文档库 最新最全的文档下载
当前位置:文档库 › 类比法在物理中的运用

类比法在物理中的运用

类比法在物理中的运用
类比法在物理中的运用

类比法在物理中的运用 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

类比法在物理中的运用

类比法在物理中的运用

【内容摘要】类比法是研究和学习物理的一种极其重要的方法。它能启发和开拓我们的思维,能给我们提供解决问题的线索,是提出科学假设和探索新理论的重要途径,对学生学习物理来说也发挥着巨大的作用。恰当地运用类比,物理课堂会更有气氛,学生的学习的兴趣会很浓,更重要的是学生对所学的知识不容易遗忘。

【关键词】类比抽象具体形象

要想上好物理课,使学生比较容易接受教学内容,物理教师除了要有渊博的知识外,还需要许多教学技能和技巧,其中,运用类比方法有时候对于解决一些教学难点有很大的作用。类比法是研究和学习物理的一种极其重要的方法。它能启发和开拓我们的思维,能给我们提供解决问题的线索,是提出科学假设和探索新理论的重要途径,它对物理学的发展建立了不可磨灭的功劳,对学生学习物理来说也发挥着巨大的作用。正如前苏联学者瓦赫罗夫所说:“类比像闪电一样,可以照亮学生所学学科的黑暗角落。”

所谓类比,实际上是一种从特殊到特殊或从一般到一般的推理。它根据两个(或两类)对象之间在某些方面的相同或相似而推出它们在其他方面也可能相同或相似的一种逻辑思维。

一、类比在物理教学中的作用

1、培养学生的思维能力

物理类比思维是物理思维的一种重要形式。在科学探索中,类比思维的价值为世界上许多科学家所称道,开普勒说:“我重视类比胜于任何别的东西,它是我最可信赖的老师,它能揭示自然界的秘密。”康德曾说:“每当理智缺乏可靠论证的思路时,类比这个方法往往能指引我们前进。”运用物理类比思维可以把陌生的对象和熟悉的对象进行对比,把未知的东西和已知的东西相对比。这样可使学生能动地认识、理解并掌握知识。让学生在学习知识的同时,提高获取知识的能力,掌握科学的思维方法,发展智力。在这样的学习过程中,学生不是接受现成的知识,而是经过自己的探索之法获得知识,这样得到的知识更有效、更牢固、理解的也更透彻。

2、化抽象为具体

中学生的思维方法是以形象思维为主,抽象思维相对比较差。虽然物理是以实验为基础,给人的感觉好象是比较实在,但是,物理的理论(概念、定义、定律、规律等)是对实验、事物实体等经过抽象化而形成的,所以有些理论颇费理解。学生对他们缺乏必要的感性认识基础,掌握它们具有一定的困难。而运用类比方法教学能够给这些抽象的事物赋予间接的直观形象,把研究对象具体化,帮助学生有效地把握物理知识、发展智力、培养能力。

二、恰当运用类比方法进行教学

物理世界中的物理现象和物理过程形形色色,事物属性及其相互关系也多种多样,而类比的方法也是有好几种。在教学中,我对有关的知识点用不同的类比方法进行教学,力求让学生容易理解和接受知识。

1、运用简单共存类比

简单共存类比是以简单关系为推理中介的类比思维。这种类比最简单,在引入新课时运用得最多,学生最容易接受。在初中物理教材中,引入磁场概念时便运用了简单共存的类比思维。我在教学中,充分发挥教材的这一方法,结合学生的实际情况进行教学。首先,把电场与磁场有关的相似属性列出:如电荷与电荷之间有相互作用力,磁极与磁极之间也有同名磁极相斥、异名磁极相吸的现象;这样由电荷周围存在电场(高中会学的),可以类比推出磁极周围也应存在磁场;由电荷间作用力不能直接发生,需要电场传递,可以类比推出磁极间相互作用力也不能直接发生,传递磁极间的相互作用也要靠一种场——磁场;由电场是一种物质,可推知磁场也是一种物质。

2、运用因果类比

因果类比是根据相类比的两个对象各自属性之间可能具有相同的因果关系而进行的类比推理。

在“电流的形成”的教学中,我用“水流的形成”相类比,推出“电流的形成”。我先说一句俗语的上句:“人往高处走……”学生就很自然地接着说:“水往低处流。”我马上引导学生思考:怎样才能形成水流呢?经过学生的思考和讨论,得出:水流的形成是由于水有高度差(水往低处流)。我笑着说:“别忘了还应该要有水!”于是学生得出结论:形成水流的条件是有水和高度差。接着,我用水流跟电流类比,推出电流形成的条件,过程如下:教师:水流可以说是水的定向移动,而电流是电荷的定向移动,它们之间很类似。形成水流的第一个条件是要有水,电流呢?

学生:要有电荷。(此处运用了"简单共存类比")

教师:确切地说,是要有自由电荷。那么,自由电荷在什么情况下会定向运动呢?

学生:受到力。

教师:对!自由电荷在什么地方会受到力呢?

学生:电压。

教师:在电路中,电池的两极间有电压。当导体的两端与电池的两极接通时,它的两端就有了电压。这样,导体中的自由电荷在电压的作用下定向移动,形成了电流。所以,跟水流的形成相类比,形成电流的另一个条件是什么?

学生:电路要闭合。

这样,通过水流的形成跟电流的形成相类比,抓住主要的特征,由此及彼,由因到果,类推出电流形成的条件,学生既容易理解,又不容易遗忘。

3、运用对称类比

对称类比是根据两个对象属性之间的对称关系进行的类比。客观世界中也确实存在着许多的对称关系(例如:物体形状或几何形体的对称性、正负电荷与南北磁极的对称性等),这也是进行对称类比的基础。

在电磁感应的教学中,我列出电与磁的对应的特征:正负电荷与磁南北磁极相对应;电荷的相互作用与磁极的相互作用相对应;电场与磁场相对应。接着提出一个问题:电流有磁效应,也就是说“电”可以生“磁”,那么,“磁”可不可以生“电”呢?根据电跟磁的对称性,学生很自然地想到:“磁”应该也可以生“电”!

