文档库 最新最全的文档下载
当前位置:文档库 › Matlab分水岭分割算法

Matlab分水岭分割算法

Matlab分水岭分割算法
Matlab分水岭分割算法

直方图均衡化也是非线性量化的一种吧,网上找到的,作者写的非常详细。

% 数字图像处理程序作业

% 本程序能将JPG格式的彩色图像文件灰度化并进行直方图均衡

%

% 输入文件:PicSample.jpg 待处理图像

% 输出文件:PicSampleGray.bmp 灰度化后图像

% PicEqual.bmp 均衡化后图像

%

% 输出图形窗口说明

% figure NO 1 待处理彩色图像

% figure NO 2 灰度化后图像

% figure NO 3 直方图

% figure NO 4 均衡化后直方图

% figure NO 5 灰度变化曲线

% figure NO 6 均衡化后图像

% 1,处理的图片名字要为PicSample.jpg

% 2,程序每次运行时会先清空workspace

% 作者;archiless lorder

clear all

%一,图像的预处理,读入彩色图像将其灰度化

PS=imread('PicSample.jpg'); %读入JPG彩色图像文件

imshow(PS) %显示出来figure NO 1

title('输入的彩色JPG图像')

imwrite(rgb2gray(PS),'PicSampleGray.bmp'); %将彩色图片灰度化并保存

PS=rgb2gray(PS); %灰度化后的数据存入数组

figure,imshow(PS) %显示灰度化后的图像,也是均衡化前的样品figure NO 2

title('灰度化后的图像')

%二,绘制直方图

[m,n]=size(PS); %测量图像尺寸参数

GP=zeros(1,256); %预创建存放灰度出现概率的向量

for k=0:255

GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置

end

figure,bar(0:255,GP,'g') %绘制直方图figure NO 3

title('原图像直方图')

xlabel('灰度值')

ylabel('出现概率')

%三,直方图均衡化

S1=zeros(1,256);

for i=1:256

for j=1:i

S1(i)=GP(j)+S1(i); %计算Sk

end

end

S2=round(S1*256); %将Sk归到相近级的灰度

for i=1:256

GPeq(i)=sum(GP(find(S2==i))); %计算现有每个灰度级出现的概率

end

figure,bar(0:255,GPeq,'b') %显示均衡化后的直方图figure NO 4

title('均衡化后的直方图')

xlabel('灰度值')

ylabel('出现概率')

figure,plot(0:255,S2,'r') %显示灰度变化曲线figure NO 5

legend('灰度变化曲线')

xlabel('原图像灰度级')

ylabel('均衡化后灰度级')

%四,图像均衡化

PA=PS;

for i=0:255

PA(find(PS==i))=S2(i+1); %将各个像素归一化后的灰度值赋给这个像素

end

figure,imshow(PA) %显示均衡化后的图像figure NO 6

title('均衡化后图像')

imwrite(PA,'PicEqual.bmp');

