文档库 最新最全的文档下载
当前位置:文档库 › 甲醇—水填料精馏塔设计示例

甲醇—水填料精馏塔设计示例

甲醇—水填料精馏塔设计示例
甲醇—水填料精馏塔设计示例

甲醇—水分离装置的工艺设计

摘要

甲醇是一种重要的化工原料,其用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲脂等多种有机产品,也是农药、医药的重要原料之一。

甲醇易于吸收水蒸汽、二氧化碳和某些其它物质,因此只有用特殊的方法才能制得完全无水的甲醇。精馏是应用最广的传质分离操作,板式塔是目前最主要的精馏塔塔型,对它的研究一直长盛不衰。筛板塔和浮阀塔成功地取代泡罩塔是效益巨大的成果。板式塔的设计已达到较高水平,设计结果比较可靠。马伦戈尼效应造成的界面湍动现象和汽液两相间的不同接触工况的研究,使认识得到了深化,对传质效率的研究有所促进。具有各种特点的新型塔板开发研究不断取得成果。对于塔板上汽液两相流动和混合状况、雾沫夹带及它们对效率的影响研究不断深入,但离得到一个通用而可靠的效率估算模型尚有较大距离,特别是多元系统的效率。进一步深入进行塔中汽液两相流动状况的研究,对于预测压降、传质效率和塔板的可操作区域,对于认识至今了解甚少的降液管中状况都十分有意义。

关键词:甲醇;精馏;板式塔

目录

摘要 (1)

目录 (2)

前言 (4)

第一章文献综述 (5)

1.1甲醇 (5)

1.1.1甲醇的性质 (5)

1.1.2甲醇的用途 (5)

1.1.3甲醇工业 (5)

1.1.4甲醇的下游产品 (6)

1.2精馏原理 (7)

1.3板式塔 (8)

1.3.1 板式塔分类 (8)

1.3.2 板式塔的结构 (8)

1.3.3 板式塔的特点 (10)

1.3.4 板式塔的作用 (10)

第二章设计部分 (12)

2.1设计任务 (12)

2.2 设计方案的确定 (12)

2.3 设计计算 (12)

2.3.1 精馏塔的物料衡算 (12)

2.3.2 精馏塔塔板数的确定 (13)

2.3.3 精馏塔的工艺条件及物性数据的计算 (14)

2.3.4 精馏塔的塔体工艺尺寸计算 (17)

2.3.5 塔板主要工艺尺寸的计算 (18)

2.3.6 筛板的流体力学验算 (20)

2.3.7 塔板负荷性能图 (23)

第三章结论 (27)

参考文献 (29)

致谢 (30)

前言

甲醇是仅次于三烯和三苯的重要基础有机化工原料,尤其近年来在有些以达国家中, 甲醇以清洁燃料的身份登上了环境保护的殿堂,更使其身份倍增.因此,发达国家中甲醇产量仅次于乙烯,丙烯,苯,居第四位.。甲醇能与水、乙醇、乙醚、苯、酮类和大多数有机溶剂限混合。甲醇易于吸收水蒸汽、二氧化碳和某些其它物质,因此只有用特殊的方法才能制得完全无水的甲醇。分离甲醇有很多方法,这次我用的分离方法是精馏塔的板式塔分离法。

板式塔是目前最主要的精馏塔塔型,对它的研究一直长盛不衰。筛板塔和浮阀塔成功地取代泡罩塔是效益巨大的成果。板式塔的设计已达到较高水平,设计结果比较可靠。马伦戈尼效应造成的界面湍动现象和汽液两相间的不同接触工况的研究,使认识得到了深化,对传质效率的研究有所促进。具有各种特点的新型塔板开发研究不断取得成果。对于塔板上汽液两相流动和混合状况、雾沫夹带及它们对效率的影响研究不断深入,但离得到一个通用而可靠的效率估算模型尚有较大距离,特别是多元系统的效率。进一步深入进行塔中汽液两相流动状况的研究,对于预测压降、传质效率和塔板的可操作区域,对于认识至今了解甚少的降液管中状况都十分有意义。

第一章文献综述

1.1甲醇

1.1.1甲醇的性质

甲醇是一种无色、透明、易燃、易挥发的有毒液体,常温下对金属无腐蚀性(铅、铝除外),略有酒精气味。分子量32.04,相对密度0.792(20/4℃),熔点-97.8℃,沸点64.5℃,闪点12.22℃,自燃点463.89℃,蒸气密度 1.11,蒸气压13.33KPa(100mmHg 21.2℃),蒸气与空气混合物爆炸极限 6~36.5 %(体积比),能与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易燃烧。

1.1.2甲醇的用途

甲醇用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲脂等多种有机产品,也是农药、医药的重要原料之一。甲醇在深加工后可作为一种新型清洁燃料,也加入汽油掺烧。

1.1.3甲醇工业

甲醇生产过程比较简单,原料来源多样,煤、石脑油和天然气均可制甲醇。甲醇用途广泛,它的下游产品多达几百种。近年来由于世界各国环保意识的加强,特别是美国国会于1990年11月15日通过清洁空气法修正案以后,甲醇的身价备增,全球甲醇的需求增长加快。

中国甲醇产业发展速度丝毫不逊于任何一国,仅靠最近5年的快速发展,中国甲醇产量就跃居全球首位。

但是,正如正在发育期的孩子一样,只是个头高并不能证明就是身体健康。相反,过高

的个头可能还是一种病态。

甲醇属低附加值化工产品。低成本是该类产品竞争的核心,也是生产企业采取的重要竞争战略,是企业安身立命的关键。低成本需要优化各种影响产品成本的生产要素,包括原料价格、工艺路线、融资成本、装置规模和物流费用。

1.1.4甲醇的下游产品

近年来,煤化工国产化技术装备相继取得突破,醇醚燃料、甲醇制烯烃等新兴煤化工产业方兴未艾,再加上甲醛、醋酸等传统下游产业的稳步发展,我国甲醇需求量不断提高。甲醇主要下游产品需求分析如下:

甲醛:甲醛是甲醇的主要下游产品,2005年甲醛消费约占甲醇总消费量的45%。根据全国甲醛行业协作组提供的数据显示,2005年我国甲醛产能为1231.6万t,产量为791.0万t。2005年甲醛生产消耗甲醇301万t,2006年增加到381万t。据专家预测,”十一五”期间用于木材加工、室内装饰装修的三醛胶仍是中国甲醛最大的消费领域,其对于甲醛的需求量将稳步增长。此外,随着烟台万华、上海拜尔等多套MDI装置的落成,MDI行业对甲醛的需求量将会大大增加。POM是重要的工程塑料,市场需求量将会逐年增长。中国化工、云天化等厂家都在新建或改扩建POM装置,随着这些装置的投产,甲醛消费量也会同步增加。其它产品,如乌洛托品、多元醇等对于甲醛的需求量也会有不同程度的增长。据全国甲醛行业协作组预测,截至2010年,我国将新增甲醛产能约200万t/年,总产能将达到约1400万t/年,产量约1000万t/年。按生产1吨甲醛需要0.47t甲醇计算,届时甲醛生产大约需要消耗甲醇470万t。

醋酸:甲醇另一主要用途是生产醋酸。根据全国醋酸行业协作组提供的数据显示,2005年我国甲醇羰基合成法制醋酸产能约为90万t,产量76.6万t,消耗甲醇49万t;2006年产能约为140万t,产量118.3万t,消耗甲醇76万t。我国醋酸主要消费领域是醋酸乙烯/聚乙烯醇、醋酸酯类、醋酐、对苯二甲酸(PTA)、氯乙酸等。预计”十一五”期间,受聚酯

