文档库 最新最全的文档下载
当前位置:文档库 › 高二(下)数学同步测试题-导数与极值-最值

高二(下)数学同步测试题-导数与极值-最值

高二(下)数学同步测试题-导数与极值-最值
高二(下)数学同步测试题-导数与极值-最值

高二(下)数学同步测试题(二)-导数与极值、最值

一、选择题

1.下列函数存在极值的是( ).

A .y =1

x

B .y =x -e x

C .y =x 3+x 2+2x -3

D .y =x 3

2.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).

A .无极大值点,有四个极小值点

B .有三个极大值点,两个极小值点

C .有两个极大值点,两个极小值点

D .有四个极大值点,无极小值点 3.函数71862)(23+--=x x x x f

A .在x =-1处取得极大值17,在x =3处取得极小值-47

B .在x =-1处取得极小值17,在x =3处取得极大值-47

C .在x =-1处取得极小值-17,在x =3处取得极大值47

D .以上都不对

4.函数x xe y -=,x ∈[0,4]的最大值是( ).

A .0 B.1e C.4e 4 D.2

e 2

6. 函数x x y ln =在(0,5)上是( )

A .单调增函数

B .单调减函数

C .在?

????0,1e 上减,在? ????1e ,5上增 D .在? ????0,1e 上增,在? ????

1e ,5上减 7. 函数x

x

x f ln )(=

的极值( ) A .无极小值,极大值为e

1

B .无极小值,极大值为e

C . 极小值为e

1

,无极大值

D .极小值为e ,无极大值

8. 函数y =x -sin x ,x ∈????

??

π2,π的最大值是( )

A .π-1 B.

π

2

-1 C .π D .π+1

9. 函数f (x )=2x +1

x

,x ∈(0,5]的最小值为( )

A .2

B .3 C.

17

4

D .22+1

2

10.函数x e x x f -=2)(的极小值为( ).

A .0

B .4e -2

C.24e

D .2

11.函数b bx x x f 33)(3+-=在(0,1)内有极小值,则( )

A .0<b <1

B .b <1

C .b >0

D .b <1

2

12. 已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4- 上

的最大值是12,则()f x 的解析式为( )

A .x x x f 102)(2-= B.122)(2+=x x f C. )5()(-=x x x f D. 无法确定 二、填空题

13.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为________. 14.设方程k x x =-33有3个不等的实根,则常数k 的取值范围是________. 15.函数f (x )=

4x

x 2

+1

,x ∈[-2,2]的最大值是________,最小值是________. 16.若关于x 的不等式x 2+1x ≥m 对任意x ∈(-∞,-1

2

]恒成立,则m 的取值范围是

_______. 三、解答题

17.已知函数x ax x x f 3)(23--=

(1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =3是f (x )的极值点,求f (x )的单调区间.

18.函数b ax x x f ++=23)(的图象在点P (1,0)处的切线与直线3x +y =0平行 (1)求a ,b ;

(2)求函数f (x )在[0,t ](t >0)内的最大值和最小值.

19.设函数d cx bx x a x f +++=23

3

)( (a >0),且方程09)(=-'x x f 的两个根分别为1,4.

(1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式; (2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围.

20.已知函数13)(3--=ax x x f ,a ≠0.

(1)求f (x )的单调区间;

(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.

21.设函数12)(22-++=t x t tx x f (x ∈R ,t >0).

(1)求f (x )的最小值h (t );

(2)若h (t )<-2t +m 对t ∈(0,2)恒成立,求实数m 的取值范围.

22. 已知函数x

a x x f -

=ln )(. (1)若f (x )存在最小值且最小值为2,求a 的值;

(2)设a x x g -=ln )(,若2)(x x g <在(0,e]上恒成立,求a 的取值范围.

高二(下)数学同步测试题(二)-导数与极值、最值

1.B 2.C 解: f ′(x )的符号由正变负,则f (x 0)是极大值,f ′(x )的符号由负变正,则f (x 0)是极小值,由图象易知有两个极大值点,两个极小值点.

3.A 解: f ′(x )=6x 2

-12x -18,令f ′(x )=0,解得x 1=-1,x 2=3.当x 变化时,f ′(x ),

f (x )的变化情况如下表:

x (-∞,-1)

-1 (-1,3) 3 (3,+∞)

f ′(x ) +

f (x )

极大值

极小值

4.B 解: y ′=e -x -x ·e -x =e -x

(1-x ),令y ′=0,∴x =1,∴f (0)=0,f (4)=4e

4,

f (1)=e -1=1e

,∴f (1)为最大值,故选B.