改进的利用门限的分水岭图像分割算法

2007年第12期福建电脑 改进的利用门限的分水岭图像分割算法 李洪军,王继成 (同济大学计算机系上海201804) 【摘要】:分水岭变换的一些优秀的性质使它在许多不同的图像分割应用中非常常用:它简单并且具有直观性,可以并行实现,并且总是产生完整的图像轮廓。然而,它仍然有许多缺点(过度分割,对噪声敏感,难于检查出细结构物体或者低信噪比的结构)。本文提出一种改进的使用门限的分水岭算法来在不同程度上克服分水岭的这些缺陷。我们把该算法应用在三类图片上,一种具有复杂结构,一种具有低对比度,一种有低的信噪比。本文展示了该算法的分割结果,展示了该算法在这几类图片上出色表现。 【关键词】:图像分割,过度分割,基于沉浸的分水岭算法,标记的分水岭算法 1.前言 1.1分水岭变换 分水岭变换是一种流行的图像分割方法,它来自数学形态学领域[1]。我们把灰度图象看作地形表面,让每一点的像素值代表这点的高度。然后考虑雨水降落到该地表,随着水位不断上升,水会从不同的局部最小点形成汇水盆,而分水岭就是阻挡这些汇水盆相互融合的堤坝。一般情况下,分水岭变换计算的是原始图片的梯度图,这样这些分水岭就正好位于梯度变化大的那些点上。 分水岭变换由于它以下的优点被用在图像处理的许多领域:直观,快速并且可以并行计算,总是产生完整的边界,这样就避免了边界连接的后处理。而且,不少研究人员把分水岭嵌入到多尺度框架中[2]。但是分水岭算法还是有一些致命的缺点,下面列出了最重要的几点[2]。 过度分割。由于大部分图像的梯度图都有许许多多的局部最小,所以分水岭变换的结果是无数的小区域边界,这样的结果毫无意义。通常的解决办法是是使用标记的图片来减少局部最小的数量,即使用带标记的分水岭变换[3]。 对噪声的敏感。局部的一些改变会引起分割结果的明显改变,强烈的噪声有时候使得分水岭变换无法找出真正的边界。其中的一个解决办法是使用各向异性的滤波器。 难以准确检测出低对比度的边界。由于对比度低所以使得信噪比高。所以由于前一个原因,对这种图片分水岭变换仍然无法很好的工作。一般的办法仍然是使用带标记的分水岭变换。而V.Grau提出使用基于MRF的分水岭变换对核磁共振脑灰白质的分割效果更好。 即使是这样,在医学图像分割中,比起近年来兴起的snakemodels和levelset方法,分水岭变换由于分水线总是位于梯度变换最剧烈的地方,并且总是产生完整的边界,从而在对比度低的图像分割中显示出了无可比拟的优势。这使得让分水岭变换能更好的工作是非常有意义的。 1.2本文所做的工作概览 我们提出一种改进的分水岭算法,它极大程度上改善了分水岭变换的表现。第2部分给出了算法。2.1部分给出了分水岭变换的定义,2.2部分给出标记分水岭变换的算法描述,2.3部分给出了我们改进的算法描述。第3部分给出我们的分割结果和其他分割方法的分割结果。3.1部分给出了低对比度的图像的分割结果。我们的分割结果明显优于直接的分水岭分割结果。并且与常用的带标记的分水岭算法分割结果做了比较。3.2部分给出了对于复杂结构的分割结果,我们的分割结果与带标记的分水岭变换的比较。3.3部分给出了对于低信噪比的图像分割结果,并且与经过去噪后的分割结果进行了比较,显示出该算法对噪声的稳定性。第4部分给出了结论和展望。 2.算法 2.1离散图像的分水岭变换的定义及算法描述2.1.1离散图像的分水岭变换的定义 对于分水岭变换,目前存在着几种定义,文献[4]对这些定义进行了归纳,整理。我们这里所采用的定义是基于沉浸的分水岭变换(watershedbyimmersion)。 令f:D'N是一幅灰度图象,它的最大和最小灰度值为h_max和h_min。定义一个从h_min到h_max的水位h不断递增的递归过程。在这个过程中每个与不同的局部最小相关的汇水盆地都不断扩展。定义X(h)记做在水位h时候汇水盆地的集合的并。在h+1层,一个连通分量T(h+1)或者是一个新的局部最小,或者是一个已经存在的X(h)中的一个盆地的扩展。对于后者,按邻接关系计算高度为h+1的每一个点与各汇水盆地的距离。如果一个点与两个个以上的盆地等距离,则它不属于任何盆地,否则它属于与它距离最近的盆地。这样从而产生新的X(h+1)。把在高度h出现的局部最小记作MIN(h)。把Y(h+1,X(h))记作高度为h+1同时属于X(h)的点的集合。 定义2.1(基于沉浸的分水岭变换) 分水岭变换[5]Wshed(f)就是X(h_max)的补集: 2.1.2分水岭算法直观描述 整个算法模拟水平面从最低的地理高度逐渐沉浸到最高的地理高度。这时水会逐渐从各个局部最小中涌出,形成不同的汇水盆地。随着水位不断升高,当两个不同的汇水盆地将融合时,我们使用堤坝把两个盆地分开。这个堤坝足够高,即使水位到最高也无法使相邻的盆地的水汇合。当水位涨到最高时,将完全沉浸地表,这时候那些堤坝就是产生的轮廓线。 2.2带标记的分水岭算法描述 引入标记是为了控制过度分割。一个标记是属于一副图像的连通分量。我们需要找到有与重要对象相联系得内部标记,同时也要找到与背景相联系得外部标记。取得内部标记和外部标记,就可以使用imposition技术[5]使梯度图像的局部最小只在这些标记的地方出现。这样所有的局部最小,即汇水盆地的个数就都是已知的。这时再使用分水岭变换,这样就可以避免过度分割。 2.3本文提出的改进的分水岭算法描述 过度分割是由于过多的局部最小而造成。带标记的分水岭算法是用预处理的办法来控制汇水盆地的数量。而本文中的算法则在算法进行的同时,通过融合一些小的,不值得考虑的汇水盆地,从而来控制盆地的数量。当两个盆地即将连通时,标准的分水岭算法就会在他们之间修堤坝来阻挡汇水盆地的相连通。而本文的算法则要进行判断。我们只认为储水量达到一定程度,并且高度达到一定高度的盆地才是我们所要的盆地。不符合这种要求的盆地我们把他们融合给与其相邻的最大的盆地。我们 77

