 5、平抛运动的规律 ①水平速度:v x =v 0,竖直速度:v y =gt 合速度(实际速度)的大小:2 2y x v v v += 物体的合速度v 与x 轴之间的夹角为: tan v gt v v x y = = α ②水平位移:t v x 0=,竖直位移22 1gt y = 合位移(实际位移)的大小:22y x s += 物体的总位移s 与x 轴之间的夹角为: 2tan v gt x y == θ 可见,平抛运动的速度方向与位移方向不相同。

而且θαtan 2tan =而θα2≠ 轨迹方程:由t v x 0=和2 21gt y =消去t 得到:22 2x v g y =。可见平抛运动的轨迹为抛物线。 6、平抛运动的几个结论 ①落地时间由竖直方向分运动决定: 由221gt h = 得:g h t 2= ②水平飞行射程由高度和水平初速度共同决定: g h v t v x 20 0== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θa 的正切值为位移s 与水平位移x 夹角θ正切值的两倍。 ④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明:2 21tan 20x s s gt v gt =?==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt,方向恒为竖直向下(与g 同向)。任意相同时间内的Δv 都相同(包括大小、方向),如右图。 二、 V V V ⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a 相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。) 三、 如右图:所以θtan 20 g v t =

相关文档
相关文档 最新文档