和涤纶工业快速发展的带动,PTA需求将有较大幅度的增长,其对醋酸的需求也会同步增长。另外,醋酸酯类替代苯类作溶剂,有利于环境保护,将在涂料等行业中有发展空间。氯乙酸、醋酸纤维、醋酐行业对于醋酸的需求量也会有不同程度的增长。醋酸乙烯与乙烯共聚树脂也有巨大的市场。预计2010年,醋酸市场需求约500万t。

醇醚燃料和甲醇制烯烃:发展醇醚燃料有利于缓解我国石油供需矛盾,是近期替代能源工作的重点。如果甲醇汽油标准能够在2008年制定完毕,而且国家允许甲醇汽车上市,同时加油站等配套系统能够得到完善,则预计2010年我国M85~M100的甲醇汽车将达到1万辆左右,按每辆汽车每年消耗20吨甲醇计算,则共需要消耗甲醇20万t。另外,预计到2010年我国将有2000万t汽油掺烧甲醇,若比例按15%计算,则需要300万t甲醇。以上两部分共需要甲醇320万t。

其他:2005年我国农药、医药行业共消费甲醇74万t,其他行业如染料、溶剂以及甲胺、氯甲烷等有机原料行业共消费甲醇112.4万t。根据专家预测,“十一五”期间,我国农药、医药、染料等行业对于甲醇的需求将会相对稳定;用于生产其他有机化工产品和用作溶剂的甲醇,其消费量的增长也不会太大。预计“十一五”末期,上述行业对于甲醇的需求量约为260万~300万t/年。预计2010年我国甲醇需求量约为1800万~2100万t。

1.2精馏原理

利用均相液体混合物中两组分的挥发性不同,多次且同时进行部分汽化和部分冷凝,达到分离液体混合物的目的。由上工序来的需分离的料液经预热器加热至一定温度后由塔中部加料板加入,在加料板上与上块塔板的回流液汇合后逐板下流,最后进入塔釜进行部分加热,产生的蒸汽送回塔底作为回流汽;液体作为塔底产品。由塔顶出来的蒸汽进行冷凝后一部分作为回流液重新回到塔顶,另一部分进一步冷却后作为塔顶产品。

精馏是应用最广的传质分离操作,其广泛应用促使技术已相当成熟,但是技术的成熟并不意味着之后不再需要发展而停滞不前。称说技术的发展往往要花费更大的精力,但由于其

应用的广泛,每一个进步,哪怕是微小的,也会带来巨大的经济效率。正因为如此,蒸馏的研究仍受到广泛的重视,不断取得进展。

板式塔是目前最主要的精馏塔塔型,对它的研究一直长盛不衰。筛板塔和浮阀塔成功地取代泡罩塔是效益巨大的成果。板式塔的设计已达到较高水平,设计结果比较可靠。马伦戈尼效应造成的界面湍动现象和汽液两相间的不同接触工况的研究,使认识得到了深化,对传质效率的研究有所促进。具有各种特点的新型塔板开发研究不断取得成果。对于塔板上汽液两相流动和混合状况、雾沫夹带及它们对效率的影响研究不断深入,但离得到一个通用而可靠的效率估算模型尚有较大距离,特别是多元系统的效率。所幸的是,经广泛实验研究发现,利用实验室的奥德肖小筛板塔可以比较可靠地测的工业塔中的点效率,可以弥合一些上述的差距。进一步深入进行塔中汽液两相流动状况的研究,对于预测压降、传质效率和塔板的可操作区域,对于认识至今了解甚少的降液管中状况都十分有意义。

1.3板式塔

1.3.1 板式塔分类

板式塔的型式很多,分类各不相同,如按气液在塔板上的流向板式塔可分为:气-液呈错流的塔板;气液呈逆流的塔板;气液呈并流的塔板。按有无溢流装置又可分为:有溢流装置板式塔;无溢流装置板式塔。按塔盘结构又可分为泡罩塔、浮阀塔、筛板塔等等。

1.3.2 板式塔的结构

板式塔为逐级接触式气液传质设备,它主要由圆柱形壳体、塔板、溢流堰、降液管及受液盘等部件构成。操作时,塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。溢流堰的作用是使塔板上保持一定厚度的液层。气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、

筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。

在塔板上,气液两相密切接触,进行热量和质量的交换。在板式

塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在

正常操作下,液相为连续相,气相为分散相。

工业上最早出现的板式塔是筛板塔和泡罩塔。筛板塔出现于

1830年,很长一段时间内被认为难以操作而未得到重视。泡罩塔

结构复杂,但容易操作,自1854年应用于工业生产以后,很快

得到推广,直到20世纪50年代初,它始终处于主导地位。第二次世界大战后,炼油和化学工业发展迅速,泡罩塔结构复杂、造价高的缺点日益突出,而结构简单的筛板塔重新受到重视。通过大量的实验研究和工业实践,逐步掌握了筛板塔的操作规律和正确设计方法,还开发了大孔径筛板,解决了筛孔容易堵塞的问题。因此,50年代起,筛板塔迅速发展成为工业上广泛应用的塔型。与此同时,还出现了浮阀塔,它操作容易,结构也比较简单,同样得到了广泛应用。而泡罩塔的应用则日益减少,除特殊场合外,已不再新建。60年代以后,石油化工的生产规模不断扩大,大型塔的直径已超过10m。

为满足设备大型化及有关分离操作所提出的各种要求,新型塔板不断出现,已有数十种。

塔板[1]又称塔盘,是板式塔中气液两相接触传质的部位,决定塔的操作性能,通常主要由以下三部分组成:

A.气体通道为保证气液两相充分接触,塔板上均匀地开有一定数量的通道供气体自下而上穿过板上的液层。气体通道的形式很多,它对塔板性能有决定性影响,也是区别塔板类型的主要标志。筛板塔塔板的气体通道最简单,只是在塔板上均匀地开设许多小孔(通称筛孔),气体穿过筛孔上升并分散到液层中泡罩塔塔板的气体通道最复杂,它是在塔板上开有若干较大的圆孔,孔上接有升气管,升气管上覆盖分散气体的泡罩。浮阀塔塔板则直接在圆孔上盖以可浮动的阀片,根据气体的流量,阀片自行调节开度。

B.溢流堰为保证气液两相在塔板上形成足够的相际传质表面,塔板上须保持一定深度的液层,为此,在塔板的出口端设置溢流堰。塔板上液层高度在很大程度上由堰高决定。对于大型塔板,为保证液流均布,还在塔板的进口端设置进口堰。

C.降液管液体自上层塔板流至下层塔板的通道,也是气(汽)体与液体分离的部位。为此,降液管中必须有足够的空间,让液体有所需的停留时间。此外,还有一类无溢流塔板,塔板上不设降液管,仅是块均匀开设筛孔或缝隙的圆形筛板。操作时,板上液体随机地经某些筛孔流下,而气体则穿过另一些筛孔上升。无溢流塔板虽然结构简单,造价低廉,板面利用率高,但操作弹性太小,板效率较低,故应用不广。

1.3.3 板式塔的特点

它的主要优点有:

A结构比浮阀塔更简单,易于加工,造价约为袍罩塔的60%,为浮阀塔的80%左右。

B处理能力大,比同塔径的袍罩塔可增加10%~15%。

C塔板效率高,比袍罩塔高15%左右。

D压降较低,每板压力降比袍罩塔约低30%左右。

它的缺点是:

A塔板安装的水平度要求较高,否则气液接触不均。

B操作弹性较小。

C小孔筛板简单堵塞。

因板式塔空塔速度较大,因而生产能力较大,塔板效率稳定,操作弹性大,且造价低,检修、清洗方便,故工业上广泛应用。

1.3.4 板式塔的作用

A.塔釜的作用:

为了使精馏塔连续稳定进行,必须保证塔板上有上升的蒸汽,故塔釜的作用就是提供上升蒸汽。

B.回流液的作用:

a、提供一定数量的液流:提供了汽液直接接触进行双向传质的必要条件;

b、向塔内补充一定量的易挥发组分,维持塔内稳定操作。上升蒸汽越往上走,易挥发组分浓度越高,一是上升的汽流中难挥发组分冷凝下来进入液相;二是下降的液流中易挥发组分汽化进入了汽相,如果没有回流液,每块塔板上的易挥发组分浓度就会下降,操作就不稳定。。

C.精馏段和提馏段的作用:

精馏段:原料液进料板以上的称精馏段,它的作用:上升蒸汽与回流液之间的传质、传热,逐步增浓气相中的易挥发组分。可以说,塔的上部完成了上升汽流的精制。

提馏段:加料板以下的称提馏段,它的作用:在每块塔板下降液体与上升蒸汽的传质,传热。下降的液流中难军发组分不断增加,可以说,塔下部完成了下降液流中难军发组分的提浓。

D.塔板的作用:

a结构:每一块塔板上有降液管、出口堰、板上小孔,有的还有进口堰。

b作用:上一块板的液体由降液管下来,下一块板的蒸汽由板上的小孔进入,因出口堰的存在使每一块板上有一定厚度的液层,这样气液在塔板上直接接触,进行传质、传热。

第二章设计部分

2.1设计任务

在抗生素类药物生产过程中,需要用甲醇溶媒洗涤晶体,洗涤过滤后生产废甲醇溶媒,其组成为含甲醇46%、水54%(质量分数,下同),另含少量的药物固体颗粒。为使废甲醇溶媒重复利用,设计一套板式精馏塔,以对废甲醇溶媒进行精馏,得到含水量≤0.3%的甲醇溶媒。设计要求废甲醇溶媒的处理量为3.5万吨/年,塔底废水中甲醇含量≤0.5%。

操作条件:(1)操作压力常压

(2)进料热状态泡点进料

(3)回流比 2

(4)单板压降≤0.7Kpa

(5)全塔效率70%

2.2 设计方案的确定

本设计任务为分离甲醇和水的混合物,对于二元混合物的分离,应采用连续常压精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝器冷却后送至贮罐。该物系属于易分离物系,最小回流比比较小,故操作回流比取最小回流比的2倍。塔底采用间接蒸气加热,塔底产品经冷却后送至贮罐。

2.3 设计计算

2.3.1 精馏塔的物料衡算

A. 原料液及其塔顶、塔底产品的摩尔分率

甲醇的摩尔质量为:32.04kg/kmol

水的摩尔质量为:18.02kg/kmol

02

.18/56.004.32/46.004

.32/46.0+=F x =0.324

995.002.18/003.004.32/997.004

.32/997.0=+=D x 003

.002

.18/995.004.32/005.004

.32/005.0=+=

W x

B. 原料液及其塔顶与塔底产品的平均摩尔质量 M F =0.324×32.04+(1-0.324)×18.02=22.56 kg/mol M D =0.995×32.04+(1-0.995)×18.02=31.97 kg/mol M w =0.003×32.04+(1-0.003)×18.02=18.02 kg/mol

C. 物料衡算

原料的处理量:F=3.5×107/(300×24×22.56)=215.47 kmol/h 由总物料衡算:F= D+W

甲醇物料衡算:215.47×0.324=0.995D+0.003W 得出: D=69.72 kmol/h W=145.75 kmol/h

2.3.2 精馏塔塔板数的确定

A. 理论板层数NT 的求取

a.因为甲醇---水属于理想物系[2],可采用图解法求理论板层数(见相平衡图1---1)

b.求最小回流比和操作回流比

采用作图法求最小回流比,在图中对角线上e (0.324,0.324)做垂线ef ,该线与平衡线交点坐标为:

x q =0.324 y q =0.698

最小回流比: R min =(x D -y q )/(y q -x q )=(0.995-0.698)/(0.698-0.324)=0.794 取操作回流比为: R=2R min =2×0.794=1.59 c.精馏塔的气、液相负荷

L=R×D=1..59×69.72=110.85kmol/h

V=(R+1)×D=2.59×69.72=180.57kmol/h

L’=L+F=110.85+215.47=326.32kmol/h

V’=V=180.57kmol/h

d.精馏段、提馏段操作线方程

精馏段操作线:y=L/V×X+D/V×XD=0.614X+0.386

提馏段操作线:y’=L’/V’×X’-W/V’×XW=1.81X’-0.0024

e.图解法求理论塔板层数

根据图一所示,可求得结果为:

总理论塔板数N T为8块(包括再沸器)

进料板位置N F为自塔顶数起第6块

B.实际板层数的求取

精馏段实际塔板数N精=5/0.7=7.1≈8块

提馏段实际塔板数N提=3/0.7=4.3≈5块

2.3.3 精馏塔的工艺条件及物性数据的计算

A.操作压力的计算

设每层塔压降:△P=0.7 kPa(一般情演况下,板式塔的每一个理论级压降约在0.4~1.1kPa)

塔顶操作压力P D=101.3KPa

进料板压力P F=101.3+8×0.7=106.9 KPa

精馏段平均压力P m=(101.3+106.9)/2=104.1 KPa

B.操作温度的计算

依操作压力由泡点方程通过试差计算,结果如下:

塔顶温度:t D=61.2℃

进料板处温度: t F =82.8℃

精馏段平均温度 t M =(64.2+82.8)/2=73.5℃ C.平均摩尔质量的计算 a. 塔顶平均摩尔质量计算

由X D =Y L =0.995 查平衡曲线(图一)得 X L =0.95 M VDm =0.995×32.04+(1-0.995)×18.02=31.97 kg/mol M LDm =0.95×34.04+(1-0.95)×18.02=31.34 kg/mol b. 精馏段平均摩尔质量

M Vm =(31.97+26.34)/2=29.29kg/mol M Lm =(31.34+21.30)/2=26.32kg/mol D.平均密度的计算 a.气相平均密度的计算 由理想气体状态方程计算,即

ρVm =P m M vw /RT m =(104.1×29.29)/[8.314×(273.15+73.5)]=1.058kg/m 3 b.液相平均密度的计算

液相平均密度依下式计算,即 i i Lm ραρ//1∑= 塔顶液相平均密度的计算 由t D =64.2℃时 查手册得

ρA =756.186kg/m 3 ρB =980.932kg/m 3 ρLDm =1/(0.997/756.18+0.003/980.932)=756.7kg/m 3 进料板液相平均密度的计算 由 t F =82.8℃,查手册得

ρA =733.9kg/m 3 ρB =969.98kg/m 3

进料板液相的质量分率

αA=(0.234×32.04)/(0.234×32.04+0.766×18.02)=0.352

ρLFm=1/(0.352/733.9+0.648/969.98)=871.3kg/m3精馏段液相平均密度为

ρLm=(756.7+871.3)/2=814kg/m3

E.平均表面张力的计算

液相平均表面张力依下式计算,即

σLm=∑x iσi

a. 塔顶液相平均表面张力的计算

由t D=64.2℃,查得

σA=16.85mN/m σB=65.41mN/m

σLDm=0.995×16..85+0.005×65.41=17.09 mN/m

b. 进料板液相平均表面张力的计算

由t F=82.8℃,查得

σA=14.72mN/m σB=62.05 mN/m

σLFM=0.234×14.72+0.766×62.05=50.97mN/m

精馏段液相平均表面张力

σLm=(17.09+50.97)/2=34.03 mN/m

F.平均粘度的计算

液相平均粘度依下式计算,即

lgμLm=∑x i lgμi

a.塔顶液相平均粘度的计算

由t D=64.2℃,查得

μA=0.328mPa.s μB=0.441mPa.s

lg μLDm =0.995g(0.328)+0.005lg(0.441) 解出 μLDm =0.328mPa.s b.进料板平均粘度的计算 由t F =82℃,查得