关于图像分割算法的研究

关于图像分割算法的研究 黄斌 (福州大学物理与信息工程学院 福州 350001) 摘要:图像分割是图像处理中的一个重要问题,也是一个经典难题。因此对于图像分割的研究在过去的四十多年里一直受到人们广泛的重视,也提山了数以千计的不同算法。虽然这些算法大都在不同程度上取得了一定的成功,但是图像分割问题还远远没有解决。本文从图像分割的定义、应用等研究背景入手,深入介绍了目前各种经典的图像分割算法,并在此基础比较了各种算法的优缺点,总结了当前图像分割技术中所面临的挑战,最后展望了其未来值得努力的研究方向。 关键词:图像分割 阀值分割 边缘分割 区域分割 一、 引言 图像分割是图像从处理到分析的转变关键,也是一种基本的计算机视觉技术。通过图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能,因此它被称为连接低级视觉和高级视觉的桥梁和纽带。所谓图像分割就是要将图像表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图像中的目标、背景进行标记、定位,然后将目标从背景或其它伪目标中分离出来[1]。 图像分割可以形式化定义如下[2]:令有序集合表示图像区域(像素点集),H 表示为具有相同性质的谓词,图像分割是把I 分割成为n 个区域记为Ri ,i=1,2,…,n ,满足: (1) 1,,,,n i i j i R I R R i j i j ===??≠ (2) (),1,2,,i i i n H R True ?== (3) () ,,,i j i j i j H R R False ?≠= 条件(1)表明分割区域要覆盖整个图像且各区域互不重叠,条件(2)表明每个区域都具有相同性质,条件(3)表明相邻的两个区域性质相异不能合并成一个区域。 自上世纪70年代起,图像分割一直受到人们的高度重视,其应用领域非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。主要表现在: 1)医学影像分析:通过图像分割将医学图像中的不同组织分成不同的区域,以便更好的

部分图像分割的方法(matlab)

大津法: function y1=OTSU(image,th_set) image=imread('color1.bmp'); gray=rgb2gray(image);%原图像的灰度图 low_high=stretchlim(gray);%增强图像,似乎也不是一定需要gray=imadjust(gray,low_high,[]); % subplot(224);imshow(gray);title('after adjust'); count=imhist(gray); [r,t]=size(gray); n=r*t; l=256; count=count/n;%各级灰度出现的概率 for i=2:l if count(i)~=0 st=i-1; break end end %以上循环语句实现寻找出现概率不为0的最小灰度值 for i=l:-1:1 if count(i)~=0; nd=i-1; break end end %实现找出出现概率不为0的最大灰度值 f=count(st+1:nd+1); p=st;q=nd-st;%p和分别是灰度的起始和结束值 u=0; for i=1:q; u=u+f(i)*(p+i-1); ua(i)=u; end

%计算图像的平均灰度值 for i=1:q; w(i)=sum(f(1:i)); end %计算出选择不同k的时候,A区域的概率 d=(u*w-ua).^2./(w.*(1-w));%求出不同k值时类间方差[y,tp]=max(d);%求出最大方差对应的灰度级 th=tp+p; if thth) y1(i,j)=x1(i,j); else y1(i,j)=0; end end end %上面一段代码实现分割 % figure,imshow(y1); % title('灰度门限分割的图像');