接着,我向学生介绍了科学家法拉第的想法和做法,一步一步地引导学生去总结规律。与此相关的还有:从电动机与发电机的对称去理解和掌握左手定则和右手定则。

4、协变类比

协变类比也称数学相似类比,它根据两个对象可能具有属性之间的某种协变关系(定量的函数关系)进行的类比推理。也就是说:两个对象有若干属性相同或相似,并且在两者数学方程式相同或相似的情况下,推论在其他方面的属性也相同或相似。

例如:压强的表达式P=F/S的形式,密度的表达式p=m/v,速度的表达式V=s/t可以类比,这种类比常常用在各种物理公式、定理的联系和区别。

三、运用类比法值得注意的几个问题

1.、正确对待类比推理的或然性

任何比喻都是蹩脚的。类比方法跟比喻方法很类似,也存在着不足的地方:由类比所得出的结论都具有一定的或然性,有时会出现错误。从两个对象之间在某些方面的相同或相似,并不一定得出它们在其他属性方面也必然相同或相似的结论。我运用类比方法时都注意到这个问题。

2、通俗不俗,科学严谨

选做类比的材料应当通俗,尽可能利用学生已有的知识,熟知的事物。但是,类比的材料不能太庸俗了,要和思想教育协调,取材要适合国情。例如,有的国外教材,以赌场里赌徒们的输赢类比机械能守衡,虽然十分形象,也很贴切。但是这个类比对我国来说是低级庸俗的,不宜采用。

通俗易懂与科学严谨是辨证统一的关系。通俗而不易懂,易懂而不严谨就失去了科学性。这里指得是相对某一层次、学生的某一认识阶段的科学性,这里说的严谨,其中包括类比格式的严谨,要求相类比的两个事物间相似点一一对应,而且要对应得当,类比推理才有说服力。

3、防止机械类比

应用类比的首要问题就是研究两类事物的可比性,即使是两个可以进行类比的事物,也不可能所有属性处处相似,点点对应。它们之所以是两个事物,必存在差异性。在进行类比时,有时要告诉学生两事物间哪些方面可比,哪些

方面不可比,避免机械类比的错误。对本身就比较直观,与生活联系较紧的物理概念与物理现象等,没有必要非用类比,用了反倒显啰嗦,冲淡主题,使教学重点得不到突出。

4、要有针对性

教学中类比要用得好、用得巧,必须具有针对性。即:(1)针对不同的学生选用不同的类比材料。例如,教师比喻说:二极管的单向导电性就象自选商厂入口处的门,许进不许出。城市的学生可能明白,可农村的学生却不知道自选商场是怎么回事。(2)要针对物理教学内容和目的。如果教学内容比较抽象,呆板。适于运用一些较轻松活泼的类比。如果教学内容具有较严密的逻辑性,与前面的知识有些必然的联系,运用类比比较合适;在进行单元或总复习时运用系统类比将会收到较好的效果。(3)要针对课堂气氛。在课堂教学中,如果学生的注意力都很集中.他们对教师所授知识能顺利接受,此时用不用无关紧要。用多了,用得不当,反而会产生负作用,影响学习效果。如果教师发现课堂上多数学生精神疲惫,就应当采用一些风趣幽默的类比来活跃气氛,振奋学生的精神。

我运用类比方法主要是为了教给学生一种物理思维的方法和接受、理解知识的一种方式。实践证明,恰当地运用类比,物理课堂会更有气氛,学生的学习的兴趣会很浓,更重要的是学生对所学的知识不容易遗忘,而且学会“举一反三”、“触类旁通”。

反证法在数学解题中的应用

反证法在数学解题中的应用 我们在解决数学问题时,一般是从正面入手,这就是所谓的正向思维,但往往也会遇到从正面入手困难,或出现一些逻辑上的困境的情形,这时就要从辩证思维的观点出发,运用逆向思维克服思维定势的消极面,从习惯思路的反方向去分析问题,运用反证法解决问题。 一、反证法的逻辑基础 证明命题“A B”时如果用这种方法:假设A∧B为真,在A且B的条件下,合乎逻辑地推出一个矛盾的结果(不论是与A矛盾还是与其他已知正确的结论矛盾或自相矛盾),从而B成立(即A B成立),这种方法就是反证法。 二、反证法的解题步骤 第一步审题,弄清命题的前提和结论; 第二步否定原命题,由假设条件及原命题构成推理的基础; 第三步由假设出发,根据公理、定义、定理、公式及命题的条件,正确逻辑推理,导出逻辑矛盾; 第四步肯定原命题的正确性。 三、什么情况下考虑应用反证法 1待证命题的结论是唯一存在性命题 例1设方程x=p sin x+a有实根(0<p<1,a是实数),求证实根唯一。 证明:假设方程存在两个不同实根x1,x2,则有 x1=p sin x1+a,x2=p sin x2+a x1-x2=p sin x1-sin x2=2p cos x1+x22sin x1-x22 由于cos x1+x22│≤1,从而有│x1-x2│≤2p│sin x1-x22│又sin x1-x22≤x1-x22,故x1-x2≤p x1-x2,但x1≠x2,于是p≥1,与0<p<1矛盾。所以方程若有实根,则根唯一。 2采取直接证法,无适宜的定理作为根据,甚至无法证明。 例2已知A、B、C、D是空间的四点,ABGN CD是导向直线,求证AC和BD、AD和BC也都是异面直线。 分析:证AC和BD是异面直线,即证明AC和BD不在同一平面内,考虑反证法。 证明:假定AC和BD不是异面直线,那么AC和BD在同一平面内,因此A、B、C、D不是异面直线,这与已知条件矛盾。所以AC和BD是异面直线。 3待证命理的结论是以“至少存在”的形式出现的,“至少存在”的反面是“必定不存在”,所以只要证明“必定不存在”不成立即可。 例3设p1p2=2(q1+q2)求证方程x2+p1x+q1=ox2+p2x+q2=0中至少有一个方程有实根。 证明:假设两方程都无实根,则 p12-4q1<0,p22-4q2<0,两式相加,有p21+p22<4(q1+q2)(1) 而p1p2=2(q1+q2)代入(1)得p21+p22<2p1p2,这与p21+p22≥2p1p2矛盾。 故假设不成立,原命题正确。 4待正命题含有涉及各种“无限形式”的结论,由于中学没有直接证明“无限”的手段。而结论的反面却是“有限”,故常常借助于反证法。 例4证明实数lg3是无理数。 证明:假设lg3是有理数。则它可以表示成lg3=mn(m,n是互质的正整数,由对数的定义,得10=3″)。但10是偶数,而3″是奇数,矛盾。因此实数lg3是无理数。

