文档库 最新最全的文档下载
当前位置:文档库 › 实验二 电磁波在介质中的传播规律

实验二 电磁波在介质中的传播规律

实验二 电磁波在介质中的传播规律
实验二 电磁波在介质中的传播规律

电磁场与微波技术实验报告

(二)

课程实验:电磁波在介质中传播规律

班级:

姓名:

指导老师:

实验日期: 2015.11.21

电磁波在介质中的传播规律

一、实验目的:

1、用MATLAB 程序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律;

2、结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况;

3、学会使用Matlab 进行数值计算,并绘出相应的图形,运用MATLAB 对其进行可视化处理。

二、实验原理 1、电磁场的波动方程

一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同性均匀线性的,即(0,0==j ρ)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子()t j ωex p 相乘,这里ω是角频率。在这种约定下,麦克斯韦方程组便可表示成[]1

ΗE ωμj -=?? (1) ΕΗωεj =?? (2) 0=??Ε (3) 0=??Η (4) 对方程(1)两边同取旋度,并将式(2)代入便得

ΕΕεμω2=???? (5) 利用如下矢量拉普拉斯算子定义以及方程(3)

()ΕΕΕ????-???=?2 (6) 方程(5)式变为[]2

022=+?ΕΕk (7) μεω=k (8) 类似地,可得Β所满足的方程为

022=+?ΒΒk (9) 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解

一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对单色平面波的研究具有重要的理论和实际意义。假定波动方程(7)和(8)式的单色平面波的复式量解为[]3

()[]r k ΕΕ?-=t j ωe xp 0 (10) ()[]r k ΒΒ?-=t j ωe xp 0 (11)

式中0Ε,0Β分别为Ε,Β振幅,ω为圆频率,k 为波矢量(即电磁波的传播方向)。

()[]t kx j ω-ex p 代表波动的相位因子。

为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等相位的传播速度。很显然等相位面由下面方程决定[]1

const kr t =-ω (12)

方程(12)两边对时间t 求导可得

k

dt dr v ω

== (13) 由式(8)可知

εμ

1

=

v (14)

将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得[]3

00Βk Εω-=? (15) 02

01

Εk Βωv =

? (16) 00=?Εk (17) 00=?Βk (18) 由(17)和(18)可以看出,介质中传播的电磁波是横波,电场与磁场都与传播方向垂直;由(15)和(16)式可知:0Ε,0Β与k 三者相互垂直,且满足右手螺旋关系。 3、电磁波在线性介质中的传播[]1

电磁波在线性介质中的传播,即电介质参数和磁导率都为实数的波传播情况。由关系式(8)可知,波数k 必为实数。根据平面波解形式(10)易知,平面电磁波在线性介质中传播,只有相位发生变化,无幅值变化。将式(15)写成

ΗΕk η=? (19)

其中???

? ??==εμωμηk 。而且η的单位是Ω,故称为波阻抗。其物理意义是垂直于传播方向平面上的电场和磁场的比值。在线性介质中,波阻抗η为实数,也就是纯电阻,所以电场和磁场同相。

4、电磁波在非线性介质中的传播[]1

实际中见到的非线性介质是电介质参数为复数的情形,即"'εεεj -=,譬如海水、湿地。通常这种介质的损耗是由电导率σ引起,故又有ω

σ

ε=

"。根据关系式(8)有 2

/1"''1???

? ??-=εεμεωj k (20)

将复数k 写成

αβj k -= (21)

由式(20)不难推出

2

/12

"'1'12??

???????

?????? ??+???? ??+=εεμεωβ (22)

2

/12'"'112??

?????

??

?????? ??-???? ??+=εεμε

ωα (23)

由此可知,平面电磁波在非线性介质中传播,除了相位以传播常数β随距离变化外,其幅值也要以衰减常数α随距离指数衰减。此时波阻抗为

2

/1''"1?

??

?