基于Matlab的彩色图像分割

用Matlab来分割彩色图像的过程如下: 1)获取图像的RGB颜色信息。通过与用户的交互操作来提示用户输入待处理的彩色图像文件路径; 2)RGB彩色空间到lab彩色空间的转换。通过函数makecform()和applycform()来实现; 3)对ab分量进行Kmean聚类。调用函数kmeans()来实现; 4)显示分割后的各个区域。用三副图像分别来显示各个分割目标,背景用黑色表示。Matlab程序源码 %文件读取 clear; clc; file_name = input('请输入图像文件路径:','s'); I_rgb = imread(file_name); %读取文件数据 figure(); imshow(I_rgb); %显示原图 title('原始图像'); %将彩色图像从RGB转化到lab彩色空间 C = makecform('srgb2lab'); %设置转换格式 I_lab = applycform(I_rgb, C); %进行K-mean聚类将图像分割成3个区域 ab = double(I_lab(:,:,2:3)); %取出lab空间的a分量和b分量 nrows = size(ab,1); ncols = size(ab,2); ab = reshape(ab,nrows*ncols,2); nColors = 3; %分割的区域个数为3 [cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3); %重复聚类3次 pixel_labels = reshape(cluster_idx,nrows,ncols); figure(); imshow(pixel_labels,[]), title('聚类结果'); %显示分割后的各个区域 segmented_images = cell(1,3); rgb_label = repmat(pixel_labels,[1 1 3]); for k = 1:nColors color = I_rgb; color(rgb_label ~= k) = 0; segmented_images{k} = color;

基于全卷积网络的图像语义分割算法研究

哈尔滨工业大学工程硕士学位论文 Abstract Because of the development of deep learning and the emergence of fully convolutional networks,the domain of the image semantic segmentation has been rapidly developed.It is widely used in the fields of driverless,medical diagnosis, machine navigation and so on.Driverless technology has been a research hotspot,in this technology,the perception of the environment around the vehicle is the key points.It can classify images on the pixel-level to obtain the overall information of the image,and the semantic segmentation requires the low-cost vision sensors,so it fits the demand of driverless technology. Fully convolutional networks is a feasible and effective image semantic segmentation algorithm.The algorithm innovatively replaces the fully connected layer with the convolutional layer and applies it to the pixel-level classification task. DeepLab is an improved algorithm with the fully convolutional networks and this algorithm has a high accuracy.However,there are still some problems in this algorithm,and there is a great space for improvement.We research each sub-module of the algorithm,then research the problem and give the improvement plan to further improve the accuracy of the algorithm. In order to solve the problem that the DeepLab algorithm does not make full use of global information,resulting in poor results in complex scenes,we introduces the global context information module,this module can provides prior information of complex scenes in the picture,the global context features are extracted and then merged with the local features.This module can improve the expression ability of the features.In order to solve the problem that decoder module of the DeepLab is too simple and the boundary of the predicted result is rough,we design an efficient decoder module,the shallow layer features are fully utilized,the shallow layer features are merged with the deep layer features,and we adjusts the proportion of the deep features and the shallow features,this way can restore some of the details information,and the boundary of the object is optimized.In order to solve the problem that the DeepLab is over fitting the fixed size picture,two effective multi-scale feature level fusion modules are designed by combining the idea of integrated learning with the multi-scale model training,and on this basis,an extra supervision module is introduced,this way can improve the robustness of the algorithm. We mainly use the extended Pascal VOC2012dataset for experiments. Specifically,first we determine the optimal parameter of the improved method,then

图像分割算法的比较与分析

中北大学 课程设计说明书 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学院:信息与通信工程学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法的比较与分析 指导教师:陈平职称: 副教授 2014 年12 月29 日

中北大学 课程设计任务书 14/15 学年第一学期 学院:信息与通信工程学院专业:电子信息工程 学生姓名:学号: 课程设计题目:信息处理综合实践: 图像分割算法的比较与分析起迄日期:2015年1月5日~2015年1月16日课程设计地点:电子信息工程专业实验室 指导教师:陈平 系主任:王浩全 下达任务书日期: 2014 年12月29 日课程设计任务书