演讲中常用的四种类比方式

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 演讲中常用的四种类比方式 类比,形象生动,说理有力,选择和运用好类比,无疑对拓展演讲艺术的空间有重要意义。观察许多演讲实例,可以看到类比物的选择与运用大致有以下几种形式: 一、选已得到广泛认同的类比物作常规类比 常规类比是指所选的类比物已经得到人们广泛认同的一种类比。例:在一次地方“春蕾工程”奖金筹措的动员会上,一个演讲者这样说:我们大家都来看看摆在讲台上的这一盆鲜花,它颜色鲜艳、形态美丽,还发出诱人的香味,它的美丽和芳香是品种优良、土壤肥沃、阳光雨露滋润、花匠辛勤劳动共同造就的。虽然它们是优良品种,但如果一旦失去土壤、阳光雨露和人们的精心呵护,它们会有怎样的命运呢?它们将没有机会绽放,它们将过早地枯萎,它们将无以给这个世界美丽与芬芳。现在在我们生活的这个地区,有一些学龄女童,她们聪明、美丽、渴望读书,她们就像这盆花一样可爱,但是贫困使她们失学。她们就像失去肥沃土壤、阳光雨露的花儿一样,不能正常地生长,她们聪慧的大脑不能用于学习,她们不能学到谋生的技能和建设国家的知识……让我们敞开爱心,为她们作一点捐赠吧!我们的捐赠将使她们获得受教育的机会,获得正常生长的环境! 以上这段演讲是选择在某些方面已经得到广泛认可的类比物来进行类比推理的。选择和运用这种类比物符合人们的思维习惯,且类比 1 / 10

物和演讲内容、主题十分协调,听众也很容易接受。这种类比方式是演讲中使用频率较高,运用较为广泛,演讲者易于学习的类比方式。但是,选择和运用这种类型的类比物,往往难以给人耳目一新的感觉,难以让人深思,难以产生较为持久的影响力,有时甚至会使听众产生老生常谈的感觉。 二、选不具有广泛意义的类比物作特定而神似的类比 特定而神似的类比是演讲者用自己长期使用并对之产生感情的事物作类比物的一种类比。由于这种类比物不具有广泛意义,所以它是临时的选择和运用。这种类比物虽然不具有广泛意义和形似意义,但它是演讲者深切感怀的、具有特定意义和神似意义的类比。例:一个单位的领导,在新年初进行了一次演讲,向在本单位兢兢业业工作多年的同志表示诚挚的敬意。他选择了自己使用多年的一支钢笔做类比物。他说:我多年使用的这支笔是世界著名品牌的笔。它造型优美、性能良好、坚固耐用、品质超群。它书写着我人生和事业的答卷。它是我人生和事业的助手,它的价值是无法用语言来表达、用数据来统计的。各位同仁们,多年来我和你们共事,和你们朝夕相处,和你们共患难共欢乐。我深深体会到你们和我的这支笔一样,你们品质超群、你们写下了中国建筑史上充满艰辛和辉煌的篇章,你们也是世界的著名品牌。多年来你们表现出的职业道德水平无与伦比,你们在各自的岗位上创建了团结和奋进的风气,你们过硬的技术创造出一个个建筑史上的奇迹。是你们多年来出色的工作,使我们公司誉满全球,居同行业前茅。你们贡献的最大价值是你们树立的榜样。你们以实实在在

初中物理教学中类比法的妙用

初中物理教学中的类比法 贺疃中学杨秀双 类比法是指在新事物同已知事物间具有类似方面作比较。类比法是人们所熟知几种逻辑推理中,最富有创造性的。科学史上很多重大发现、发明,往往发端于类比,类比被誉为科学活动中的引路人。因此,作为一种科学方法,类比法在物理教学中有着广泛的应用。通过类比,在引入教学课题,学习掌握新知识,联系复习旧知识等,都能收到良好的效果。 一、类比法在课题引入中的应用 现在的物理教学理念强调“从生活走进物理,从物理走向社会”。从生活中的熟悉事例引入物理课题,更能激发学生的兴趣,让学生接受和理解更轻松。例如,从吃包子比赛到电功率教学:在人教版八年级物理第八章电功率教学中,我遇到一个难题:由于学生没有学习功和能的知识,直接学习电功率知识,在理解上有一定的困难,往往把用电器做功的多少与做功的快慢搞混淆。在以前的教学中,我总是要花很多的时间给学生讲解功和能的概念,然后才学习电功率知识,可还是有很多学生听的糊里糊涂的。在今年教学这一章知识前,我上网查了很多资料,并且收集了很多优秀课例,有一位张老师的课例给我很大的启发:他在教学电功率知识前,举了一个吃包子比赛的例子,引起了学生的极大兴趣。我在他的基础上结合学生实际改进后用到教学中,效果非常好。简述如下: 我们今天来个比赛:吃包子比赛。(故意夸张一些,引起学生兴趣) 甲同学:2秒钟吃了12个包子, 乙同学:3秒钟吃了15个包子, 问:(1)谁吃的多啊? 同学们的兴趣很快被调动起来,纷纷抢答:是乙; 问:(2)谁吃得快啊? 同学们很快回答出来:是甲。 老师继续追问:大家怎么判断是甲同学吃的快的? 同学们很自然的说出甲一秒钟吃6个,乙一秒钟吃5个。老师在此强调:是“一秒钟”吃的包子数,不仅和吃的多少有关还和吃的时间有关。 接下来老师巧妙的引入课题:在古代人们没有机器,工作靠人力,人做功就要不断补充食物,吃包子;后来人类发明了蒸汽机,用机器做功,机器要消耗燃料;再后来到了电器时代,利用电器

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

类比法在物理教学中的应用论文:类比法在物理教学中的应用

类比法在物理教学中的应用论文:类比法在物理教学中的应 用 类比法是逻辑学中的一种推理方法(归纳逻辑),所谓类比就是利用联想思维,根据两事物在某些属性上的相似而推断出它们在某些属性上也可能相似的结论。在物理教学过程中,我们常常发现某些不同问题在一定范围内具有形式上的相似性,其中包括数学表达式的相似性、物理模型的相似性等等。类比就是在于发现和探索某些相似性,从而利用已知系统的物理规律去寻找未知系统的物理规律。但类比的本质是猜测或推测,类比不能代替论证。类比可以为新内容的阐述和探索提供依托和支持,可以使横向的问题建立普遍的关系。类比法在物理教学中,对引进物理概念、建立物理模型、培养创造性思维等方面具有重要的作用。在特定的教学中运用类比法可以达到事半功倍的作用。 一、应用类比方法引进物理新概念、建立物理模型 对于一些学生比较陌生、抽象的物理概念,如果用熟悉的、形象化的事物去类比,往往会帮助学生加速认识过程。 例1、电流的形成与水流的形成相类比,推出“电流的形成”。一句俗语的上句:“人往高处走……”我们就很自然地接着说:“水往低处流。”经过思考很容易得出:水流的形成是由于水有高度差(水往低处流)。于是得出结论:形成水流的条件是有水和高度差。接着,可用电流跟水流类