6. C 解:∵y ′=x ′·ln x +x ·(ln x )′=ln x +1,∴当0<x <1

e

时,ln x <-1,即

y ′<0,∴y 在?

??

??

0,1e 上减.当1e

<x <5时,ln x >-1,即y ′>0.∴y 在?

??

??1e

,5上增.

7.A 解:函数f (x )=ln x x 的定义域为(0,+∞),且f ′(x )=1-ln x

x

2

. 令f ′(x )=0,解得x =e.当x 变化时,f ′(x )与f (x )的变化情况如下表:

x (0,e) e (e ,+∞)

f ′(x ) + 0 - f (x )

单调递增

1

e

单调递减

因此,x =e 是函数的极大值点,极大值为f (e)=e

,没有极小值.

8. C 解:y ′=1-cos x ≥0,所以y =x -sin x 在????

??π2,π上为增函数.当x =π时,y max =π.

9. B 解:由f ′(x )=

1

x -1x

2=

x 32

-1x 2

=0得x =1,且x ∈(0,1)时f ′(x )<0,x ∈(1,5]时

f ′(x )>0,∴x =1时f (x )最小,最小值为f (1)=3.

10.A 解 函数的定义域为R ,f ′(x )=2x e -x

+x 2

·e -x

·(-x )′=2x e -x

-x 2

·e -x

=x (2-x )e -x

.令f ′(x )=0,即x (2-x )·e -x

=0;得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:

x (-∞,0)

0 (0,2) 2 (2,+∞)

f ′(x ) -

f (x )

极小值0

极大值4e -2

因此,当x =0时,f (x )有极小值,并且极小值为f (0)=0; 当x =2时,f (x )有极大值,并且极大值为f (2)=4e -2

=4e

2.

11.A 解析 f (x )在(0,1)内有极小值,则f ′(x )=3x 2

-3b 在(0,1)上先负后正, ∴f ′(0)=-3b <0.∴b >0,f ′(1)=3-3b >0,∴b <1.综上,b 的范围为0<b <1. 12.A

解:Q

()f x 是二次函数,且()0f x <的解集是(0,5),∴可设

()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,

a =2

2,

()2(5)210().

a f x x x x x x R ∴=∴=-=-∈

13.解:∵y =e x

+ax ,∴y ′=e x

+a ,若y ′=0,则a =-e x

.由已知得x >0,∴e x

>1,

故a <-1.

14.解:设f (x )=x 3

-3x -k ,则f ′(x )=3x 2

-3.令f ′(x )=0得x =±1,且f (1)=-2-k ,

f (-1)=2-k ,又f (x )的图象与x 轴有3个交点,故?

??

??

2-k >0,

-2-k <0,∴-2

15.解: ∵y ′=

4

x 2+1-2x ·4x x 2+12=-4x 2+4

x 2+12

,令y ′=0可得x =1或-1.

又∵f (1)=2,f (-1)=-2,f (2)=85,f (-2)=-8

5,∴最大值为2,最小值为-2.

16.解:设y =x 2

+1x ,则y ′=2x -1x 2=2x 3

-1x 2.∵x ≤-1

2

,∴y ′<0,

即y =x 2

+1x 在? ????-∞,-12上单调递减.∴当x =-12时,y 取得最小值为-74.

∵x 2

+1x ≥m 恒成立,∴m ≤-74.答案:?

????-∞,-74

17.解 (1)对f (x )求导,得f ′(x )=3x 2

-2ax -3.由f ′(x )≥0,得a ≤32? ????x -1x .

记t (x )=32? ????x -1x ,当x ≥1时,t (x )是增函数,∴t (x )min =3

2(1-1)=0.∴a ≤0.

(2)由题意,得f ′(3)=0,即27-6a -3=0,∴a =4.∴f (x )=x 3

-4x 2

-3x ,

f ′(x )=3x 2-8x -3.令f ′(x )=0,得x 1=-1

3

,x 2=3.当x 变化时,f ′(x )、f (x )的变化情况如

下表:

x ? ??

??-∞,-13 -1

3 ? ??

??-13,3 3 (3,+∞)

f ′(x ) +

0 -

0 + f (x )

极大值

极小值

∴当x ∈? ????-∞,-13,[3,+∞)时,f (x )单调递增,当x ∈??????-13,3时,f (x )单调递减.

18.解 (1)f ′(x )=3x 2

+2ax

由已知条件?

??

??

f 1=0,

f ′1=-3,即?

??

??

a +

b +1=0,

2a +3=-3,解得

?

??