课程设计任务书

目录 第一章绪论 (1) 研究目的和意义 (1) 图像分割的研究进展 (1) 第二章区域生长法分割图像 (4) 区域生长法介绍 (4) 区域生长法的原理 (4) 区域生长法的实现过程 (5) 第三章程序及结果 (6) 区域生长算法及程序 (6) 图像分割结果 (7) 第四章方法比较 (8) 阈值法 (8) 区域法 (8) 分水岭法 (8) 形态学方法 (9) 第五章总结 (10) 参考文献 (11)

第一章绪论 研究目的和意义 图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割;但某些分割方法只是适合于某些特殊类型的图像分割,所以分割结果的好坏需要根据具体的场合及要求衡量。图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。 图像分割是由图像处理到图像分析的关键步骤,在图像工程中占有重要位置。一方面,它是目标表达的基础,对特征测量有重要的影响。另一方面,因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象、更紧凑的表达形式,使得更高层的图像分析和理解成为可能。因此在实际应用中,图像分割不仅仅要把一幅图像分成满足上面五个条件的各具特性的区域,而且要把其中感兴趣的目标区域提取出来。只有这样才算真正完成了图像分割的任务,为下一步的图像分析做好准备,使更高层的图像分析和理解成为可能。 图像分割在很多方面,如医学图像分析,交通监控等,都有着非常广泛的应用,具有重要的意义。(1)分割的结果常用于图像分析,如不同形式图像的配准与融合,结构的测量,图像重建以及运动跟踪等。(2)在系统仿真,效果评估,图像的3D重建以及三维定位等可视化系统中,图像分割都是预处理的重要步骤。 (3)图像分割可在不丢失有用信息的前提下进行数据压缩,这就降低了传输的带宽,对提高图像在因特网上的传输速度至关重要。(4)分割后的图像与噪声的关系减弱,具有降噪功能,便于图像的理解。 图像分割的研究进展 图像分割是图像处理中的一项关键技术,至今已提出上千种分割算法。但因

基于MATLAB的图像分割算法研究

摘要 本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。与此同时本文还分析了图像分割技术研究的方向。 关键词:图像处理图像分割 Abstract This article analyses the application effect to the classics image segmentation method like the edge examination, territory value division technology, and the region growth and so on.For comparing the Roberts operator, Sobel operator, Prewitt operator, the operator of Laplacian and the operator of LoG(Laplacian-Gauss),Canny operator in gradient algorithm,the step, the way and the standard of the image segmentation,we can find out the three standard of Canny edge operator the edge detection result of reaching most satisfy. And the key point of threshold segmentation lie in fixing the threshold value, it is good to have only threshold value to determine it then can be effective to divide object and background,but this kind of method is good to those gray scales,the big difference image effect between the background and obiect. The basic idea of area is to form the new region from similar nature.And also, this paper analyses the research direction of image segmentation technology at the same time. Key words: image processing image segmentation operator

基于MATLAB的图像分割方法及应用

安徽财经大学 (《图像处理》课程论文) 题目:图像分割算法研究——基于分水岭分割法的彩色图像分割学院:管理科学与工程学院 专业:电子信息工程 姓名:万多荃 学号:20123712 电话: 任课教师:许晓丽 论文成绩: 2015年10月

目录 摘要 图像分割技术是非常重要的图像处理技术之一,无语是在理论研究还是在实际应用中人们都非常的重视。图像分割有许多的种类和方式,一些分割运算能够直接应用于任何图像,而另外一些却只适用于特别种类的图像。图像分割技术是从图像处理技术,再到后期的图像分析的关键步骤,图像分割结果的好坏,可以说对图像的理解有直接影响。