?-==εεεμεμηj (24)

由此可知,在非线性介质中,一般来说电场和磁场不再同相。下面我们分弱耗和良导体

中两种情况进行讨论。在弱耗情况下,即210'

"

-<εε,式(22),(23),(24)可近似为

'μεωβ≈ (25)

'

'"

22εμ

σε

μωεα=≈

(26) 'ε

μ

η=

(27) 由此可知,在弱耗情况下,传播常数β与在线性介质中传播下相同,衰减常数α与频率

无关,电场和磁场同相。在良导体下,即2'"

10>ε

ε,式(22),(23),(24)可近似为

2

2

"

ωμσ

μεω

β=

≈ (28)

2

ωμσ

βα≈= (29)

()

σ

ωμ

η21j += (30)

由式(30)可知,在良导体中,电场和磁场不在同相,而是电场始终超前磁场4

π

。由式(29)可知,电磁波在良导体中传播衰减很快,很难深入到

良导体内部。一般电磁场能量集中于良导体表面。为此定义一个趋附深度δ,描述电磁波穿透导体的能力,具体定义式是

σ

δ1

=

(31)

即为电磁波幅值减到原来的≈-1e 0.37时,所传播的厚度。

三、MATLAB 编程步骤

1、设定相关物理量的符号表示;

2、编好电场、磁场的表达公式;

3、根据点电场强度、磁场强度公式运用MATLAB 的相关函数plot,mesh 等模拟出电磁波在介质中传播的图像;

通过编写MATLAB 程序,我们可以生成相关的MATLAB 图像进行可视化,得到图形。

四、实验内容

1、电磁波在平面上传播 程序:

t=0:0.2:4*pi; T=meshgrid(t); Z=sin(T); surf(Z);

MATLAB 图像:

2、电磁波在理想介质中传播

程序一:

grid on;%打开网格

x=[0:0.2:30];

zero=0*ones(size(x));

E=ones(size(x))*0;

H=ones(sin(x));t=0;

%画动画%

for i=1:100 %动画帧数

E=exp(0*x).*cos(20*pi*t-x); %电场表达式 0.05改为0,就是无损耗了

H=exp(0*x).*cos(20*pi*t-x-3*pi/8); %磁场表达式

quiver3(x,zero,zero,zero,zero,E,'Y'); %画电场矢量图hold on;

quiver3(x,zero,zero,zero,H,zero,'R'); %画磁场矢量图

ti=title('无损耗介质中电磁波传播','color','k');

set(ti,'fontsize',20);

xlabel('x','fontSize',20);

ylabel('y','fontSize',20);

zlabel('z','fontSize',20); %标注想x,y,z轴

axis([0,30,-2.5,2.5,-2.5,2.5]); %限定图像范围

view(20+2*i,40); %调整视角

pause(0.002) %帧延时

t=t+0.004; %时间流逝

hold off; %关闭保持

end; %结束循环

MATLAB图像一:

-2

-101

2x

y

z

30

x

理想介质中电磁波传播

y

z

z

y

程序二:

clear

m=3;

x=(0:0.01:1) *m;

figure;grid on;hold on;

axis([0,m,-1,1,-1,1])

data = zeros(size(x));

hy = stem(x,data,'y.');

hz = stem(x,data,'r.');

n = length(x);

i=1;

view(3);

while 1

if i>n

data=[data(end),data(1:end-1)];

else

data=[sin(2*pi*x(i)),data(1:end-1)]; end

set(hy,'YData',data);

set(hz,'ZData',data);

drawnow

pause(0.02)

i=i+1;

end

MATLAB图像二:

理想介质中电磁波传播

3、电磁波在导体(损耗较小的介质)中传播

程序与步骤二大题相同,区别在于:

E=exp(-0.03*x).*cos(20*pi*t-x); %电场表达式的衰减系数由0改为-0。03

H=exp(-0.03*x).*cos(20*pi*t-x-3*pi/8); %磁场表达式的衰减系数由0改为-0。03

MATLAB图像:

30

-2-101

2y

x

z

-2.5

-2-1.5-1-0.5损耗较小介质中电磁波传播

y

z

2

-2

-1

01

2y

z

4、电磁波在金属(损耗较大的介质)中传播 程序与步骤二大题相同,区别在于:

E=exp(-0.1*x).*cos(20*pi*t-x); %电场表达式的衰减系数由0改为-0.1

H=exp(-0.1*x).*cos(20*pi*t-x-3*pi/8); %磁场表达式的衰减系数由0改为-0.1

MATLAB 图像:

30

-2-101

2y

电磁波在金属中传播

x

z

-2

-101

2x

电磁波在金属中传播

y

z

五、

2 -2

-1

1

2

y

电磁波在金属中传播z

实验总结:

在以前的学习中,我仅只是使用MATLAB的数值计算的功能,通过这个实验,对于MATLAB强大的仿真功能有了更加深刻的了解,为深层次的学习此软件开了一个很好的头。通过MATLAB画出的电磁波在介质中的传播能加深我们对电场、磁场的了解,在画图的过程中,我明白了电磁波在介质中传播是有损耗的,在实际生活中,我们已经离不开电磁波了,电磁波技术革新也与我们的生活息息相关,我们要想达到在理想条件下无损耗的传播电磁波,还需要学习更多的知识,像前辈们一样更加努力。

参考文献

[1] 盛新庆. 电磁波述论[M]. 北京: 科学出版社, 2007

[2] 郭硕鸿. 电动力学(第二版)[M]. 北京: 高等教育出版社, 2006

[3] 沙湘月, 伍瑞新. 电磁场理论与微波技术[M]. 南京: 南京大学出版社,

2004

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波实验报告-2

电磁场与电磁波实验报告

实验一电磁场参量的测量 实验目的 1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波 的相位常数和波速 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f 得到电磁波的主要参量:和等。 本实验采取了如下的实验装置 设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在 分界面上产生反射波E r和折射波E t。设介质板的反射系数为R,由空气进入 介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板 P r2和固定板P r1都是金属板,其电场反射系数都为-1。在一次近似的条件下,

接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT o T c E^e j 2 这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。 又因为为定值,L2则随可动板位移而变化。当P r2移动L值,使P r3有零 指示输出时,必有E M与E r2反相。故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。从而测出电磁波的波长和相位常数。下面用数学式 来表达测定波长的关系式。 在P r3处的相干波合成为E r E M E「2 e j 1 e j2 j 1 2 / 或写成E r2RT0T c E0i cos 2 e 2(1-2) 式中 1 2 2 L 为了测量准确,一般采用P3零指示法,即cos 20 或(2n 1),n=0,1,2…… 这里n表示相干波合成驻波场的波节点(E r 0 )数。同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。故把n=0时E r 0驻波节点为参考节点的位置L。 2 又因 2 — L (1-3) 2 故2n 1 2 — L 或 4 L (2 n 1)(1-4)由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。当n=0的节点处L。作为第一个波节点,对其他N值则有: n=1, 4 L 4L1 L0 2 ,对应第二个波节点,或第一个半波长数。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波实验指导书2014(2)

实验一、电磁波参量的测量 1.实验目的: (1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E、H和S 互相垂直。(2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β和波速υ。 (3)了解电磁波的其他参量,如波阻抗η等。 2.实验仪器: (1)DH1211型3cm固态源1台 (2)DH926A型电磁波综合测试仪1套 (3)XF-01选频放大器1台 (4)PX-16型频率计 3.实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同,它们相互干涉的结果,在传播路径上形成驻波分布。通过测定驻波场节点的分 布,求得波长λ的值,由 2π β λ =、f υλ =得到电磁波的主要参数:β、υ

设0r P 入射波为:0j i i E E e βγ -= 当入射波以入射角θ向介质板斜投射时,在分界面上产生反射波r E 和折射波i E 。设入射波为垂直极化波,用R ⊥表示介质板的反射系数,用0T ⊥和T ε⊥表示由空气进入介质板和由介质板进入空气的折射系数。可动板2r P 和固定板1r P 都是金属板,其电场反射系数为-1,则3r P 处的相干波分别为: 110j r i E R T T E e φε-⊥⊥⊥=- 1131()r r L L L φββ=+= 220j r i E R T T E e φε-⊥⊥⊥=- 22331()()r r r r L L L L L φββ=+=++V 其中,21L L L ?=- 因为1L 是固定值,2L 则随可动板位移L V 而变化。当2r P 移动L V 值时,使3r P 具有最大输出指示时,则有1r E 和2r E 为同相叠加;当2r P 移动L V 值,使3r P 具有零值输出指示时,必有1r E 和2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。 在3r P 处的相干波合成 1 21210()i i r r r i E E E R T T E e e φφε--⊥⊥=+=-+ 或写成 12( ) 12 2 102cos( )2 j r i E R T T E e φφεφφ+-⊥⊥-=- 式中12L φφφβ=-=V V 为测准入值,一般采用 3r P 零指示办法 ,即 cos( )02φ=V 或(21)22 n φπ =+V n=0.1.2….. n 表示相干波合成驻波场的波