??

a =-3,

b =2. (2)由(1)知f (x )=x 3

-3x 2

+2,f ′(x )=3x 2

-6x =3x (x -2),

f ′(x )与f (x )随x 变化情况如下:

x (-∞,0)

0 (0,2) 2 (2,+∞)

f ′(x ) +

f (x )

2

-2

由f (x )=当0

-3t 2

+2; 当23时,f (x )的最大值为f (t )=t 3

-3t 2

+2,最小值为f (2)=-2.

19.解 由f (x )=a

3

x 3+bx 2+cx +d ,得f ′(x )=ax 2+2bx +c .∵f ′(x )-9x =ax 2

+(2b -9)x +c

=0的两个根分别为1,4,∴???

??

a +2

b +

c -9=0,

16a +8b +c -36=0,(*)(1)当a =3时,由(*)式得

?????

2b +c -6=0,

8b +c +12=0,

解得b =-3,c =12,又因为曲线y =f (x )过原点,所以d =0,

故f (x )=x 3

-3x 2

+12x .

(2)由于a >0,∵f (x )=a

3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点,∴f ′(x )=ax 2

+2bx +c ≥0

在(-∞,+∞)内恒成立.由(*)式得2b =9-5a ,c =4a ,又Δ=(2b )2

-4ac =9(a -1)(a -9).解

?

??

??

a >0,Δ=9a -1a -9≤0.

得a ∈[1,9],即a 的取值范围为[1,9].

20.解:(1)f ′(x )=3x 2

-3a =3(x 2

-a ).当a <0时,对x ∈R ,有f ′(x )>0,

∴当a <0时,f (x )的单调增区间为(-∞,+∞).当a >0时,由f ′(x )>0解得x <-a 或x >a , 由f ′(x )<0解得-a 0时,f (x )的单调增区间为(-∞,-a ), (a ,+∞),f (x )的单调减区间为(-a ,a ).(2)∵f (x )在x =-1处取得极值,

f ′(-1)=3×(-1)2-3a =0,∴a =1.∴f (x )=x 3-3x -1,f ′(x )=3x 2-3.

由f ′(x )=0解得x =-1或x =1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.

∵直线y =m 与函数y =f (x )的图象有三个不同的交点,

21. (1)∵f (x )=t (x +t )2

-t 3

+t -1(x ∈R ,t >0),∴当x =-t 时,

f (x )取最小值f (-t )=-t 3+t -1,即h (t )=-t 3+t -1.

(2)令g (t )=h (t )-(-2t +m )=-t 3

+3t -1-m ,由g ′(t )=-3t 2

+3=0得t =1或t =-1(不合题意,舍去).当t 变化时,g ′(t ),g (t )的变化情况如下表:

t (0,1) 1 (1,2) g ′(t ) + 0 - g (t )

单调递增

极大值1-m

单调递减

∴g (t )在(0,2)g (t )<0在(0,2)内恒成立,即等价于1-m <0,∴m 的取值范围为(1,+∞).

22解:(1)f ′(x )=1x +a x 2=x +a

x

2(x >0),

当a ≥0时,f ′(x )>0,f (x )在(0,+∞)上是增函数,f (x )不存在最小值;

当a <0时由f ′(x )=0得x =-a ,

且0<x <-a 时f ′(x )<0,x >-a 时f ′(x )>0.∴x =-a 时f (x )取最小值, f (-a )=ln(-a )+1=2,解得a =-e.

(2)g (x )<x 2即ln x -a <x 2,即a >ln x -x 2,故g (x )<x 2在(0,e]上恒成立,也就是a >ln x -x 2在(0,e]上恒成立.设h (x )=ln x -x 2

,则h ′(x )=1x -2x =1-2x 2

x ,

由h ′(x )=0及0<x ≤e 得x =22.当0<x <22时h ′(x )>0,当2

2<x ≤e 时h ′(x )<0,

即h (x )在? ????

0,22上为增函数,在? ????22,e 上为减函数,所以当x =22时h (x )取得

最大值为h ? ????

22=ln 22-12.所以g (x )<x 2在(0,e]上恒成立时,a 的取值范围为

? ????ln 22-1

2,+∞.