本文根据图像分割原理及人眼视觉的基本理论,研究图像的彩色模型及图像分割的常用方法,比较各方法的特点,并选择合适的方法对图像进行分割。本文采用MATLAB软件对图像进行彩色坐标变换及阈值分割,计算简单,具有较高的运行效率,分割的结果是使图像更符合人眼的视觉特性,获得比较好的效果。 关键字:图像处理;图像分割;人类视觉;MATLAB 1.前言 1.1图像分割技术 图像分割技术是非常重要的图像处理技术之一,无语是在理论研究还是在实际应用中人们都非常的重视。图像分割有许多的种类和方式,一些分割运算能够直接应用于任何图像,而另外一些却只适用于特别种类的图像。图像分割技术是从图像处理技术,再到后期的图像分析的关键步骤,图像分割结果的好坏,可以说对图像的理解有直接影响。 图像数据的模糊和噪声的干扰是分割问题的两大难题。到目前为止,还没有一个完美的图像分割方法,可以根据人的意愿精确地分割任何一种图像。现实图像中景物情况各种不同,具体问题需具体分析,按照实际情况选择得当的方法。分割成果的好坏或正确与否,到现在为止,尚无一个统一的评价和判断标准,分割的好坏务必从分割的效果和现实应用的场合来判断。然而,在人类研究图像的历史长河中,仍然积累了许多经典的图像分割方法。固然这些分割方法不可以适应全部种类的图像分割,可是这些方法却是图像分割方法进一步发展的根基。实际上,当代一些分割算法恰巧是从经典的图像分割方法中产生出来的。图像分割法大致可以分为三个种:边缘检测法,阈值分割法和基于区域的图像分割法。 2研究目的 视觉是人类最高级的感知器官,所以图像在人类感知中承担着非常重要的角色,这是毋庸置疑的。 本文的主要研究目的是对图像的分割方法进行研究,选择适合本论文的设计方法,然后通过对图像的分割,以达到人眼的最佳视觉效果。 本课题主要是通过对人眼的视觉系统研究,然后选择与人眼视觉系统密切相关的颜色模型进行颜色空间模型之间的相互转换,再对图像分割方法进行比较选择合适的分割方法,通过MATLAB平台实现彩色图像分割,最后对分割后的图像进行比较来获得到最佳的视觉效果。

分水岭算法原理

所谓分水岭算法有好多种实现算法,拓扑学,形态学,浸水模拟和降水模拟等方式。要搞懂就不容易了。WatershedAlgorithm(分水岭算法),顾名思义,就是根据分水岭的构成来考虑图像的分割。现实中我们可以或者说可以想象有山有湖的景象,那么那一定是水绕山,山围水的情形。而区分高山(plateaus)与水的界线,以及湖与湖之间的间隔或都是连通的关系,就是我们可爱的分水岭(watershed)。为了得到一个相对集中的集水盆,那么让水涨到都接近周围的最高的山顶就可以了,再涨就要漏水到邻居了,而邻居,嘿嘿,水质不同诶,会混淆自我的。那么这样的话,我们就可以用来获取边界高度大,中间灰阶小的物体区域了,它就是集水盆。浸水法,就是先通过一个适当小的阈值得到起点,即集水盆的底;然后是向周围淹没也就是浸水的过程,直到得到分水岭。当然如果我们要一直淹没到山顶,即是一直处理到图像灰阶最高片,那么,当中就会出现筑坝的情况,不同的集水盆在这里想相遇了,我们要洁身自爱,到这里为止,因为都碰到边界了。不再上山。构筑属于自己的分水岭。在计算机图形学中,可利用灰度表征地貌高。图像中我们可以利用灰度高与地貌高的相似性来研究图像的灰度在空间上的变化。这是空域分析,比如还可以通过各种形式的梯度计算以得到算法的输入,进行浸水处理。分水岭具有很强的边缘检测能力,对微弱的边缘也有较好的效果。为会么这么说呢?为什么有很强的边缘检测能力,而又能得到相对集中的连通的集水盆?现实中很好办,我们在往凹地加水的时候,直到它涨到这一块紧凑的山岭边缘就不加了;但是如果有一条小山沟存在,那没办法,在初始阈值分割的时候,也就是山沟与集水盆有同样的极小值,而且它们之间是以这个高度一直连接的。那没关系,我们将它连通。在图像上呢?如何实现? 看看算法,算法思想是这样的: 首先准备好山和初始的水。这山就是我们的初始图像了,比如用自然获取的图像的梯度来表征山地的每一点的高度吧;而初始的水就是在阈值记为Thre底下,所有的低于这个高度的整个山地都加水,直到这个阈值Thre高度。从而有三个初始量:unsignedchar**Ori_image、 char**Seed_image和int**Label_image。最后一个是为最终的结果做准备的。当然要做好初始化,比如,Ori_image赋值为原图像(256色灰度图)的梯度值,Seed_image则是初始状态下有水的置位,无水的复位,而Label_image则全初始化为0,最终得到的是各点对应的区域号。接下来是考虑将已加的水进行记录,记录成连通的区域,也就是看看有多少个互不相关的集水盆,有五个,那么我们就涨出五个湖,而且尽可能的高,只要大家想到不溢出。在算法上,有多少个连通的区域就记录成多少个数据结构,功夫就在于如何将这些连通的区域连接成一块,并由一个数据结构来表达了。很好,我们准备用一个向量容器来实现初始保存,保存所有标记区域种子队列的数组,里面放的是种子队列的指针vque,而且这个队列是由一系列属于同一个区域的图像点组成,我们来自一个集水盆:);其保存方式是这样的:queue *pque=newqueue[256];(pque),这样便将一个成员放进到这个区域来了,即容器--集水盆的