μA =0.269mPa.s μB =0.344mPa.s lg μLFm =0.234lg(0.269)+0.766lg(0.344) 解出 μLFm =0.324mPa.s 精馏段平均粘度

μLm =(0.328+0.324)/2=0.326mPa.s

2.3.4 精馏塔的塔体工艺尺寸计算

A.塔径的计算

a.精馏段的气、液相体积流率为 389

.1058.1360029.2957.1803600M V V Vm Vm S =??=

?=

ρ m 3/s

001

.0814

360032.2685.1103600M L L Lm

Vm S =??=?=

ρ m 3/s

由 V

V

L max U ρρρ-=

式中C 由式计算,其中的 C 20 由图查取[8],图的横坐标为

02

.0)

058

.1814(

814

389.13600001.0)

(

V L 2

1

2

1

V

L h

h =??=

ρρ

取板间距 H T =0.40m ,板上液层高度 h L = 0.06 m ,则 H T - h L =0.40-0.06=0.34 m 查图得 C 20 =0.07

078

.0)

20

03.34(

07.0)

20

(

C C 2

.02

.0L

20=?==δ

162.2058

.1058.1814078.0U max =-?

= m/s

取空安全系数为0.8,则空塔气速为 u =0.8×u max =0.8×2.162=1.73 m/s 011.173

.114.3389.144V D S

=??=

=

u

π m

按标准塔径圆整后为 D =1.2m 塔截面积为

A T =π/4×D 2 =

0.785×1.22=

1.13 m 2

实际空塔气速为

u =1.389/1.13=1.23 m/s B.精馏塔有效高度的计算 精馏段有效高度为

Z 精=(N 精-1)H T =(8-1)×0.4=2.8 m 提馏段有效高度为

Z 提=(N 提-1)H T =(5-1)×0.4=1.6 m 在进料板上方开一个人孔,其高度为0.8 m 故精馏塔有效高度为

Z=Z 精+Z 提+0.8=2.8+1.6+0.8=5.2m

2.3.5 塔板主要工艺尺寸的计算

A. 溢流装置计算

因塔径 D = 1.4 ,可选用单溢流弓形降液管,采用凹形受液盘。各项计算如下: a.堰长 l w

取 l w = 0.7D=0.7×1.2=0.84

b.溢流堰高度 h w 由 hw=h l -h ow

选用平直堰,堰上液层高度 how 由下式计算,即 h ow =(2.84/1000)E ×(L h /L w )2/3 近似取 E = 1,则

h ow =(2.84/1000)×(0.001×3600/0.84)2/3

=2

0075.0m

取板上清液层高度 h L =80mm 故 h w =0.08-0.0075=0.0725 m c.弓形降液管高度 Wd 和截面积 Af 由

7.0=D l w

查图[3] 得

0942

.0A A T

f =

151.0D

W d =

故 A f =0.0942A T =0.0942×1.13=0.106 m 2

W d =0.151D=0.151×1.2=0.181 m

依式验算液体在降液管中停留时间,即 5s

s 4.423600

001.04.0106.03600A f >=???=

3600=

h

T

L H θ

故降液管设计合理 d.降液管底隙高度 h o

h

03600L h u l w ??=

取 '0u =0.1 m/s

则 h o =0.001×3600/(3600×0.84×0.1)=0.012 m

h w - h o =0.0725-0.012=0.0605m >0.006m 故降液管底隙高度设计合理 选用凹形受液盘,深度 'h w =50mm B.塔板布置

a.塔板的分块

因 D >= 800 mm ,故塔板采用分块式。查表得,塔板分为3块。 b.边缘区宽度确定

取 W s = 'W S = 0.070 m ,W c =0.030 m c. 开孔区面积计算 开孔区面积 A a 按式计算,即 2

2

2

1

Aa = 2()sin

r x x r x r

r

π--+

其中 D x =2(W d + W s )=1.2/2-(0.181+0.07)=0.349m D r =

2

- W c =1.2/2-0.03=0.597m

故 A a =0.783 d. 筛孔计算及其排列

本设计所处理的物系无腐蚀性,可选用 σ= 3 mm 碳钢板,取筛孔直径 d o =5mm 筛孔按正三角形排列,取孔中心距 t 为

t = 3 d o =3×5=15 mm 筛孔数目 n 为

4020

015

.0783

.0155.1t

1.155A

n 2

2

a

=?=

=

开孔率为 2

o d = 0.907(

)t

φ= 0.907(d 0/t )= 0.907(0.005/0.015)2

=10.1%

气体通过阀孔的气速为 s o

V uo =

A = 1.389/(0.101×0.783)= 17.56m/s

2.3.6 筛板的流体力学验算

A.塔板压降

化工原理甲醇—水连续填料精馏塔

化工原理课程设计说明书 设计题目:甲醇—水连续填料精馏塔 设计者: 专业: 学号: 指导老师: 2007年7 月13日

目录 一、设计任务书 (1) 二、设计的方案介绍 (1) 三、工艺流程图及其简单说明 (2) 四、操作条件及精熘塔工艺计算 (4) 五、精熘塔工艺条件及有关物性的计算 (14) 六、精馏塔塔体工艺尺寸计算 (19) 七、附属设备及主要附件的选型计算 (23) 八、参考文献 (26) 九、甲醇-水精熘塔设计条件图

一、设计任务书 甲醇散堆填料精馏塔设计: 1、处理量:12000 吨/年(年生产时间以7200小时计算) 2、原料液状态:常温常压 3、进料浓度:41.3%(甲醇的质量分数) 塔顶出料浓度:98.5%(甲醇的质量分数) 塔釜出料浓度:0.05%(甲醇的质量分数) 4、填料类型:DN25金属环矩鞍散堆填料 5、厂址位于沈阳地区 二、设计的方案介绍 1、进料的热状况 精馏操作中的进料方式一般有冷液加料、泡点进料、汽液混合物进料、饱和蒸汽进料和过热蒸汽加料五种。本设计采用的是泡点进料。这样不仅对塔的操作稳定较为方便,不受厦门季节温度影响,而且基于恒摩尔流假设,精馏段与提馏段上升蒸汽的摩尔流量相等,因此塔径基本相等,在制造上比较方便。 2、精熘塔的操作压力 在精馏操作中,当压力增大,混合液的相对挥发度减小,将使汽相和液相的组成越来越接近,分离越来越难;而当压力减小,混合液的相对挥发度增大,α值偏离1的程度越大,分离越容易。但是要保持精馏塔在低压下操作,这对设备的要求相当高,会使总的设备费用大幅度增加。在实际设计中,要充分考虑这两

苯-甲苯精馏塔课程设计报告书

课程设计任务书 一、课题名称 苯——甲苯混合体系分离过程设计 二、课题条件(原始数据) 1、设计方案的选定 原料:苯、甲苯 年处理量:108000t 原料组成(甲苯的质量分率):0.5 塔顶产品组成:%99>D x 塔底产品组成:%2

设计容 摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。关键词:板式塔;苯--甲苯;工艺计算;结构图 一、简介 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔气液接触部件的结构型式,可分为板式塔和填料塔。板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。 板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。 甲苯是最简单,最重要的芳烃化合物之一。在空气中,甲苯只能不完全燃烧,火焰呈黄色。甲苯的熔点为-95 ℃,沸点为111 ℃。甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866克/厘米3,对光有很强的折射作用(折射率:1,4961)。甲苯