电磁波实验报告

电磁场与微波技术 实验报告 院系: 班级: 姓名: 学号: 指导老师:

实验一线驻波比波长频率的测量 一、实验目的 1、熟练认识和了解微波测试系统的基本组成和工作原理。 2、掌握微波测试系统各组件的调整和使用方法。 3、掌握用交叉读数法测波导波长的过程。 二、实验用微波元件及设备简介 1.波导管:本实验所使用的波导管型号为BJ—100,其内腔尺寸为α=22.86mm,b=10.16mm。其主模频率范围为8.20~12.50GHz,截止频率为6.557GHz。2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性(见图1)。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。 3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成(见图2),用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。 图 1 隔离器结构示意图图2 衰减其结构示意图 4.谐振式频率计(波长表): 图3 a 谐振式频率计结构原理图一图3 b 谐振式频率计结构原理图二 1. 谐振腔腔体 1. 螺旋测微机构 2. 耦合孔 2. 可调短路活塞 3. 矩形波导 3. 圆柱谐振腔 4. 可调短路活塞 4. 耦合孔 5. 计数器 5. 矩形波导 6. 刻度 7. 刻度套筒 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率

满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。(图3a) 或从刻度套筒直接读出输入微波的频率(图3b)。两种结构方式都是以活塞在腔体中位移距离来确定电磁波的频率的,不同的是,图3a读取刻度的方法测试精度较高,通常可做到5×10-4,价格较低。而见图3b直读频率刻度,由于在频率刻度套筒加工受到限制,频率读取精度较低,一般只能做到3×10-3左右且价格较高。 5.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。 6.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。 7.微波源:提供所需微波信号,频率范围在8.6~9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。 8.选频放大器:用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后由输出级输出直流电平,由对数放大器展宽供给指示电路检测。 三、实验内容及过程 1.微波信号源的调整: 频率表在点频工作下,显示等幅波工作频率,在扫频工作下显示扫频工作频率,在教学下,此表黑屏。电压表显示体效应管的工作电压,常态时为12.0 0.5V,教学工作下可通过“电压调节钮”来调节。电流表显示体效应管的工作电流,正常情况小于500毫安。 2.测量线探针的调谐: 我们使用的是不调谐的探头,所以在使用中不必调谐,只是通过探头座锁紧螺钉可以将不调谐探头活动2mm。 3.用波长计测频率: (1)在测量线终端接上全匹配负载。 (2)仔细微旋波长计的千分尺,边旋边观测指示器读数。由于波长计的q值非常 高,谐振曲线非常尖锐,千分尺上0.01mm的变化都可能导致失谐与谐振两种状态之间切换,因此,一定慢慢地仔细微旋千分尺。记下指示器读数为最小时(注意:如果检流指示器出现反向指示,按下其底部的按钮,读数即可)的千分尺读数并使波长计失谐。 (3)由读得的千分尺刻度可在该波长计的波长表频率刻度对照表上读得信号源的工作频率。 4.交叉读数法测量波导波长: (1)检查系统连接的平稳,工作方式选择为方波调制,使信号源工作于最佳状态。 (2)用直读式频率计测量信号频率,并配合信号源上的频率调谐旋钮调整信号源的工作频率,使信号源的工作频率为9370MHz。

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场及电磁波实验报告

电磁场与电磁波 实验报告 实验名称:有限差分法解电场边值问题 实验日期:2012年12月8日 姓名:赵文强 学号:100240333 XX工业大学(威海)

问题陈述 如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。 参数说明:a=b=10m, U=100v 实验要求 1)使用分离变量法求解解析解; 2)使用简单迭代发求解,设-10 =100.1,1 x y ε?=?= ,两种情况分别求解数值解; 3)使用超松弛迭代法求解,设-10 =100.1 x y ε?=?= ,确定?(松弛因子)。 求解过程 一、分离变量法求解 因为矩形导体槽在z方向为无限长,所以槽内电位函数满足直 角坐标系中的二维拉普拉斯方程。 22 22 (0,)0,(,)0(0) (,0)0,(,)(0) x y y a y y b x x b U x a ?? ?? ?? ?? += ?? ==≤≤ ==≤≤