图像分割常用算法优缺点探析

图像分割常用算法优缺点探析 摘要图像分割是数字图像处理中的重要前期过程,是一项重要的图像分割技术,是图像处理中最基本的技术之一。本文着重介绍了图像分割的常用方法及每种方法中的常用算法,并比较了各自的优缺点,提出了一些改进建议,以期为人们在相关图像数据条件下,根据不同的应用范围选择分割算法时提供依据。 关键词图像分割算法综述 一、引言 图像分割决定了图像分析的最终成败。有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能。目前图像分割仍然是一个没有得到很好解决的问题,如何提高图像分割的质量得到国内外学者的广泛关注,仍是一个研究热点。 多年来人们对图像分割提出了不同的解释和表达,通俗易懂的定义则表述为:图像分割指的是把一幅图像分割成不同的区域,这些区域在某些图像特征,如边缘、纹理、颜色、亮度等方面是一致的或相似的。 二、几种常用的图像分割算法及其优缺点 (一)大津阈值分割法。 由Otsu于1978年提出大津阈值分割法又称为最大类间方差法。它是一种自动的非参数非监督的门限选取法。该方法的基本思路是选取的t的最佳阈值应当是使得不同类间的分离性最好。它的计算方法是首先计算基于直方图而得到的各分割特征值的发生概率,并以阈值变量t将分割特征值分为两类,然后求出每一类的类内方差及类间方差,选取使得类间方差最大,类内方差最小的t作为最佳阈值。 由于该方法计算简单,在一定条件下不受图像对比度与亮度变化的影响,被认为是阈值自动选取的最优方法。该方法的缺点在于,要求得最佳阈值,需要遍历灰度范围0—(L-1)内的所有像素并计算出方差,当计算量大时效率会很低。同时,在实际图像中,由于图像本身灰度分布以及噪声干扰等因素的影响,仅利用灰度直方

数字图像灰度阈值的图像分割技术matlab

1.课程设计的目的 (1)使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各 种因素对分割效果的影响 (2)使用Matlab软件进行图像的分割 (3)能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割 性能 (4)能够掌握分割条件(阈值等)的选择 (5)完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合 理的解释 2.课程设计的要求 (1)能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作 (2)包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子)(3)封闭轮廓边界 (4)区域分割算法:阈值分割,区域生长等

3.前言 3.1图像阈值分割技术基本原理 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准]5[。 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。 在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的

部分图像分割的方法(matlab)

部分图像分割的方法(matlab)

大津法: function y1=OTSU(image,th_set) image=imread('color1.bmp'); gray=rgb2gray(image);%原图像的灰度图 low_high=stretchlim(gray);%增强图像,似乎也不是一定需要gray=imadjust(gray,low_high,[]); % subplot(224);imshow(gray);title('after adjust'); count=imhist(gray); [r,t]=size(gray); n=r*t; l=256; count=count/n;%各级灰度出现的概率 for i=2:l if count(i)~=0 st=i-1; break end end %以上循环语句实现寻找出现概率不为0的最小灰度值 for i=l:-1:1 if count(i)~=0; nd=i-1; break end end %实现找出出现概率不为0的最大灰度值 f=count(st+1:nd+1); p=st;q=nd-st;%p和分别是灰度的起始和结束值 u=0; for i=1:q; u=u+f(i)*(p+i-1); ua(i)=u; end