精馏塔-PPT

填料塔的附属结构填料支承板(Packing support plate ) 主要包括:填料支承装置;液体分布及再分布装置;气体进口分布装置;除沫装置等。 要求:(1)足够的机械强度以承受设计载荷量,支承板的设计载荷主要包括填料的重量和液体的重量。(2)足够的自由面积以确保气、液两相顺利通过。总开孔面积应不小于填料层的自由截面积。一般开孔率在70%以上。常用结构:栅板;升气管式;气体喷射式。

栅板(support grid): 优点是结构简单,造价低; 缺点是栅板间的开孔容易被散装填料挡住,使有效开孔面积减小。

升气管式:具有气、液两相分流而行和开孔面积大的特点。气体由升气管侧面的狭缝进入填料层。

气体喷射式(multibeam packing support plate): 具有气、液两相分流而行和开孔面积大的特点。气体由波形的侧面开孔射入填料层。

床层限位圈和填料压板(Bed limiter and hold down plate)填料压紧和限位装置安装在填料层顶部,用于阻止填料的流化和松动,前者为直接压在填料之上的填料压圈或压板,后者为固定于塔壁的填料限位圈。 规整填料一般不会发生流化,但在大塔中,分块组装的填料会移动,因此也必需安装由平行扁钢构造的填料限制圈。

液体分布器(Liquid distributor) 作用:将液体均匀分布于填料层顶部。 莲蓬头分布器: 一种结构十分简单的液体喷洒器,其喷头的下部为半球形多孔板,喷头直径为塔径的1/3~1/5,一般用于直径在0.6m以下的塔中。它的主要缺点是喷洒孔易堵塞,且气量较大时液沫夹带量大。

填料精馏塔设计示例

4.3 填料精馏塔设计示例 4.3.1 化工原理课程设计任务书 1 设计题目 分离甲醇-水混合液的填料精馏塔 2 设计数据及条件 生产能力:年处理甲醇-水混合液0.30万吨(年开工300天) 原料:甲醇含量为70%(质量百分比,下同)的常温液体 分离要求:塔顶甲醇含量不低于98%,塔底甲醇含量不高于2% 建厂地址:沈阳 3 设计要求 (1)编制一份精馏塔设计说明书,主要内容: ①前言; ②流程确定和说明; ③生产条件确定和说明; ④精馏塔的设计计算; ⑤主要附属设备及附件的选型计算; ⑥设计结果列表; ⑦设计结果的自我总结评价与说明; ⑧注明参考和使用的设计资料。 (2)编制一份精馏塔工艺条件单,绘制一份带控制点的工艺流程图。 4.3.2 前言

在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大,应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 塔设备按其结构形式基本上可分为两类:板式塔和填料塔。以前,在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小以性能稳定等特点。因此填料塔已被推广到大型汽液操作中。在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 板式塔为逐级接触式汽液传质设备,它具有结构简单、安装方便、操作弹性大、持液量小等优点。同时也有投资费用较高、填料易堵塞等缺点。 本设计目的是分离甲醇-水混合液,处理量不大,故选用填料塔。 塔型的选择因素很多。主要因素有物料性质、操作条件、塔设备的制造安装和维修等。 1 与物性有关的因素 ①易起泡的物系在板式塔中有较严重的雾沫夹带现象或引起液泛,故选用填料塔为宜。因为填料不易形成泡沫。本设计为分离甲醇和水,故选用填料塔。 ②对于易腐蚀介质,可选用陶瓷或其他耐腐蚀性材料作填料,对于不腐蚀的介质,则可选金属性质或塑料填料,而本设计分离甲醇和水,腐蚀性小可选用金属填料。 2 与操作条件有关的因素 ①传质速率受气膜控制的系统,选用填料塔为宜。因为填料塔层中液相为膜状流、气相湍动,有利于减小气膜阻力。 ②难分离物系与产品纯度要求较高,塔板数很多时,可采用高效填料。 ③若塔的高度有限制,在某些情况下,选用填料塔可降低塔高,为了节约能耗,故本设计选用填料塔。 ④要求塔内持液量、停留时间短、压强小的物系,宜用规整填料。 4.3.3 流程确定和说明 1 加料方式 加料方式有两种:高位槽加料和泵直接加料。采用高位槽加料,通过控制液位高度,可以得到稳定的流量和流速。通过重力加料,可

化工原理课程设计,甲醇和水的分离精馏塔的设计

郑州轻工业学院 ——化工原理课程设计说明书 课题:甲醇和水的分离 学院:材料与化学工程学院 班级: 姓名: 学号: 指导老师: 目录 第一章流程确定和说明 (2) 1.1.加料方式 (2)

1.2.进料状况 (2) 1.3.塔型的选择 (2) 1.4.塔顶的冷凝方式 (2) 1.5.回流方式 (3) 1.6.加热方式 (3) 第二章板式精馏塔的工艺计算 (3) 2.1物料衡算 (3) 2.3 塔板数的确定及实际塔板数的求取 (5) 2.3.1理论板数的计算 (5) 2.3.2求塔的气液相负荷 (5) 2.3.3温度组成图与液体平均粘度的计算 (6) 2.3.4 实际板数 (7) 2.3.5试差法求塔顶、塔底、进料板温度 (7) 第三章精馏塔的工艺条件及物性参数的计算 (9) 3.1 平均分子量的确定 (9) 3.2平均密度的确定 (10) 3.3. 液体平均比表面积张力的计算 (11) 第四章精馏塔的工艺尺寸计算 (12) 4.1气液相体积流率 (12) 4.1.1 精馏段气液相体积流率: (12) 4.1.2提馏段的气液相体积流率: (13) 第五章塔板主要工艺尺寸的计算 (14) 5.1 溢流装置的计算 (14) 5.1.1 堰长 (14) 5.1.2溢流堰高度: (15) 5.1.3弓形降液管宽度 (15) 5.1.4 降液管底隙高度 (16) 5.1.5 塔板位置及浮阀数目与排列 (16) 第六章板式塔得结构与附属设备 (24) 6.1附件的计算 (24) 6.1.1接管 (24) 6.1.2 冷凝器 (27) 6.1.3再沸器 (28) 第七章参考书录 (28) 第八章设计心得体会 (29)

甲醇-水溶液连续精馏塔课程设计91604

目录 设计任务书 一、概述 1、精馏操作对塔设备的要求和类型 (4) 2、精馏塔的设计步骤 (5) 二、精馏塔工艺设计计算 1、设计方案的确定 (6) 2、精馏塔物料衡算 (6) 3、塔板数的确定 (7) 的求取 (7) 3.1理论板层数N T 3.2实际板层数的求取 (8) 4、精馏塔的工艺条件及有关物性数据的计算 4.1操作温度的计算 (11) 4.2平均摩尔质量的计算 (11) 4.3平均密度的计算 (12) 4.4液相平均表面张力计算 (12) 4.5液体平均粘度计算 (13) 5、精馏塔塔体工艺尺寸计算 5.1塔径的计算 (14) 5.2精馏塔有效高度的计算 (15) 6、塔板主要工艺尺寸计算 6.1溢流装置计算 (16) 6.2塔板的布置 (17) 6.3浮阀计算及排列 (17) 7、浮阀塔流体力学性能验算 (19) 8、塔附件设计 (26) 7、精馏塔结构设计 (30)