比,推出电流形成的条件:水流可以说是水的定向移动,而电流是电荷的定向移动,它们之间很类似。形成水流的第一个条件是要有水,电流呢?要有电荷。(此处运用了"简单共存类比")确切地说,是要有自由电荷。那么,自由电荷在什么情况下会定向运动呢?当然是受到电场力。在电路中,电池的两极间有电压,即有电势差。当导体的两端与电池的两极接通时,它的两端就有了电压,导体中就有了电场。这样,导体中的自由电荷在电场力的作用下定向移动,形成了电流。所以,跟水流的形成相类比,形成电流的另一个条件是有电势差(电压)。这样,通过水流的形成跟电流的形成相类比,抓住主要的特征,由此及彼,由因到果,类推出电流形成的条件,既容易理解,又不容易遗忘。 例2:电场和磁场相类比 首先把电场与磁场有关的相似属性列出:如电荷与电荷之间有相互作用力,磁极与磁极之间也有同名磁极相斥、异名磁极相吸的现象;这样由电荷周围存在电场,可以类比推出磁极周围也应存在磁场;由电荷间作用力不能直接发生,需要电场传递,可以类比推出磁极间相互作用力也不能直接发生,传递磁极间的相互作用也要靠一种场——磁场;由电场是一种物质,可推知磁场也是一种物质。其次,应用类比法引进“磁感应强度”:在电场一章我们知道电场对放入其中的电荷有力的作用,为了描述这一特性(电场强弱),利用

类比的方法解题

如何用类比的方法解题 一、类比意义与含义 演绎推理——一般到特殊推理 归纳推理——特殊到一般推理 类比推理——特殊到特殊推理 所谓类比是根据两个对象之间的相似性,把信息从一个对象转移到另一个对象。类比的实质就是信息从模型向原型的转移,其步骤可由下列框图表示: 类比是一种数学思想方法,将生疏的问题和熟知的问题进行比较,对生疏的问题作出猜想,并由此寻求问题的解决途径或结论。 数学家乔治·皮利亚相关名言: ——“类比是一个伟大的引路人”. —— “在你找到第一个蘑菇时,千万不要停下来,往前再走,继续观察,就会发现立体几何与平面几何的类比 —— “对平面几何和立体几何作类比,是提出新问题和获得新发现取之不竭的源泉”。 — ——“如果把类比猜想的结论的似真性当作肯定性,那将是愚蠢的。但是,忽视这种似真的猜想更为愚蠢。” 名人名言(Kepler ):“我珍惜类比胜于任何别的东西,它是我最信赖的老师,它能揭示自然界的秘密,在几何中它应该是最不容忽视的 。” 二、平面几何与立体几何类比 1、如何进行类比 为了对二者进行类比,可以在它们的基本元素之间建立如下的类比关系:(但要注意的是这些类比关系又不是唯一的)

2、类比构造命题 (1)平面上定理——直线平行的传递性:平行于同一条直线的两直线平行。 , 在空间中成立。 (2)平面上定理——等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等。 在空间中成立。 (3)平面图形的研究需要建立平面直角坐标系; 立体图形是建立在三维空间即空间直角坐标系上研究的。 (4)平面上有公共端点的两条射线形成的图形叫平面角; 空间里一条直线和由这条直线出发的两个半平面组成的图形叫二面角。 而二面角的度数计算需转化为平面角来完成。 (5)平面上定理——平面中,不在同一条直线上的三点可确定一个圆,这是圆的确定性定理; 在空间中,不在同一个平面上的四点可确定一个球,这是球的确定性定理。 ~ (6)平面上定理——平面中,过直线外一点有且只有一条直线与已知直线平行; 空间中,过平面外一点有且只有一个平面与已知平面平行。 3、类比拓展结论 (1)平面中,周长相等的正三角形、正方形、圆,则有S 三角形< S 正方体 < S 圆 空间中,表面积相等的正四面体、正方体、球,则有V 正四面体< V 正方体 < V 球 (2)平面中,面积相等的正三角形、正方形、圆,则C 三角形> C 正方体 >C 圆 空间中,体积相等的正四面体、正方体、球,则S 正四面体> S 正方体 > S 球 。 (3)平面中的勾股定理也可推广到空间:

初中物理教学中的衔接艺术

初中物理教学中的衔接艺术 发表时间:2011-11-07T17:00:29.790Z 来源:《学习方法报·理化教研周刊》2011年第9期供稿作者:李红霞 [导读] 对于初中学生而言,物理是一门相对较难的学科,所以在物理课堂教学过程中存在着各种各样的实效性困难。 河南省虞城县家寨镇一中李红霞 对于初中学生而言,物理是一门相对较难的学科,所以在物理课堂教学过程中存在着各种各样的实效性困难。目前影响课堂教学实效性的最大困难是教师的教学思路与学生的学习欲望存在着很大的脱节,从而出现教师与学生步调不一致的现状。因此在课堂教学的各个环节中,衔接艺术非常重要。那么如何利用衔接艺术呢,我认为应从以下四方面入手: 1. 课堂教学新课的引入 课堂教学是学生接受知识最重要的环节。因此在课堂教学中,我们应因地制宜地结合教材实际内容和特点以及已学的物理知识点做好课堂教学新课的引入,从而激发学生学习物理的兴趣。我们在引入新课时可以用生动有趣的故事引入,也可以通过有趣的物理小实验等引入。例如,在讲“摩擦力”内容时,我们可以让一位身强力壮的男学生穿上滑冰鞋和一位柔弱的女学生进行拔河比赛,通过意想不到的实验效果,从而调动学生的学习兴趣,并顺其自然的引入摩擦力的概念。在讲“浮力”内容时,我们可以利用“死海不死”的故事引入新课题等,来激发学生的学习兴趣。 2. 从一个知识点到另一个知识点的过渡 课堂教学就像一部电视剧,每个知识点就是故事中的一个角色,每个角色的出场都要顺理成章。因此我们在讲完一个知识点后,必须通过合理的过渡性语言,过渡到下一个知识点。例如,在学习“功”的知识后,我们可以引发学生思考:使用简单机械可以省力,那么有没有机械在省力的同时也省距离呢?如果有的话,使用这类机械就可以两全其美,就可以省功了。从而自然有趣的引入到功的原理的知识点的探究。 3. 知识点和练习题的衔接 常言道:“文科要多动口,理科要多动手”。学习物理也要进行适当的练习,练习恰当可以使学生将所学的知识点掌握的更牢固、更透彻。我们要做好讲完一个知识点、一个公式后,立即穿插两个试题进行及时的练习巩固;更要注意讲完一节课后做好相应的作业布置和充分的习题练习。只有这样做,才能使学生将所学的知识进行灵活运用。 4. 物理知识与生活实际的衔接 新课标告诉我们“物理来源于生活,来源于社会”,我们也要让物理服务于生活,回归于社会。我们要教育学生:要善于利用生活知识来思考物理现象,也要利用生活用品多做物理小实验,做到勤于动手,善于动脑。更要学会利用物理知识去解释生活现象,去解决生活中的一些问题,做到勤于动脑,学以致用。 总之,只要我们注意物理教学中衔接的艺术,就会使我们的物理课堂变得生动有趣,易于学生理解接受。让学生喜欢物理,对物理充满浓厚的兴趣,从而轻松自如的学好物理。