程序二: clc; clear; cd 'D:\My Documents\MATLAB' time = now; I = imread('qr4.bmp'); figure(1),imshow(I),title('p1_1.bmp'); % show the picture I2 = rgb2gray(I); figure(2),imshow(I2),title('I2.bmp'); %?D?μ??2¨ J = medfilt2(I2); figure(3),imshow(J); imwrite(J,'J.bmp'); [M N] = size(J); J1 = J(1:M/2,1:fix(N/2)); J2 = J(1:M/2,fix(N/2)+1:N); J3 = J(M/2+1:M, 1:fix( N/2)); J4 = J(M/2+1:M, fix(N/2)+1:N); % figure(4), img = J1; T1 = test_gray2bw( img ); % figure(5), img = J2; T2 = test_gray2bw( img ); % figure(6), img = J3; T3 = test_gray2bw( img ); % figure(7), img = J4; T4 = test_gray2bw( img ); T = [T1,T2;T3,T4]; figure,imshow(T) % T1 = edge(T,'sobel'); % figure,imshow(T1); % BW = edge(T,'sobel'); % f igure,imshow(BW); function [bw_img] = test_gray2bw( img ) %大津法 [row_img col_img ] = size( img ) all_pix = row_img * col_img % get probability of each pixel(????). count_pix = zeros(1,256) % pro_pix = [] for i = 1 : 1 : row_img for j = 1 : 1 : col_img count_pix(1,img(i,j)+1) = count_pix(1,img(i,j)+1) + 1 %í3??′?êy end en d pro_pix = count_pix / all_pix % choose k value; max_kesi = -1 T = 0 for k = 1 : 1 : while( i <= k ) wa = wa + pro_pix(1,i+1) %?°k??i£?????????μ??ò?è???ê£????êoí ua = ua + i * pro_pix(1,i+1) i = i + 1 end

针对卫星图像的语义分割算法研究

哈尔滨工业大学工学硕士学位论文 Abstract With the rapid improvement of satellite technology, satellite images, especially high resolution remote sensing satellite images have been paid great attention by various countries, and have been applied in different fields. Satellite image can extract the relative position and spatial distribution of various natural elements with its rich information and visual image, which provides great space for the development of target semantic segmentation in both civil and military aspects. At the same time, in the wave of artificial intelligence, deep learning has been greatly developed with the ability of computing, which not only brings great changes in the traditional computer vision and robot, but also brings new solutions in such aspects as finance and medical care. Therefore, deep learning is applied to the semantic segmentation of satellite images, which opening up new ideas for military tactics and civilian business planning. In this paper, we use convolution neural network to classify multi resolution satellite images. The main contents of this paper are as follows: Firstly, it summarizes the basic models of deep learning and three characteristics of deep learning, namely, the simplicity, extensibility and mobility of models. The focus is mainly on the conformation, characteristics, research mechanism and development direction of convolution neural network. For the semantic segmentation of satellite images using the learning features of artificial design, the feature design learning is too complicated and the adaptation range is limited. This paper uses convolution neural network to automatically design and extract features. Based on the typical semantic segmentation network, the semantic segmentation network structure of satellite images is designed, which combines the advantages of the existing Convolutional Neural Network (CNN) and the conditional random field (Conditional Random Field, CRF). In view of the small number of images in the satellite image set, and the uneven distribution between classes, this paper adjusts the context semantic environment in the satellite image segmentation network, and combines the rough feature and the fine feature by increasing the jump connection. At the same time, the conditional random field was added to the network output to make the precision more than 16%. In order to improve the network performance, the sample set is preprocessed and added and includ the multispectral image channel synthesis, and the increase of multi remote sensing imaging index. In the view of the difference between the loss function of the convolution neural network in the semantic segmentation process and the traditional classification network, the loss function of the network is improved and the joint loss

相关文档
相关文档 最新文档