7.1设计条件 (30) 7.2壳体厚度计算………………………………………………… 7.3风载荷与风弯矩计算………………………………………… 7.4地震弯矩的计算………………………………………………… 三、总结 (27) 化工原理课程设计任务书 一、设计题目: 甲醇-水溶液连续精馏塔设计 二、设计条件: 年产量: 95%的甲醇17000吨 料液组成(质量分数): (25%甲醇,75%水) 塔顶产品组成(质量分数): (95%甲醇,5%水) 塔底釜残液甲醇含量为6% 每年实际生产时间: 300天/年,每天24小时连续工作 连续操作、中间加料、泡点回流。 操作压力:常压 塔顶压力4kPa(表压) 塔板类型:浮阀塔 进料状况:泡点进料 单板压降:kPa 7.0 厂址:安徽省合肥市 塔釜间接蒸汽加热,加热蒸汽压力为0.5Mpa 三、设计任务 完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书. 设计内容包括: 1、 精馏装置流程设计与论证 2、 浮阀塔内精馏过程的工艺计算 3、 浮阀塔主要工艺尺寸的确定 4、 塔盘设计 5、 流体力学条件校核、作负荷性能图 6、 主要辅助设备的选型 四、设计说明书内容 1 目录 2 概述(精馏基本原理) 3 工艺计算 4 结构计算 5 附属装置评价 6 参考文献 7 对设计自我评价 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主

甲醇精馏的方法

1.4.2 甲醇精馏的典型工艺流程甲醇精馏产生工艺有多种,分为单塔精馏,双塔精馏,三塔精馏与四塔精馏(即三塔加回收塔) (1) 单塔流程描述 采用铜系催化剂低压法合成甲醇,由于粗甲醇中不仅还原性杂质的含量大大减少,而且二甲醚的含量几十倍地降低,因此在取消化学净化的同时,可将预精馏及甲醇-水-重组分的分离在一台主精馏塔内同时进行,即单塔流程,就能获得一般工业上所需要的精甲醇。单塔流程更适用于合成甲基燃料的分离,很容易获得燃料级甲醇。 单塔流程(见图1.1)为粗甲醇产品经过一个塔就可以采出产品。粗甲醇塔中部加料口送入,轻组分由塔顶排出,高沸点的重组分在进料板以下若塔板处引出,水从塔底排出,产品甲醇在塔顶以下若干块塔板引出。 (2) 双塔流程描述 双塔工艺是由脱醚塔,甲醇精馏塔或者主塔组成。主塔在工厂中产量在100万吨/年以下,仅仅能提供简单的过程,所以设备和投资较低。 传统的工艺流程,是最早用于30MPa压力下以锌铬催化剂合成粗甲醇的精制。主要步骤有:中和、脱醚、预精馏脱轻组分杂质、氧化净化、主精馏脱水和重组分,最终得到精甲醇产品。在传统工艺流程上,取消脱醚塔和高锰酸钾的化学净化,只剩下双塔精馏(预精馏塔和主精馏塔)。其高压法锌铬催化剂合成甲醇和中、低压法铜系催化剂合成甲醇都可适用。 从合成工序来的粗甲醇入预精馏塔,此塔为常压操作。为了提高预精馏塔后甲醇的稳定性,并尽可能回收甲醇,塔顶采用两级冷凝。塔顶经部分冷凝后的

大部分甲醇、水及少量杂质留在液相作为回流返回塔,二甲醚等轻组分(初馏分)及少量的甲醇、水由塔顶逸出,塔底含水甲醇则由泵送至主精馏塔。主精馏塔操作压力稍高于预精馏塔,但也可以认为是常压操作,塔顶得到精甲醇产品,塔底含微量甲醇及其它重组分的水送往水处理系统(见图1.2)。 (3) 三塔流程描述 三塔工艺是由脱醚塔,加压精馏塔和常压精馏塔组成,形成二效精馏与二甲醇精馏塔甲醇产品的镏出物的混合物。三塔流程(见图1.3)的主要特点是,加压塔塔顶冷凝潜热用作常压塔塔釜再沸器的热源,形成双效精馏二效精馏,因此热量交换在加压塔顶部和常压塔底部之间进行。这种形式节省大约30%~40%的能源,同时降低了循环冷却水的速度。 从合成工序来的粗甲醇入预精馏塔,在塔顶除去轻组分及不凝气,塔底含水甲醇由泵送加压塔。加压塔操作压力为57bar(G),塔顶甲醇蒸气全凝后,部分作为回流经回流泵返回塔顶,其余作为精甲醇产品送产品储槽,塔底含水甲醇则进常压塔。同样,常压塔塔顶出的精甲醇一部分作为回流,一部分与加压塔产品混合进入甲醇产品储槽。 (4) 四塔流程描述 四塔流程(见图1.4)包含预精馏塔、加压精馏塔、常压精馏塔和甲醇回收塔。粗甲醇经换热后进入预精馏塔,脱除轻组分后(主要为不凝气、二甲醚等),塔底甲醇及高沸点组分加压后进入加压精馏塔,加压精馏塔顶的气相进入冷凝蒸发器,利用加压精馏塔和常压精馏塔塔顶、塔底的温差,为常压塔塔底提供热源,同时对加压塔塔顶气相冷凝。冷凝后的精甲醇进入回流罐,一部分作为加压塔回流,一部分作为精甲醇产品出装置,加压塔塔底的甲醇、高沸组分、

精馏塔课程设计

目录 一、概述 二、设计方案和工艺流程的确定 三、塔的物料衡算四、回流比确定 五、塔板数的确立 六、塔的工艺条件及物性数据计算 七:塔和塔板主要工艺尺寸计算 八、塔板的流体力学验算 十、热量衡算 十一、筛板塔的设计结果总表 十二、辅助设备选型及接管尺寸 十三、精馏塔机械设计计算 十四、设计中的心得体会 一、概述: 塔设备是炼油、化工、石油化工等生产广泛应用的气液传质设备。根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。板式塔内设置一定数量的塔板,气体以鼓泡或喷射形式穿过板上液层进行质,热传递,气液相组成呈阶梯变化,属逐渐接触逆流操作过程。填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流而上(也有并流向下者)与液体接触进行质热传递,气液组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的要求:(1)生产能力大;(2)传质传热效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量小(6)制作安装容易,维修方便。(7)设备不易堵塞,耐腐蚀。 其中板式塔又可分为有降液管的塔板(如泡罩塔,浮阀塔,筛板塔,舌型,S型等)和无降液管的(如穿流式筛板,穿流式波纹板)该课程涉及到的是板式塔中的浮阀塔,其广泛用于精馏、吸收、和解吸等过程。其主要特点是再塔板的开孔上装有可浮动的浮阀,气流从浮阀的周边以稳定的速度水平地进入塔板上液层进行两相接触,浮阀课根据气流流速地大小上下浮动,自行调节。浮阀有盘式、条式等多种。国内多采用盘式,其优点为生产能力大,操作弹性大,分离效率较大,塔板结构较简单。此型中的F-1型结构简单,已经列入部颁标准,因此型号的重阀操作稳定性好,一般采用重阀。 二、设计方案和工艺流程的确定: 在此次课程涉及中主要介绍浮阀塔在精馏中的应用,精馏装置包括精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器、和产品冷却器等设备。热量自塔釜输入,物料再塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器的冷却物质将余热带走。此过程中因考虑节能。 另外,为保持塔的稳定性,流程除用泵直接送入塔原料外,也可采用高位槽送料以受泵操作波动影响。 塔顶冷凝器装置根据生产情况以决定采用全凝器和分凝器。一般,塔顶分凝器对上升蒸汽虽由一定的增浓作用,当在石油等工业中获取液相产品时往往采用全凝器,以便于准确的控制回流比。若后继装置使用气态物料,则宜用分凝器 操作压强由常压、低压和高压操作,其取决于冷凝温度,一般都采用常压,对于热敏性物质或混合液沸点过高的物质则宜采用减压操作,而常压下为气态的物质采用高压操作。 对于物料的进料,一般情况下采用冷进料,但是为了考虑塔的操作稳定性,则一把采用泡点进料。

甲醇—水填料精馏塔设计示例-精选.

