文档库 最新最全的文档下载
当前位置:文档库 › 材料组织性能控制复习题及答案完整版复习课程

材料组织性能控制复习题及答案完整版复习课程

材料组织性能控制复习题及答案完整版复习课程
材料组织性能控制复习题及答案完整版复习课程

1.弹性变形与塑性变形的区别

弹性变形:可逆性:材料尺寸只发生暂时性改变,外力撤除,变形消失;单值性:σ=E ε,τ=G γ;应力应变成比例;全程性:弹性变形持续至材料断裂前;弹性变形的实质:金属原子自平衡位置产生可逆位移。塑性变形:不可逆性:材料发生的不可逆的永久性变形;应力与应变的关系偏离虎克定律;先进性弹性变形,当达到屈服极限后发生塑性变形;塑性变形的主要机制为滑移和孪生。

2.在拉伸应力应变曲线上标出试样产生颈缩的位置,并分析其成因。 颈缩位置为工程应力应变曲线的最高点即抗拉强度点。颈缩是均匀塑性变形和不均匀塑性变形(集中塑性变形)二者取一的结果。当加工硬化使材料强度增加不足以抵偿横断面积减少造成承载能力下降时,便会产生集中变形,出现细颈。塑性变形产生两个变化,一是加工硬化,二是横截面积减小。金属在拉伸试验时塑性变形是由一段段变形实现的。每段变形由开始、变形、停止、转出完成的,如果某一段塑性变形停不了,

转不出,这段就要发生集中塑性变形——颈缩。

工程应力应变曲线

3.工程应力-应变曲线与真应力-应变曲线的区别。

工程应力:0

e P A σ=,工程应变:L L ε?=;真应力:0

0()(1)t e P P P L L A L A A L l

σσε+?====+,真应变:ln ln ln ln(1)l L

dl L L e l L l L ε+?==-==+?。工程应力应变是以拉伸式样的原始尺寸进行计算的,故其应力值偏小,应变值偏大;并且出现载荷达

到最大值后下降现象;真应变应力曲线随着应变的增加应力值持续上

升,直至断裂,表明变形过程中一直有加工硬化,即使出现颈缩后,颈

缩出的真应力值也是上升的。

4.韧窝的尺寸、深度与金属材料韧性的关系

韧窝大小、深浅及数量取决于材料断裂时夹杂物或第二相粒子的大小、间距、数量及材料的塑性和形变强化指数以及外加应力的大小和状态。如果夹杂物或第二相粒子多,材料的塑性和韧性较差则断口上形成的韧窝尺寸较小也较浅。反之则韧窝较大较深。成核的密度大、间距小,则韧窝的尺寸小。在材料的塑性及其它试验条件相同的情况下,第二相粒子大,韧窝也大;粒子小、韧窝也小。韧窝的深度主要受材料塑性变形能力的影响。材料的塑性变形能力大,韧窝深度大,反之韧窝深度小。温度与应变速率也影响韧窝的大小及深浅。温度低材料的塑性和韧性差,韧窝尺寸小,深度浅。应变速率大,韧窝大小及深浅均变小。在压应力作用下,内颈缩容易产生,韧窝较深,在一定程度反映其塑性和韧性较好;在拉应力条件下,韧窝较浅,表现出相对较差的塑性和韧性。

5.提高金属材料的韧性的途径有哪些?

减少诱发微孔的组成相,如减少第二相量;提高基体塑性,从而可增大在基体上的裂纹扩展的能量消耗; 增高组织的塑性形变均匀性,这主要为减少应力集中;减少夹杂物的含量,避免晶界的弱化,以防止裂纹沿晶界的形核与传播;加入某些可促进在低温下交滑移的元素;在一定程度上细化晶粒;通过热处理工艺,使第二相粒子弥散地分布在基体上;采取大的变形量,是材料内部原有的微裂纹愈合,抑制裂纹的形核;提高机体组织的塑性;提高组织的均匀性;在钢中加入一定含量的Ni 元素,降低韧脆转变温