高中物理:极值法知识点

高中物理:极值法知识点 数学的极值问题,主要是解决数学函数关系及其定义域的问题,这是由数学条件所制约的。 但是物理极值与数学极值有明显的区别。物理极值,实质是针对某一物理现象的动态范围、发展变化趋势及其极限,这是由物理条件所制约的。物理极值,经常表现为物理约束条件下的最大或最小值,这与数学极值有本质的区别。 就思维表现看,求极值过程是归纳和演绎综合运用过程。在错综复杂的变化条件中,要归纳出一般的状态表现,又要在此基础上,经演绎推理,寻求特殊的极端模型。这也是建立理想化模型,也要理想化。 显然,解极值过程是综合运用几种常规的思维方法的高层次的思维过程。另一方面,解极值过程,需要借助一些初等数学手段,靠扎实的数学基础。从所应用的数学手段来看,求极值可与为下列几种方法: (一)利用分式的性质求极值 [例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30o角,如图示。使A作匀速直线运动。试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动? 解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30o=μ(G+Fsin30o), 得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30o-μcos30o=0时得μ=tg30o=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。

(二)利用一元二次方程求根公式求极值 有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。它的根就可能是要求的极值。这种方法应用是很普遍的。 (三)利用一元二次方程判别式△=b2-4ac≥O求极值 [例2] 一个质量为M的圆环,用细线悬挂着。将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。今将两小珠从环的顶端由静止开始释放。证明,当m> M时,圆环能升起。 证明:取小球为研究对象,受力如图(a)。由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ (1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3) 将(1)代入(3)式中,其中N’为(a)图中N的反作用力。有 2(2mg-3mgcosθ)cosθ=Mg即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。cosθ为实数,则△≥0,即(4m)2-4

高中数学方法解之反证法

反证法 从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明的证明方法叫反证法。它是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证

明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。 例1.[05.北京]设()f x 是定义在[0,1]上的函数,若存在'(0,1),x ∈使得()f x 在[0,']x 上单调递增,在[',1]x 上单调递减,则称()f x 为[0,1]上的单峰函数,'x 为峰点,包含峰点的区间为含峰区间。 对任意的[0,1]上单峰函数()f x ,下面研究缩短其含峰区间长度的方法。求证:对任意的1212,(0,1),,x x x x ∈<若12()()f x f x ≥,则2(0,)x 为含

类比法在物理学研究中的重要性

类比法在物理学研究中的重要性 C128 摘要:类比法是通过比较两个或两类对象之间在某些方面相似或相同,进而把其中某一对象的有关知识、规律或结论推移到另一对象中去的一种研究方法。类比法在科学研究领域及物理学的发展中起着重大的作用,也是科学认知、理论建立的重要方法。类比法的应用,可大大缩短我们认知自然规律的时间。在物理教学中,能帮助学生加深对物理概念和规律的理解、把握,快捷掌握新知识。同时,本文还讨论了类比法的重要性。关键词: 物理学研究类比法重要性。 “类比”是逻辑学中的一种推理形式,是通过比较两个或两个对象之间某些方面的相似或相同,将某特定对象已掌握的知识推移到新的对象上去;这样便于新知识的理解和掌握。其在物理学科学认知、理论建立过程中起着重要的作用。如:荷兰物理学家惠更斯,就是用类比的方法根据光也像声波那样能发生反射、折射,而提出光是一种波动的假说,为光的波动理论奠定了基础。法国物理学家德布罗意,用类比的方法根据光的波粒二象性而推论微观粒子也具有波动性,提出了物质波的概念。库仑从牛顿的万有引力定律中得到启发,把电荷之间的作用力类比万有引力,推论电力也像万有引力一样服从平方反比定律,从而总结出了库仑定律。实践表明,类比方法的正确使用,比单纯依靠实验数据,再通过归纳总结得出物理规律,大大节省了物理学理论创建的时间。 在国内外,许多学者都对类比法这一研究方法的应用有较深入的研究,特别是在物理学领域,主要探讨论证了类比法在物理学研究和教学中的运用;集中体现在用类比法进行教学,用类比法进行推理和对知识进行类别复习;却少见从物理学理论的建立和发展这一角度,系统详论其重要性的文章;虽然有些学者曾有所提及,但很大程度上都是一带而过。本课题将就这一方面的问题即类比法在物理学研究中的重要性进行系统的讨论。 1.类比法及其特点和分类[1] 类比是以比较为基础,通过对两对象之间的比较,找出其相似或相同点,把其中某一对象的有关知识或结论推移到另一对象中去;也就是把未知的东西和已知的东西相对比,或把陌生的对象和已经熟悉掌握的对象相对比,从而进一步获得新知识的一种方法。其特点是从特殊过渡到特殊,其结论具有或然性,需经实践检验。应用类比法必须具有