甲醇—水分离装置的工艺设计 摘要 甲醇是一种重要的化工原料,其用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲脂等多种有机产品,也是农药、医药的重要原料之一。 甲醇易于吸收水蒸汽、二氧化碳和某些其它物质,因此只有用特殊的方法才能制得完全无水的甲醇。精馏是应用最广的传质分离操作,板式塔是目前最主要的精馏塔塔型,对它的研究一直长盛不衰。筛板塔和浮阀塔成功地取代泡罩塔是效益巨大的成果。板式塔的设计已达到较高水平,设计结果比较可靠。马伦戈尼效应造成的界面湍动现象和汽液两相间的不同接触工况的研究,使认识得到了深化,对传质效率的研究有所促进。具有各种特点的新型塔板开发研究不断取得成果。对于塔板上汽液两相流动和混合状况、雾沫夹带及它们对效率的影响研究不断深入,但离得到一个通用而可靠的效率估算模型尚有较大距离,特别是多元系统的效率。进一步深入进行塔中汽液两相流动状况的研究,对于预测压降、传质效率和塔板的可操作区域,对于认识至今了解甚少的降液管中状况都十分有意义。 关键词:甲醇;精馏;板式塔

目录 摘要 (1) 目录 (2) 前言 (3) 第一章文献综述 (5) 1.1甲醇 (5) 1.1.1甲醇的性质 (5) 1.1.2甲醇的用途 (5) 1.1.3甲醇工业 (5) 1.1.4甲醇的下游产品 (6) 1.2精馏原理 (7) 1.3板式塔 (8) 1.3.1 板式塔分类 (8) 1.3.2 板式塔的结构 (8) 1.3.3 板式塔的特点 (10) 1.3.4 板式塔的作用 (10) 第二章设计部分 (12) 2.1设计任务 (12) 2.2 设计方案的确定 (12) 2.3 设计计算 (12) 2.3.1 精馏塔的物料衡算 (12) 2.3.2 精馏塔塔板数的确定 (13)

甲醇-水精馏塔设计报告

《化工原理课程设计》报告

一、概述...................................................................................................................................... - 4 - 1.1 设计依据....................................................................................................................... - 4 - 1.2 技术来源....................................................................................................................... - 4 - 1.3设计任务及要求........................................................................................................... - 4 - 二、计算过程.............................................................................................................................. - 5 - 2. 1 设计方案.................................................................................................................... - 5 - 2.2 塔型选择....................................................................................................................... - 5 - 2.3工艺流程简介................................................................................................................ - 5 - 2.4 操作条件的确定........................................................................................................... - 6 - 2.41 操作压力............................................................................................................. - 6 - 2.4.2 进料状态............................................................................................................ - 6 - 2.4.3 热能利用............................................................................................................ - 6 - 2.5 有关的工艺计算........................................................................................................... - 6 - 2.5.1精馏塔的物料衡算...................................................................错误!未定义书签。 2.5.2物料衡算............................................................................................................. - 7 - 2.6 塔板数的确定............................................................................................................... - 7 - 2.6.1 理论板层数NT的求取 .................................................................................... - 7 - 2.6.2 实际板层数的求取............................................................................................ - 8 - 2.7精馏塔的工艺条件及有关物性数据的计算............................................................... - 8 - 2.7.1操作压力的计算................................................................................................. - 8 - 2.7.2操作温度的计算(详见附录一(1)) ................................................................ - 9 - 2.7.3 平均摩尔质量的计算........................................................................................ - 9 - 2.7.4 平均密度的计算................................................................................................ - 9 - 2.7.5液相平均表面力的计算................................................................................... - 11 - 2.7.6 液体平均粘度的计算...................................................................................... - 11 - 2.8 精馏塔的塔底工艺尺寸计算..................................................................................... - 12 - 2.8.1塔径的计算....................................................................................................... - 12 - 2.8.2 精馏塔有效高度的计算.................................................................................. - 13 - 2.9 塔板主要工艺尺寸的计算......................................................................................... - 14 - 2.9.1溢流装置的计算............................................................................................... - 14 - 2.9.2 塔板布置.......................................................................................................... - 15 - 2.10 筛板的流体力学验算............................................................................................... - 16 - 2.10.1 塔板压降........................................................................................................ - 16 - 2.10.2 液面落差........................................................................................................ - 18 - 2.10.3 液沫夹带........................................................................................................ - 18 - 2.10.4 漏液................................................................................................................ - 18 - 2.10.5 液泛................................................................................................................ - 18 - 2.11 塔板负荷性能图....................................................................................................... - 19 - 2.11.1液漏线............................................................................................................. - 19 - 2.11.2液沫夹带线..................................................................................................... - 20 - 2.11.3液相负荷下限线............................................................................................. - 20 - 2.11.4液相负荷上限线............................................................................................. - 21 - 2.11.5液泛线............................................................................................................. - 21 -

甲醇-水精馏课程设计—化工原理课程设计

甲醇-水分离过程板式精馏塔的设计 1.设计方案的确定 本设计任务为分离甲醇和水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.8倍。塔釜采用间接蒸汽加热①。 2.精馏塔的物料衡算 2.1.原料液及塔顶、塔顶产品的摩尔分率 甲醇的摩尔质量M A=32.04kg/kmol 水的摩尔质量M B=18.02 kg/kmol x F= 0.46/32.04 0.324 0.46/32.040.54/18.02 = + x D= 0.95/32.04 0.914 0.95/32.040.05/18.02 = + x W= 0.03/32.04 0.0171 0.03/32.040.97/18.02 = + 2.2.原料液及塔顶、塔底产品的平均摩尔质量 M F=0.324*32.04(10.324)*18.0222.56 +-=kg/kmol M D=0.914*32.04(10.914)*18.0230.83 -=kg/kmol M W=0.0171*32.04(10.0171)*18.0218.26 +-=kg/kmol 2.3.物料衡算 原料处理量F= 30000*1000 184.7 24*300*22.56 =kmol/h 总物料衡算184.7=D+W 甲醇物料衡算184.7*0.324=0.914D+0.0171W 联立解得D=63.21 kmol/h W=121.49 kmol/h 3.塔板数的确定 3.1.理论塔板层数N T的求取 3.1.1.由手册查的甲醇-水物系的气液平衡数据

直接蒸汽加热填料精馏塔设计指导书

简单填料精馏塔设计 设计任务:规定F 、xF 、xD 、xW ,设计出能完成分离任务的板式精馏塔 1. 回流比 ● 最小回流比 设夹紧点在精馏段,其坐标为(xe,ye)则 min D e e e x y R y x -= - (1) 设夹紧点在提馏段,其坐标为(xe,ye) min min 0(1)(1)e e W y R D qF L V R D q F x x -+==+--- (2) 所需基础数据:气液相平衡数据 丙酮-水 xi = [0 0.01 0.02 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相丙酮平衡浓度 yi = [0 0.253 0.425 0.624 0.755 0.793 0.815 0.830 0.839 0.849 0.859 0.874 0.898 0.935 0.963 1.0]; % 汽相丙酮平衡浓度 ti=[ 100 92.7 86.5 75.8 66.5 63.4 62.1 61.0 60.4 60.0 59.7 59.0 58.2 57.5 57.0 56.13 ];%平衡温度 甲醇-水 xi = [0 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相甲醇平衡浓度 yi = [0 0.134 0.234 0.304 0.365 0.418 0.517 0.579 0.665 0.729 0.779 0.825 0.870 0.915 0.958 0.979 1.00]; % 汽相甲醇平衡浓度 ti=[ 100 96.4 93.5 91.2 89.3 87.7 84.4 81.7 78.0 75.3 73.1 71.2 69.3 67.6 66.0 65.0 64.5 ];%平衡温度 ● 确定操作回流比 min (1.1~2.0)R R = 2 全塔物料衡算与操作方程 (1)全塔物料衡算 F S D W +=+ (3) F D W Fx Dx Wx =+ (4) 其中 (1)(1)S V R D q F ==+-- (5) W L RD qF ==+ (6) 联立式(3)、式(4)得: F W D W x qx D F x Rx -=+ (7)