根据边界条件可以确定解的形式: 1ππ(,)sin()sinh()n n n x n y x y A a a ?∞ ='=∑ 利用边界条件0(,)x b U ?=求解系数。 01 ππsin( )sinh()n n n x n b A U a a ∞ ='=∑ 01 πsin( )n n n x U f a ∞ ==∑ 0 0041,3,5,2πsin()d π 2,4,6,a n U n n x f U x n a a n ?=? ==??=? ? 011 πππsin()sinh()sin()n n n n n x n b n x A U f a a a ∞ ∞ =='==∑∑ 041,3,5,πsinh(π/) 'πsinh()02,4,6,n n U n f n n b a A n b n a ? =? ==??= ? 01,3,5, 4ππ(,)sin()sinh()πsinh(π/)n U n x n y x y n n b a a a ?∞ == ∑ 简单迭代法求解 二、 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上?的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场与电磁波实验讲义

电磁场与电磁波实验讲义(试用) 实验一、电磁波的反射特性研究 一、实验目的 1、研究电磁波在良导体表面的反射; 2、熟悉微波分光仪DH962B的使用方法。 二、实验原理 如上图所示, 射, 我们用一块金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角(如上图所示,θr =θi)。 三、实验装置

(1) 四、实验内容和步骤 1、熟悉微波分光仪的结构、仪器的连接和系统调整: 在微波分光仪的底座上有两个支臂,其中一个为固定支臂,另一 个支臂则可绕中心轴旋转(带固定螺钉),发射喇叭天线和信号源安装在固定支臂上,接收喇叭天线和微安表安装在旋转支臂上。微波分光仪底座中央有一带角度刻度线的园形工作平台。仪器连接时,两喇叭天线的口面应正对,它们各自的轴线应在同一条直线上,两个臂的位置指针应分别指向工作平台的900刻度处。按信号源的操作规程打开电源,调节衰减器使微安表有一适当的读数(满量程的三分之二及以上,这样可以减小读数误差对测试结果的影响)。将带支座的金属反射

板放在园形工作平台上(注意:金属反射板的平面应与支座下面的小园盘上的某一对刻度线一致),在将带支座的金属反射板放在园形工 (2) 作平台上时,应注意两点:(1)使小园盘的刻度线(与金属板平面一致的一对刻度线)与工作平台上相应900刻度的一对刻度线一致,这时工作平台上的00刻度线就与金属反射板的法线方向一致;(2)利用工作平台上的固定螺钉将金属反射板的支座固定。 2、测量入射角和反射角: 转动工作平台,使固定臂的指针指在某一角度处,该角度数就是入射角,然后转动旋转臂使微安表的读数达到最大,此时旋转臂上的指针所指的刻度就是反射角。如果此时微安表的指示太大或太小,可调节信号源的衰减器,使微安表的指示有一适当值。做此项实验时,入射角最好取300至650之间,因为入射角太大接收喇叭天线有可能直接接收到入射波。按下表所示入射角,分别测出它们所对应的反射角。 注意:实验时应注意周围环境对测试结果的影响;实验装置附近不可有运动物体,甚至测量者头部的移动都有可能影响测量结果,所以测量者应坐在接收天线后面读数。

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

北邮电磁场与电磁波演示实验

频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行:

GSM900下行:

CDMA下行: 3G下行:

7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请 分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G 电磁炉:20KHz—30KHz 蓝牙:2.4G 网络参量测量演示实验 1矢量网络分析仪所测频段:300KHz—3GHz 2端口最大射频信号: 10DBM 3矢量网络分析仪为何要校准: 首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。 4默认校准和用户校准的区别: 默认校准通过网络分析仪的套包的一系列校准标准来完成,对系统误差进行校准;用户校准时校准标准由用户制定,由用户定义的标准来完成,用于对参考面等进行精确校准。 5使用矢量网络分析仪的注意事项: 1、检查电源: 分析仪加电前,必须确认供电电源插座的保护地线已经可靠接地; 2、供电电源要求: 为防止或减少由于多台设备通过电源产生的相互干扰,特别是大功率设备产生的尖峰脉冲干扰可能造成分析仪硬件的毁坏,最好用220V交流稳压电源为分析仪供电; 3、电源线的选择: 使用随机携带的电源线,更换电源线时,最好使用同类型的电源线;

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 204q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 1221014n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为 121014n i n i i q r ????πε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