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

(完整版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

高二下理科数学知识点整理(教师版)

高二理科数学 一、导数 1、导数定义:f (x )在点x 0处的导数记作x x f x x f x f y x x x ?-?+='=' →?=)()(lim )(000 00 ; 2、几何意义:切线斜率;物理意义:瞬时速度; 3、常见函数的导数公式: ①' C 0=;②1')(-=n n nx x ;③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(;⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 。 ⑨211x x -=' ?? ? ??;⑩ ()x x 21=' 4、导数的四则运算法则:;)(;)(;)(2v v u v u v u v u v u uv v u v u ' -'=''+'=''±'='± 5、复合函数的导数:; x u x u y y '?'=' 6、导数的应用: (1)利用导数求切线:根据导数的几何意义,求得该点的切线斜率为该处的导数 ()(0x f k '=);利用点斜式()(00x x k y y -=-)求得切线方程。 注意ⅰ)所给点是切点吗?ⅱ)所求的是“在”还是“过”该点的切线? (2)利用导数判断函数单调性:①)(0)(x f x f ?>'是增函数; ②)(0)(x f x f ?<'为减函数;③)(0)(x f x f ?≡'为常数; 反之,)(x f 是增函数?0)(≥'x f ,)(x f 是减函数?0)(≤'x f (3)利用导数求极值:ⅰ)求导数)(x f ';ⅱ)求方程0)(='x f 的根;ⅲ)列表得极值。 (4)利用导数最大值与最小值: ⅰ)求得极值;ⅱ)求区间端点值(如果有);ⅲ得最值。 (5)求解实际优化问题: ①根据所求假设未知数x 和y ,并由题意找出两者的函数关系式,同时给出x 的范围;②求导,令其为0,解得x 值,舍去不符合要求的值; ③根据该值两侧的单调性,判断出最值情况(最大还是最小?); ④求最值(题目需要时);回归题意,给出结论;

(word完整版)高二数学导数单元测试题(有答案)

高二数学导数单元测试题(有答案) (一).选择题 (1)曲线32 31y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (2) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (3) 函数13)(2 3 +-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (4) 函数,93)(2 3 -++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83 -=的图象上,其切线的倾斜角小于 4 π 的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3 ()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3 ()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x = +在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 (二).填空题 (1).垂直于直线2x+6y +1=0且与曲线y = x 3 +3x -5相切的直线方程是 。 (2).设 f ( x ) = x 3 - 2 1x 2 -2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 . (3).函数y = f ( x ) = x 3+ax 2+bx +a 2 ,在x = 1时,有极值10,则a = ,b = 。 (4).已知函数32 ()45f x x bx ax =+++在3 ,12x x ==-处有极值,那么a = ;b = (5).已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 (6).已知函数32 ()33(2)1f x x ax a x =++++ 既有极大值又有极小值,则实数a 的取值

(完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试(一) 时间:120分钟总分:150分 一、选择题(每小题5分,共60分) 1 .函数f(x)= x sinx 的导数为( A. f ‘ (x) = 2 x sinx + . x cosx 2. 若曲线y = x 2 + ax + b 在点(0, b)处的切线方程是x — y +1 = 0, 则() A . a = 1, b = 1 B . a =— 1, b = 1 C . a = 1, b =— 1 D . a =— 1, b =— 1 3. 设 f(x) = xlnx ,若 f ‘(x o )= 2,则 x 0 =( ) In2 A . e 2 B . e C^^ D . ln2 4. 已知 f(x) = x 2 + 2xf ‘ (1),贝S f ‘ (0)等于( ) B . f ‘ (x) = 2 x sinx — x cosx , sinx 厂 C . f (x)= 2 x + x cosx D . f ‘ sinx 厂 (x)= 2 x — x cosx 1 -3 -3

6. 如图是函数y= f(x)的导函数的图象,给出下面四个判断:

①f(x)在区间[—2,—1]上是增函数; ②x=—1是f(x)的极小值点; ③f(x)在区间[—1,2]上是增函数,在区间[2,4]上是减函数; ④x= 2是f(x)的极小值点. 其中,所有正确判断的序号是() A .①② B .②③C.③④ D .①②③④ 7. 对任意的x€ R,函数f(x) = x3+ ax2+ 7ax不存在极值点的充要条件是() A. O w a w 21 B. a= 0 或a = 7 C. a<0 或a>21 D. a= 0 或a= 21 8某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q= 8 300—170P—P2,则最大毛利润为(毛利润 =销售收入—进货支出)() A . 30 元B. 60 元C. 28 000元D. 23 000 元 x 9. 函数f(x) = —g(a