化工原理甲醇-水板式精馏塔设计

一、甲醇-水板式精馏塔设计条件 (1)生产能力:3万吨/年,年开工300天 (2)进料组成:甲醇含量65%(质量分数) (3)采用间接蒸汽加热并且加热蒸汽压力:0.3MPa (4)进料温度:采用泡点进料 (5)塔顶馏出液甲醇含量99%(质量分数) (6)塔底轻组分的浓度≤1%(本设计取0.01) (7)塔顶压强常压 (8)单板压降≤0.7Kpa (9)冷却水进口温度25℃ (10)填料类型:DN25金属环矩鞍散堆填料 二、设计的方案介绍 1、工业流程概述 工业上粗甲醇精馏的工艺流程,随着粗甲醇合成方法不同而有差异,其精制过程的复杂程度有较大差别,但基本方法是一致的。首先,总是以蒸馏的方法在蒸馏塔的顶部,脱出较甲醇沸点低的轻组分,这时,也可能有部分高沸点的杂质和甲醇形成共沸物,随轻组分一并除去。然后,仍以蒸馏的方法在塔的底部或侧脱除水和重组分,从而获得纯净甲醇组分。其次,根据精甲醇对稳定性或其他特殊指标的要求,采取必要的辅助办法。 常规甲醇精制流程可以分为两大部分,第一部分是预精馏部分,另一部分是主精馏部分。预精馏部分除了对粗甲醇进行萃取精馏脱出某些烷烃的作用之外,另外的还可以脱出二甲醚,和其它轻组分有机杂质。其底部的出料被加到主塔的中间入料板上,主塔顶部出粗甲醇,底部出废液,下部侧线出杂醇。 2、进料的热状况 精馏操作中的进料方式一般有冷液加料、泡点进料、汽液混合物进料、饱和蒸汽进料和过热蒸汽加料五种。本设计采用的是泡点进料。这样不仅对塔的操作稳定较为方便,不受厦门季节温度影响,而且基于恒摩尔流假设,精馏段与提馏段上升蒸汽的摩尔流量相等,因此塔径基本相等,在制造上比较方便。 3、精馏塔加热与冷却介质的确定 在实际加热中,由于饱和水蒸气冷凝的时候传热的膜系数很高,可以通过改变蒸汽压力准确控制加热温度。水蒸气容易获取,环保清洁不产生环境污染,并且不容易使管道腐蚀,成本降低。因此,本设计是以133.3℃总压是300 kpa的饱和水蒸汽作为加热介质。 冷却介质一般有水和空气。在选择冷却介质的过程中,要因地制宜充分考虑。以茂名市地处亚热带为例,夏天室外平均气温28℃。因此,计算选用28℃的冷却水,选择升温10℃,即冷却水的出口温度为38℃。 4、塔顶的回流方式 对于小型塔采用重力回流,回流冷凝器一般安装在比精熘塔略高的地方,液体依靠自身的重力回流。但是必须保证冷凝器内有一定持液量,或加入液封装置防止塔顶汽相逃逸至

化工原理课程设计 苯-甲苯浮阀精馏塔共19页

3.课程设计报告内容 3.1 流程示意图 冷凝器→塔顶产品冷却器→苯的储罐→苯 ↑↓回流 原料→原料罐→原料预热器→精馏塔 ↑回流↓ 再沸器← → 塔底产品冷却器→甲苯的储罐→甲苯 3.2 流程和方案的说明及论证 3.2.1 流程的说明 首先,苯和甲苯的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。因为被加热到泡点,混合物中既有气相混合物,又有液相混合物,这时候原料混合物就分开了,气相混合物在精馏塔中上升,而液相混合物在精馏塔中下降。气相混合物上升到塔顶上方的冷凝器中,这些气相混合物被降温到泡点,其中的液态部分进入到塔顶产品冷却器中,停留一定的时间然后进入苯的储罐,而其中的气态部分重新回到精馏塔中,这个过程就叫做回流。液相混合物就从塔底一部分进入到塔底产品冷却器中,一部分进入再沸器,在再沸器中被加热到泡点温度重新回到精馏塔。塔里的混合物不断重复前面所说的过程,而进料口不断有新鲜原料的加入。最终,完成苯与甲苯的分离。 3.2.2 方案的说明和论证

本方案主要是采用浮阀塔。 精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下: 一:生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流 动。 二:效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。 三:流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。 四:有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。 五:结构简单,造价低,安装检修方便。 六:能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。而浮阀塔的优点正是: 而浮阀塔的优点正是: 1.生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%~40%,与筛板塔接近。 2.操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。

甲醇水筛板精馏塔课程设计

化学与化学工程学院 《化工原理》专业课程设计 设计题目常压甲醇-水筛板精馏塔设计 姓名:潘永春 班级:化工101 学号: 2010054052

指导教师:朱宪 荣 课程设计时间2013、6、8——2013、6、20 化工原理课程设计任务书 专业:化学与化学工程学院:化工101 姓名:潘永春 学号 20100054052 指导教师朱宪荣 设计日期: 2013 年6月8日至 2013年6月20日 一、设计题目:甲醇-水精馏塔的设计 二、设计任务及操作条件: 1、设计任务 生产能力(进料) 413.34Kmol/hr 操作周期 8000小时/年 进料组成甲醇0.4634 水0.5366(质量分率下同) 进料密度 233.9Kg/m3 平均分子量 22.65 塔顶产品组成 >99% 塔底产品组成 <0.04% 2、操作条件 操作压力 1.45bar (表压) 进料热状态汽液混合物液相分率98% 冷却水 20℃ 直接蒸汽加热低压水蒸气 塔顶为全凝器,中间汽液混合物进料,连续精馏。 3、设备形式筛板式或浮阀塔

4、厂址齐齐哈尔地区 三、图纸要求 1、计算说明书(含草稿) 2、精馏塔装配图(1号图,含草稿) 一.前言5 1.精馏与塔设备简介 5 2.体系介绍 5 3.筛板塔的特点 6 4.设计要求: 6 二、设计说明书7 三.设计计算书8 1.设计参数的确定8 1.1进料热状态8 1.2加热方式8 1.3回流比(R)的选择8 1.4 塔顶冷凝水的选择 8 2.流程简介及流程图 8 2.1流程简介8 3.理论塔板数的计算与实际板数的确定9 3.1理论板数计算9 3.1.1物料衡算9 3.1.2 q线方程9 3.1.3平衡线方程10 3.1.4 Rmin和R的确定10 3.1.5精馏段操作线方程的确定10 3.1.6精馏段和提馏段气液流量的确定10 3.1.7提馏段操作线方程的确定10 3.1.8逐板计算10 3.1.9图解法求解理论板数如下图: 12 3.2实际板层数的确定12 4精馏塔工艺条件计算12 4.1操作压强的选择12 4.2操作温度的计算13

相关文档