度; 6.金属材料强化机制主要有哪些,并对比其对金属材料强韧性的贡献。

位错强化(冷加工硬化、形变强化):位错密度越高,不可动位错越多,塑性变形时位错运动的交互作用以及阻碍作用越强,强度越高,是金属强化的主要手段。位错对金属材料塑性和韧性的作用是双重的,位错的合并以及在障碍处的塞积会促使裂纹形核;而位错在裂纹尖端塑性区内的移动则可以环节尖端的应力集中,提高裂纹扩展的临界应力,因此凡能提高裂纹扩展临界应力的因素都能使塑性、韧性提高。提高可动位错密度对塑性和韧性有利。但总体上来说,位错强化的同时会使韧性下降。

固溶强化:一般来说,固溶体的强度总高于纯金属的强度主要是阻碍位错的运动使金属的强度得到提高,强度的提高与固溶度密切相关。强化效果越显著,塑性和韧性下降越显著。所以在提高金属强度的同时又不会使塑性下降太多时,要适当控制固溶体中溶质元素的含量。

第二相粒子沉淀强化(析出强化):在变形的过程中阻碍位错的运动,位错绕过或切过第二相粒子,这一过程要消耗能量,故要提提高外加应力,造成金属的强化。第二相粒子对钢的塑性和韧性有危害作用,主要是断裂时,造成空坑的形成;同时第二相粒子的分布状况和形状直接影响其塑性和韧性,所以在采用第二相强化时,可以采用一定的手段来改善的材料的塑性和韧性。

相变强化(组织强化):生成贝氏体或者马氏体强度提高,韧性降低。对于弥散分布的马奥岛,韧性相对比较好。

细晶强化:在提高金属强度的同时,会使材料的塑性与韧性同时提高。

7.对比均匀间隙固溶强化与第二相沉淀粒子强化

共同点:1.都出现位错遇到间隙原子或第二相粒子而受到阻挡且发生弯曲的现象,因此都要求额外增加切应力以抵消由于位错弯曲所引起的线张力的改变。2均可引出下式:2sin 2bs T θ

τ?=。3.强化贡献均反

比于原子间距或粒子间距的变化。

不同点:1.作为位错运动的障碍,单个第二相粒子的强化作用要高于单个间隙固溶原子。位错在第二相粒子处绕转角θ大于间隙原子处,因此所需临界切应力较大。2.间隙固溶强化要求一定的浓度,且间隙原子可造成强烈的点阵不对称畸变.而不可形变粒子强化时,一般粒子体积分量相对较小(不大于10%),粒子间距也相对较大,因此间隙固溶也可以取得更高强化效果。

8.对比间隙固溶强化与置换固溶强化

1.溶质原子的固溶同时提高屈服强度和抗拉强度,其作用在很大程度上取决于溶质原子与溶剂原子的半径差,其次是它们的弹性行为。铁素体在力学性能上的一个重要特点是对其中微量杂质、主要是间隙杂质极为敏感,所以铁素体的间隙固溶强化效应异常显著,但由此而导致的塑性和韧性的损害也最严重。

2.置换固溶强化比间隙固溶强化小一个数量级,且提高冷脆转变温度。Si 每使屈服强度增加15MPa 要引起ITT 上升8℃。终轧后冷速较大或构件截面较小时,在含有置换固溶元素的钢中的等轴铁素体可能成为条状贝氏体铁素体,甚至条状马氏体,因而削弱塑性。有的置换固溶元素也对韧性有益,如Mn 、Al :Mn 在铁素体中的固溶约为30MPa 。Mn 可降低奥氏体冷却相变温度,造成等轴铁素体晶粒的细化。Al 与氮原子有较高结合能,可夺走固溶体中N 间隙原子,起净化铁素体作用,改善铁素体冲击性能。