教学艺术在物理教学中的应用

教学艺术在物理教学中的应用 教学是一门艺术,如果掌握了这门艺术,就可以给学生以激情和美的享受,从而激起他们的 学习情绪。教师是课堂教学的设计者、组织者、实施者,教学效果的好坏很大程度上取决于 教师的教学手段和教学艺术。 一、学生求知欲望的激发 学物理的学生,头脑中对物理知识的了解总有些“前科学概念”,其中包含着理解和误解。如 在教学“光的折射”现象时,介绍一个实验情境:实验装置是一个玻璃槽中装水,水中插上一 个塑料泡沫片,在塑料泡沫片上粘贴一条用塑料纸剪成的鱼,让几个学生各用一根钢丝猛刺 水中的鱼。由于学生总认为眼睛所看到的鱼的位置那么准确界定一样,在这样错误的前科学 概念的影响下,自然出现了在日常生活实践中对一些自然现象凭自己的经验或直觉形成错误 的判断。教师把泡沫片从水中提起来,发现三根钢丝都落在鱼的上方,接着说:要知道这个 道理,就得学习“光的折射”现象。这样的引入,将光学原理融入日常生活中来,可操作性强,创设的简易实验把学生带入一个渔民叉鱼的情境中去,符合初中学生对新鲜事物好奇好动的 特点,因而能很快地集中学生的注意力,这就为接下来用实验研究光的折射结论创造了良好 的认知起点。只有通过教师精心设计物理情境,才能使教学内容变美、变活,深入到学生的 心灵之中,实现物理教学的情感转移。学生将对物理学和物理教师的情感转化为学习的动力,这样才能产生出艺术的效果。 二、物理科学美的展示 罗丹有一句名言:“生活中并不缺少美,而是缺少美的发现。”物理教学同样如此,但物理本 身并不是美学,要想使物理教程从枯燥的铅字变成闪烁美的光彩的科学诗篇,关键在于我们 教师平常教学中是否认真发掘物理科学美、是否去展示其美学特征、是否去创设美的意境, 让学生潜移默化受到物理科学美的陶冶,这就是教学的艺术。 物理学的研究对象大到天体,小到共振粒子,从实体到另一形态的场、光等都是物质的。物 质又是运动的,如机械运动、分子热运动、光波传播,实际上是不同形态的物质的不同运动 形式,它们的运动是有规律的。自然界是合理的、简单的、有序的,因此,科学家们在探索 真理的过程中,往往以科学美作为追求的目标,通过他们的努力而形成的物理理论,在内容上、形式上是那么自然、简单、和谐,都放射出美的光辉。教师平时教学中应向学生展示物 理知识美的一面,激发学生爱美的天性。 例如:物理内容的简单美,表现在物理概念、规律的表达上,科学、准确、简洁。热是众多 物理学家争论了一个多世纪的问题,却以“大量分子的无规则运动”十个字做了结论。物理学 的对称美,给人一种圆满。匀称的美感,运动与静止,匀速与变速,引力和斥力,反射和折射,“磁生电”和“电生磁”,平面镜成像,电荷的正负,磁场的两极等,揭示了自然界物质存在、构成、运动及其运动规律的对称性而产生的美感。物理学理论内部相互间的自洽能展现 出和谐美。如自由落体、竖直上抛、下抛以及各种直线的匀加速与匀减速运动都可以统一于 运动学的速度和位移两个公式中,牛顿力学公式可以把地上的物体与天上的星体统一起来。 由此可见,教学中只要我们善于发掘,物理学的“简洁美”、“对称美”、“和谐美”等美学特征 在中学物理中便有许多例证,我们要让物理学美的素材震撼学生的心田。 三、学生发展的促进 当前,世界面临着激烈的经济竞争和人才竞争,我们的教育目标应立足于培养学生适应科学 技术的发展和未来的生存能力。物理教学必须根据物理学科的特点为完成教育培养目标作出 贡献,应致力于促进学生的全面发展,培养学生不断获取新知识的能力和创造力。在教学过 程中应如何促进学生的发展,这体现着教师的艺术水平。

极值法解决物理问题(优.选)

正确使用极值法解决物理问题 在平时的教学中,常遇到“极值”问题,但多数教师都是通过数学方法进行分析.不仅要求学生具有较好的物理基础,更需具有较高的数学应用能力,如果教师能教给学生灵活运用物理的思想和方法去解决问题,这对提升学生的物理思维和物理素养不无裨益. 一、中考原题 如图1 所示,两个完全相同的量筒里分别盛有质量 相等的水和酒精,A 、B 两点到量筒底部的距离相等,则A 、B 两点受到液体的压强A p 和B p 的大小关系是( ). A. A B p p > B. A B p p < C. A B p p = D.无法比较 学生1(常规法):假设液体的总重力都为G ,液体密度分别为A 和B ,且A B >,量筒的横截面积均为S ,A 、B 两点距量筒底的距离都为h ,图2中,A 、B 两点以上液体的重力,即阴影部分液体的重力分别为A G 和B G ,则 A A A A A A G G F G G gSh G p gh S S S S S ρρ--=====-下① B B B B B G G F G G gSh G p gh S S S S S ρρ--=====-B 下 ② 由①②两式及A B ρρ>得A B p p <. 学生2(极值法): A 、B 两点距底部的距离相同,具有随意性,可假设A 、B 两点在甲容器的液面高度上(如图3),此时0,A p =0B p >,所以A B p p <. 从以上两种方法可以看出,在解决物理问题时,当一个物理量或物理过程发生变化时,运用“极值法”对其变量作合理的延伸,把问题推向极端,往往会使问题化难为易,达到“事

半功倍”的效果.那么如何正确使用极值法呢? 二、极值法正确使用过程分析 如图4所示,甲、乙两个质量相等的均匀实心正方体放在水平地面上,已知铜的密度大于铁的密度,若沿水平方向分别截去体积相等的部分,则剩余部分对水平面的压强p 甲和p 乙的大小关系是( ) A. p p >乙甲 B. p p <乙甲 C. p p =乙甲 D.都有可能 极值法:假设将甲全部消去,则剩余部分对水平面的压强p 甲=0和0p >乙,因此,该题选择B.事实果真如此吗? 假设G G G ==乙甲,边长分别为a 和b ,且a a b <,密度分别为甲和乙,且ρρ>乙甲截去的体积均为V ,则剩余部分对水平面的压强222G gV g G p V a a a ρρ-==-甲甲甲③, 222G gV g G p V b b b ρρ-==-乙乙乙④,由22G G a b >,22g g a b ρρ>乙甲,画出③④两式的压强一截去体积图像如图6所示. 由图6来看,当截去一定的体积时,剩余部分对水平面的压强p 甲和p 乙有可能相同(M 点),即由③④两式相等2222g g G G V V a a b b ρρ-=-乙甲,解得2222 ()G b a V gb ga ρρ-=-乙甲.当截去的体积2222()G b a V gb ga ρρ-<-乙甲时,p p >乙甲.当截去的体积2222()G b a V gb ga ρρ-=-乙甲时,p p =乙甲.当