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

高二数学理科下学期知识点总结

高二第二学期理科数学总结 一、导数 1、导数定义:f(x)在点x 0处的导数记作x x f x x f x f y x x x ?-?+='=' →?=)()(lim )(000 00 ; 2、几何意义:切线斜率;物理意义:瞬时速度; 3、常见函数的导数公式: ①;②1')(-=n n nx x ;③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(;⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 。 ⑨211x x -=' ?? ? ??;⑩ ()x x 21=' 4、导数的四则运算法则:;)(;)(;)(2 v v u v u v u v u v u uv v u v u ' -'=''+'=''±'='± 5、复合函数的导数:; x u x u y y '?'=' 6、导数的应用: (1)利用导数求切线:根据导数的几何意义,求得该点的切线斜率为该处的导数()(0x f k '=);利用点斜式()(00x x k y y -=-)求得切线方程。 注意ⅰ)所给点是切点吗?ⅱ)所求的是“在”还是“过”该点的切线? (2)利用导数判断函数单调性:①)(0)(x f x f ?>'是增函数; ②)(0)(x f x f ?<'为减函数;③)(0)(x f x f ?≡'为常数; 反之,)(x f 是增函数0)(≥'x f ,)(x f 是减函数0)(≤'x f (3)利用导数求极值:ⅰ)求导数)(x f ';ⅱ)求方程0)(='x f 的根;ⅲ)列表得极值。 (4)利用导数最大值与最小值: ⅰ)求得极值;ⅱ)求区间端点值(如果有);ⅲ得最值。 (5)求解实际优化问题: ①根据所求假设未知数和,并由题意找出两者的函数关系式,同时给出的范围;②求导,令其为0,解得值,舍去不符合要求的值; ③根据该值两侧的单调性,判断出最值情况(最大还是最小?); ④求最值(题目需要时);回归题意,给出结论; 7、定积分 ⑴定积分的定义: )(lim )(1 i n i b a n f n a b dx x f ξ∑ ? =∞ →-=(注意整体思想)

人教A版高中数学选修《导数综合练习题》

导数练习题 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程9 )32()(2 +-=a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.(本小题满分14分) 已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f

高二数学函数的单调性与导数测试题

选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是() A.b2-4ac>0B.b>0,c>0 C.b=0,c>0 D.b2-3ac<0 [答案] D [解析]∵a>0,f(x)为增函数, ∴f′(x)=3ax2+2bx+c>0恒成立, ∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0. 2.(2009·广东文,8)函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) [答案] D [解析]考查导数的简单应用. f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x, 令f′(x)>0,解得x>2,故选D. 3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+∞) B.(-∞,2] C.(-∞,-1)和(1,2) D.[2,+∞) [答案] B [解析]令k≤0得x0≤2,由导数的几何意义可知,函数的单调减区间为(-∞,2]. 4.已知函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)

的导函数),下面四个图象中,y =f (x )的图象大致是( ) [答案] C [解析] 当01时xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此否定A 、B 、D 故选C. 5.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( ) A.? ????-π,-π2和? ?? ??0,π2 B.? ????-π2,0和? ?? ??0,π2 C.? ????-π,-π2和? ?? ??π2,π D.? ????-π20和? ?? ??π2,π

(完整版)高二导数练习题及答案

高二数学导数专题训练 一、选择题 1. 一个物体的运动方程为S=1+t+2 t 其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( ) A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3 y x x =+的递增区间是( ) A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( ) A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数3 13y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9. 对于R 上可导的任意函数()f x ,若满足' (1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 10.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0

(完整版)高二数学选修2-2导数单元测试题(有答案)

导数复习 一.选择题 (1) 函数13)(23+-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (3) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (4) 函数,93)(2 3-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的 个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x =+在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 .10设函数()1 x a f x x -= -,集合M={|()0}x f x <,P=' {|()0}x f x >,若 M P,则实数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin x cos(sin x ),则y ′(0)等于( ) A.0 B.1 C.-1 D.2 14.经过原点且与曲线y =5 9++x x 相切的方程是( ) A.x +y =0或25 x +y =0 B.x -y =0或25 x +y =0 C.x +y =0或 25 x -y =0 D.x -y =0或 25 x -y =0 15.设f (x )可导,且f ′(0)=0,又x x f x )(lim 0 '→=-1,则 f (0)( ) A.可能不是f (x )的极值 B.一定是f (x )的极值 C.一定是f (x )的极小值 D.等于0 16.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0 B.1 C.n n )221(+- D.1)2 ( 4++n n n 17、函数y=(x 2-1)3+1在x=-1处( ) A 、 有极大值 B 、无极值 C 、有极小值 D 、无法确定极值情况 18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( ) A 、3 10 B 、3 13 C 、3 16 D 、3 19 19.过抛物线y=x 2 上的点M (4 1,21)的切线的倾斜角是( ) A 、300 B 、450 C 、600 D 、900 20.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( ) a b x y ) (x f y ?=O

高中数学导数及其应用

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数, 这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。 事实上,在点处的增量

相关文档
相关文档 最新文档