北邮电磁场与电磁波实验报告

信息与通信工程学院 电磁场与电磁波实验报告 题目:校园信号场强特性的研究 姓名班级学号序号薛钦予2011210496 201121049621

一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2.研究校园内各种不同环境下阴影衰落的分布规律; 3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验原理 1、电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。 2、尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗表示为: ()[]()() =+(式1) 010log/0 PL d dB PL d n d d 即平均接收功率为: ()[][]()()()[]() =--=- Pr010log/0Pr010log/0 d dBm Pt dBm PL d n d d d dBm n d d (式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率10ndB /10 倍程的直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。

电磁场与电磁波实验指导书要点

电磁场电磁波实验 实验一电磁感应定律的验证 一、实验目的 1、通过电磁感应装置的设计,了解麦克斯韦电磁感应定律的内容 2、了解半波天线感应器的原理及设计方法 3、天线长短与电磁波波长的接收匹配关系 二、预习要求 1、麦克斯韦电磁理论的内容 2、什么是电偶极子? 3、了解线天线基本结构及其特性 三、实验仪器 HD-CB-IV电磁场电磁波数字智能实训平台:1套 电磁波传输电缆:1套 平板极化天线:1副 半波振子天线:1副 感应灯泡:1个 四、实验原理 麦克斯韦电磁理论经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。下面我们通过制作感应天线体,来验证电磁场的存在。 如图示:电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。 半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。 半波振子因其一臂长度为λ /4 ,全长为半波长而得名。其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L= λ /4 )的远区场强有以下关系式: │ E │ =[60 Im cos( π cos θ /2)]/R 。sin θ=[60 Im/R 。] │ f( θ ) │ 式中,f( θ ) 为方向函数。对称振子归一化方向函数为│ F( θ ) │ = │ f( θ ) │ / fmax=|cos( π cos θ /2)/sin θ | 其中fmax 是f( θ ) 的最大值。由上式可画出半波振子的方向图如下: 半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。在E 面的方向图为8 字形,最大辐射方向为θ = π /2 ,且只要一臂长度不超过0.625 λ,辐射的最大值始终在θ = π /2 方向上;若继续增大L ,辐射的最大方向将偏离θ = π /2 方向。 五、实验步骤 (一)测量电磁波发射频率 1、用N型电缆直接将“输出口1”连接至“功率频率检测口”。 2、在液晶界面上同时显示出发射功率及频率。 3、已知电磁波发射源的频率F,求得波长:λ=F V光,比如,电磁波发射源频率为900MHz,

实验二电磁波在介质中的传播规律

电磁场与微波技术实验报告 (二) 课程实验:电磁波在介质中传播规律 班级: 姓名: 指导老师: 实验日期:

电磁波在介质中的传播规律 一、实验目的: 1、用MATLAB 程序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、学会使用Matlab 进行数值计算,并绘出相应的图形,运用MATLAB 对其进行可视化处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同性均匀线性的,即(0,0==j ρ)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子()t j ωex p 相乘,这里ω是角频率。在这种约定下,麦克斯韦方程组便可表示成[]1 ΗE ωμj -=?? (1) ΕΗωεj =?? (2) 0=??Ε (3) 0=??Η (4) 对方程(1)两边同取旋度,并将式(2)代入便得 ΕΕεμω2=???? (5) 利用如下矢量拉普拉斯算子定义以及方程(3) ()ΕΕΕ????-???=?2 (6) 方程(5)式变为[]2

022=+?ΕΕk (7) μεω=k (8) 类似地,可得Β所满足的方程为 022=+?ΒΒk (9) 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对单色平面波的研究具有重要的理论和实际意义。假定波动方程(7)和(8)式的单色平面波的复式量解为[]3 ()[]r k ΕΕ?-=t j ωex p 0 (10) ()[]r k ΒΒ?-=t j ωex p 0 (11) 式中0Ε,0Β分别为Ε,Β振幅,ω为圆频率,k 为波矢量(即电磁波的传播方向)。 ()[]t kx j ω-ex p 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等相位的传播速度。很显然等相位面由下面方程决定[]1 const kr t =-ω (12) 方程(12)两边对时间t 求导可得 k dt dr v ω == (13) 由式(8)可知 εμ 1 = v (14) 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得[]3

北邮电磁场与电磁波演示试验

. 频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行: '. .

GSM900下行: '. . CDMA下行:

3G下行: '. . 7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G

相关文档
相关文档 最新文档