初中物理教学中类比方法的运用浅析

初中物理教学中类比方法的运用浅析 发表时间:2017-01-12T17:39:58.370Z 来源:《读写算(新课程论坛)》2016年第12期(上)作者:卢忠[导读] 多年的教学实践使我认识到,在物理教学中传授知识固然重要,然而掌握方法更可让学生受益终身。 (四川省威远县严陵中学威远 642450)【摘要】:物理思维方法有很多,其中类比是一种非常重要的方法。充分运用类比方法可帮助学生融会贯通所学知识,加深对物理规律和概念的理解,提高分析解决问题的能力,特别是用已有知识去探索未知领域的能力。【关键词】:类比知识教学方法教学多年的教学实践使我认识到,在物理教学中传授知识固然重要,然而掌握方法更可让学生受益终身。其中“类比法”在初中物理教学中有着重要的意义,利用“类比”可以帮助学生把感到陌生的问题与自己熟悉的事物进行比较,从而找出它们的相似或相近之处,达到认识事物的规律。通过类比,学习掌握新知识,联系复习旧知识。初中学生以形象思维为主,抽象思维能力相对较差。而运用类比的方法进行教学, 能以旧带新,可以引导学生的思维从形象提升到抽象,帮助学生有效地把握物理知识、发展智力、培养能力。下面仅就本人在平时的教学中几点体会,谈一谈类比法在初中物理教学中的应用。 一、概念教学中的类比方法 一些概念或规律的教学可以采用与所学知识或者与已掌握的基本知识类比的方法,采用这种方法进行新课教学,符合学生的认知规律,在教学实践中表明效果较好。 在初中物理中,有很多的物理量是用比值来定义的。一类是描述物体运动或工作状态特征的物理量。如速度、功率、电功率等都是以比值来定义的,它们的概念具有一定的相似性,学生在学习过程中掌握了这类概念的特点,就可以举一反三。在概念上速度是物体在单位时间内通过的路程;功率是物体在单位时间内做的功;电功率是用电器在单位时间内所消耗的电能。都是单位时间内完成的某个量,所以它们的公式也是是非常类似的,分别是v= s/t,P=w/t ,P=w/t 。在物理意义上速度是描述物体运动快慢的物理量;功率是描述物体做功快慢的物理;电功率是描述用电器消耗电能快慢的物理量。都是描述某个过程的快慢。还有一类例子是对物质本身属性的物理量的定义,如:密度、比热容、电阻等,共同特征是:属性由本身所决定。学生不仅对这类概念的理解有融会贯通之感,且在不同方面的应用中,使其对比值法的内涵有了深刻的理解。在定义上密度是单位体积某种物质的质量;比热容是单位质量的某种物质温度升高(降低)1℃所吸收(放出)的热量;电阻是导体对电流的阻碍作用表示电阻。在公式也类似公式: 最主要是它们均是物质本身的一种属性,都只决定于物质自身的因素,与公式中的各量无关,公式只用于计算或比较大小。即密度是物质的特性,与质量、体积无关,决定于物质的种类,受状态影响;比热容是物质的物理特性,与物质的质量、吸收的热量及温度变化无关,同样决定于物质的种类,受状态影响;电阻是导体本身的一种性质,与导体两端电端及通过的电流无关,决定于导体自身的材料,长度和横切面积,受温度影响。 二、知识教学中的类比方法 在物理知识中有很多内容具有相似性,具有相同的物理规律,解决问题的思路一样,处理问题的方法和手段一样。教学中引导学生把知识内容间有相似特点的物理知识进行比较,发现他们之间的相似性以及不同之处,达到加强记忆的目的。例如在进行《内能》的教学时,一边回顾《机械能》的知识,一边把内能相关知识与机械能进行类比以达到教学目的。定义上机械能是物体的动能和势能总和叫机械能;内能是物体内所有分子做无规则运动的动能和分子势能的总和叫物体的内能。分开看机械能包括动能和势能,内能也一样包括动能和势能。再看机械能中的动能是运动着物体具有的,内能中的动能是运动的分子具有的;机械能中的势能是相互联系的物体具有的,内能中的势能是分子间存在引力和斥力具有的。 电学中的“电压”这个概念也可以用“水压”进行类比,使学生在感知上得到更加生动形象地认识。示意图是类似的,水路电路 组成上也能一一对应上, 水泵(保持一定水压)电源(保持一定电压)水管(传输水流)导线(传输电流)水轮机(利用水能的设备)灯泡(用电器)阀门(控制水路通断的开关)开关(控制电路通断的器件)电路的电源类似于水路的水泵,提供电能和电压;电路的导线类似于水路的水管,是路径;电路的灯泡类似于水路的水轮机,是消耗电能的;电路的开关类似于水路的阀门,是起控制通断的。从形成过程来分析也存在非常类似的机制,即水泵水压水流,电源电压电流 三、物理量单位教学中类比法的体现

反证法在证明题中的应用-高考数学解题模板

【高考地位】 反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现。它是数学学习中一种很重要的证题方法. 反证法证题的步骤大致分为三步:(1)反设:作出与求证的结论相反的假设;(2)归谬:由反设出发,导出矛盾结果;(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等. 【方法点评】 类型一 证明“至多”或“至少”问题 使用情景:证明“至多”或“至少”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例1. 若,x y ∈{正整数},且2x y +>。求证:12x y +<或12y x +<中至少有一个成立。 【变式演练1】若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2 +2ax -2a =0至少有一个方程有实根。则实数a 的取值范围为________。 类型二 证明“不可能”问题 使用情景:证明“不可能”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论.

例2.给定实数0a a ≠,,且1a ≠,设函数11()1x y x x ax a -= ∈≠-R ,且,求证:经过这个函数图象上任意两个不同的点的直线不平行于x 轴. 【变式演练2】如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。求证:AC 与平面SOB 不垂直。 类型三 证明“存在性”或“唯一性”问题 使用情景:证明“存在性”或“唯一性”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例3.求证:方程512x =的解是唯一的. 【变式演练3】用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为() A .自然数c b a ,,都是奇数 B .自然数c b a ,,都是偶数 C .自然数c b a ,,中至少有两个偶数 D .自然数c b a ,,中至少有两个偶数或都是奇数