3.室温下,α-Fe 置换固溶以Si 、Cu 、Mn 和Mo ,特别是Si 强化效果好,Cr 则起软化作用。而Si 、Mn 、Ni 在150K 出现软化.奥氏体置换固溶铁素体形成元素如W 、Mo 、V 、Si 有较大强化作用。

4.α-Fe 的间隙固溶原子可与刃位错和螺位错产生交互作用而构成Cottrell 气团和Snoek 气团。二者作用一样强烈。 Cottrell 气团是α-Fe 低温强化的主要机制,中温区主要是Snoek 气团和玲木气团强化。

5.置换固溶不具有被螺位错应力场诱发而构成短程有序分布的条件,置换固溶原子不阻碍螺位错运动。

9.试述双相组织强化的规律。

如果其中一个相的体积分量很大时,它对合金性能的作用即上升为支配地位。α+P 钢屈服强度:1

1

33

(1)p s s s s f f αααασσσσ=+-。双相组织强化与其中一个组成相相对于位错运动的阻碍作用有关,

10p n s ks σσ-=+,0s :α+P 中层片珠光体的层片间距;1σ:当铁素体的屈服强度;n=1或1/2。如果双相

组织是由两个强韧性相差悬殊的相组成,并在其中一个相形成时有较大的比容改变,则应考虑高强度相对低强度相塑性变形的约束作用,从而引起低强度相额外的加工硬化.如铁素体-马氏体双相钢。

10. 细化晶粒不仅能提高材料的强度,还可以改善材料的塑性和韧性。

晶粒尺寸小,晶粒内空位数量和位错数量少,位错与空位、位错间的弹性交互作用机会少,位错更易于运动,表现出良好塑性。位错数量少,塞积位错数量少,只能造成轻度应力集中应力场,从而推迟微孔和微裂纹的萌生,增大断裂应变。细晶粒为同时在更多晶粒内开动位错和增殖位错提供了机会,使塑性变形更均匀。细晶粒为产生塑性变形所要求的晶粒转动也较小。细晶材料同时提高加工硬化作用和流变应力,由细化晶粒引起的加工硬化和流变应力的变化幅度接近,因此真实均匀应变没有改变。相邻晶界是以大角度间界相界的,当裂纹穿越晶界进入相邻晶粒,必改变扩展方向,晶粒越细,为裂纹扩展所消耗的能量越高,因此细晶组织具有较高的断裂韧性。

11.形变诱导铁素体相变的关键因素及应力应变曲线特征

形变诱导铁素体相是指在变形中完成的、可获得超细晶粒的动态相变过程。。形变诱导铁素体相变的本质是奥氏体向铁素体转变发生在形变过程中,因此化学成分、奥氏体晶粒尺寸、变形温度、变形速率、变形程度、变形方式以及道次间隔时间成为影响DIFT 的关键因素。对于真应力应变曲线来说,随着变形量的增加,其真应力不是一直上升的,也就是说发生DIFT 之后,使其变形抗力下降。

12. 动态再结晶分为两种:

连续动态再结晶:(εc <εr ) εc 为动态再结晶临界变形量;εr 为由形核到完成动态再结晶的应变量; 奥氏体几轮动态再结晶同时发生。间断动态再结晶:(εc > εr ),由于εr 较小,奥氏体一旦发生动态再结晶,不需要太大的变形量。第一轮动态再结晶完成后,已发生再结晶的晶粒还需继续变形,才能发生第二轮动态再结晶。

13.如何控制再结晶后的晶粒尺寸

(一)变形程度的控制。变形程度较小时,形变储存能小,不足以引起再结晶,所以晶粒大小没有变化;当变形程度达到一定数值之后(金属一般为2%-10%),未达到临界变形程度,变形程度不大,但G/N 大,故形成粗大晶粒;当达到临界变形程度后,随着变形程度的增加,G 和N 均增大,G/N 值较小,故晶粒逐渐细化,当达到一定变形程度之后,随变形程度的增加,晶粒尺寸不再发生变化;但是对于某些具有二次再结晶的合金,当变形程度很大时,又会出现晶粒长大的现象。(二)原始晶粒尺寸的影响。当变形量一定时,原始晶粒越细小,再结晶后的晶粒越细小,主要是形核点多的缘故。(三)合金元素及杂质的影响,合金中的合金元素及杂质的存在,一方面增加形变储存能,另一方面阻碍晶界的运动,一般具有细化晶粒的作用。(四)变形温度的影响。温度越高,回复越容易进行,形变储存能越低,再结晶越不容易进行,晶粒粗化。