类比法在物理中的运用

类比法在物理中的运用

类比法在物理中的运用 【内容摘要】类比法是研究和学习物理的一种极其重要的方法。它能启发和开拓我们的思维,能给我们提供解决问题的线索,是提出科学假设和探索新理论的重要途径,对学生学习物理来说也发挥着巨大的作用。恰当地运用类比,物理课堂会更有气氛,学生的学习的兴趣会很浓,更重要的是学生对所学的知识不容易遗忘。 【关键词】类比抽象具体形象 要想上好物理课,使学生比较容易接受教学内容,物理教师除了要有渊博的知识外,还需要许多教学技能和技巧,其中,运用类比方法有时候对于解决一些教学难点有很大的作用。类比法是研究和学习物理的一种极其重要的方法。它能启发和开拓我们的思维,能给我们提供解决问题的线索,是提出科学假设和探索新理论的重要途径,它对物理学的发展建立了不可磨灭的功劳,对学生学习物理来说也发挥着巨大的作用。正如前苏联学者瓦赫罗夫所说:“类比像闪电一样,可以照亮学生所学学科的黑暗角落。” 所谓类比,实际上是一种从特殊到特殊或从一般到一般的推理。它根据两个(或两类)对象之间在某些方面的相同或相似而推出它们在其他方面也可能相同或相似的一种逻辑思维。 一、类比在物理教学中的作用 1、培养学生的思维能力 物理类比思维是物理思维的一种重要形式。在科学探索中,类比思维的价值为世界上许多科学家所称道,开普勒说:“我重视类比胜于任何别的东西,它是我最可信赖的老师,它能揭示自然界的秘密。”康德曾说:“每当理智缺乏可靠论证的思路时,类比这个方法往往能指引我们前进。”运用物理类比思维可以把陌生的对象和熟悉的对象进行对比,把未知的东西和已知的东西相对比。这样可使学生能动地认识、理解并掌握知识。让学生在学习知识的同时,提高获取知识的能力,掌握科学的思维方法,发展智力。在这样的学习过程中,学生不是接受现成的知识,而是经过自己的探索之法获得知识,这样得到的知识更有效、更牢固、理解的也更透彻。 2、化抽象为具体 中学生的思维方法是以形象思维为主,抽象思维相对比较差。虽然物理是以实验为基础,给人的感觉好象是比较实在,但是,物理的理论(概念、定义、定律、规律等)是对实验、事物实体等经过抽象化而形成的,所以有些理论颇费理解。学生对他们缺乏必要的感性认识基础,掌握它们具有一定的困难。而运用类

物理学中的类比方法

物理学中的类比方法 类比是物理学理论思维的重要方法,它在历史上对许多重大发现起过积极的作用.十八世纪以法国为中心的西欧,涌现一批数学家,如伯努利兄弟、欧勒、拉格朗日、拉普拉斯等人.这些人才华横溢,不仅在数学方面,在天文学、力学、光学各方面都有很高造诣.他们一方面运用微积分、微分方程去研究天体、弹性体以及流体的动力学,把牛顿力学成果扩展到各个领域.另一方面运用新的数学工具建立笼括全部力学的最基本原理.以求象欧几里德几何学那样,使一切领域的自然知识都可以由数目最少、最简单的公理演绎出来.这两方面的研究都必须对各种力学过程进行分析和比较,掌握它们的共同特点,抽象出共同的数学形式. 莫培督(Maupertuis,P.L.M·de1698—1759)于1744年提出最小作用量原理,即自然界发生的实际运动必须遵循作用量(m、v、s三者乘积)为最小的要求.他用杠杆的平衡,碰撞,以王光的折射等现象为例来论证这个原理的普遍性.尽管这些论证中有不少含混之处,但这个思想对欧勒、拉格朗日、雅可比等人启发很大.雅 可比(Jacobi,K.C.J)曾经以精确的形式揭示.物体运动曲线符合?dsυ为最小的形式;光线通过变折射率煤 质的路径符合?nds为最小的形式;绳子受张力T作用而平衡符合?Tds为最小的形式.这些数学的归类成果,这些数学形式的类似性向人们提示:许多物理过程的共系是可以互相类比的. 十九世纪,热电光各领域的新现象不断揭示出来了,并且进入定量研究的阶段.物理学家在整理这些领域的实验材料以构成理论体系的时候,曾经用类比的方法,并取得重大的成果. 法国的萨迪·卡诺,就是把热机的工作原理跟水轮机做类比:水从高处流向低处,水轮机受水流推动而对外做功.热从高温流向低温处,热机被热流推动而对外做功.经过这个类比,从理论上推出理想热机的效率仅仅取决于热机所处的温度差,对于给定的温差和热质量,任何循环所产生的动力都不能比理想可逆循环产生的动力大.这个重要原理正是后来热力学第二定律的根蒂. 1826年,欧姆把回路流电流的过程同傅里叶在1822年发表的热传导理论进行类比.仿照傅里叶热传导公式Q=K△T,建立了电流定律S=rE(S表电流,E表电位差,r为比例常数). 1846年,英国的汤姆逊研究了电现象跟弹性力学之间的类似性,而且用位移矢量来描述电与磁转化的部分关系.他从这个研究中提出一个问题:电磁力的传播是否跟弹性位移的传播具有相似的方式?后来,麦克斯韦继续汤姆逊的工作方向.他的第一篇论文就是把法拉第的磁力线概念跟流体的流线做类比,得出奥斯特定律的数学表示式.后来又把电磁过程跟粘性液体、弹性体综合的特往做类比,塑造了独特的以太模型,导出了著名的电动力学方程组,全面表述了电磁场变化的规律. 在近代物理学的发初时期,类比同样发挥它的奇效. 1900年,普朗克引进能量子的概念,但是当时不少物理学家对于这个能量子是不是自然界的客观实体,十分怀疑.爱因斯坦在光的吸收与转化等一系列问题上,继承发展普朗克这个新概念.他通过对空腔辐射场里的能量子相对体积的炼跟理想气体分子相对体积的墙进行类比.由于这两者具有相同的数学形式从而证明了辐射场里的能量子也象箱子里的气体分子一样是做“颗粒”分布的,是可以独立地存在于自由空间的.这个论证使能量子概念立足于坚实的基础上. 德布洛意在康普顿关于光和电子可以.粒子性的弹性碰撞的实验事实的启示下,做出了大胆的推论:一切粒子都具有波粒二重性.一切粒子都可以类比子光子,具有波长λ=P/h,能量E=hν. 薛定谔在1925年建oh波动力学,也是从光学和力学的类比入手的.他发现,微观粒子的运动,用哈密顿动力学方程描述和用德布洛意波波阵西方程描述,具有同样的形式,从而看出物质波的“几何光学”等同于经典力学.他把光学与力学进行类比:几何光学是波动光学的近似和简化,若经典力学等同于几何光学,则应该有一门波动力学等同于波动光学,它将如波动光学可以解释干涉衍射一样,用来解释原子领域的过程.他于是引进波函数,把粒子在力场中的运动,描绘成波动的过程,建立了有名的薛定谔方程,创建了波动力学.1935年,日本物理学家汤川,把核力同原子的电磁力做类比,提出核里的中子与质子为吸引力通过核力场互施作用,正如原子核同电子通过电磁场互施作用一样.电磁场的作用相当于交换光子,与此类推,核力场的作用,也应该交换某种场粒子.他经过计算,认为这种新粒子应具有介于电子和核子之间的质量,大约是电子质量的二百倍.这种新粒子被称为介子.后来通过实验,果真发现了这种粒子. 物理学的历史说明,类比是一种重要的思维方法.当一个领域里出现新的经验事实,从那里只能约略看到它们现象问的松散的联系.物理学家参照其他领域已知的过程,比较两者相似的特征,仿照已知过程的联系做出预

相关文档