14.影响再结晶的因素

影响再结晶温度的因素:1.变形程度的影响。金属的变形程度越大,形变储存能越多,再结晶的驱动力越大,使再结晶温度降低,容易发生再结晶,当变形程度达到一定数值后,再结晶温度趋于一定值,当变形程度小到一定程度时,再结晶温度趋于合金熔点,即不会发生再结晶;2.加热速度的影响。一方面加热速度过低,金属有足够的时间进行回复,形变储存能降低,使再结晶温度升高,另一方面,加热速度过大,也会使再结晶温度升高,其原因是:再结晶的形核和长大需要时间来扩散,加热速度过大,会推迟使之在更高的温度下进行再结晶,此再结晶温度因素影响再结晶。3.原始晶粒大小的影响,原始晶粒越大,再结晶过程越不容易发生。对于动态再结晶:a. 提高应变速率,可以明显推迟动态再结晶的发生;b. 加热温度低,变形时原始奥氏体晶粒尺寸小,发生动态再结晶所需变形量相对小,孕育期短,相对容易发生动态再结晶。

15.再结晶的形核机制

1.晶界突出形核机制,也叫晶界弓出形核机制;

2.亚晶合并机制;

3.亚晶吞食形核机制。有时将2,3合并称为亚晶长大形核机制。

16.影响形变奥氏体再结晶的因素

形变温度:对于热轧钢材来说,形变温度(即再结晶保温温度)对再结晶形核率和长大速率的影响都是指数关系的,温度越高,再结晶将迅速的进行,且其影响十分显著。

形变量:形变量是影响应变存储能的最主要因素,形变量越大,形变存储能越大。形变存储能越大,再结晶形核和长大速率均越大。

形变速率:形变速率越大,形变存储能越大。但是高应变速率对于静态再结晶影响较小。

溶质原子与第二相质点:溶质原子特别是基体点阵产生较大畸变的某些置换固溶原子,将显著地阻止奥氏体的再结晶;固溶Nb原子对再结晶的阻碍作用最为显著,约0.04%的Nb可使再结晶推迟2~3个数量级。(固溶拖曳)第二相质点对再结晶的作用与第二相质点的尺寸和体积分数有关。尺寸大于100nm的第二相质点,由于增大形变存储能和提供再结晶形核位置,加速再结晶;尺寸小于20nm的第二相质点,由于钉扎作用,阻碍再结晶;尺寸在20nm~100nm之间的第二相质点,不显著。

17.超级钢技术的主要强化机制及其发展情况?

主要强化机制为细晶强化:充分利用奥氏体动态再结晶(γ-DRX)的晶粒细化及晶粒大小均匀化的作ε&

用,采用大变形、低T d、高,达到细化晶粒的目的;充分利用奥氏体未再结晶区轧制,得到硬化的奥氏体晶粒,为静态再结晶提供更多的形核点,达到细化晶粒的目的。临界点(A3)轧制,形变诱导铁素体相变(DIFT),相变前移,在单相区轧制中相变。

18.为什么选用Nb、V、Ti作为钢中的微合金化元素?

Nb、V、Ti在钢中存在形式有两种:固溶和化合物形态。其中,化合物形态分为两种:(1) 未溶的化合物(一般为Nb/Ti的化合物),其尺寸较大,对晶粒细化作用不大;(2)加工过程中以及冷却过程中沉淀析出的化合物。高温时能够抑制再结晶并阻止晶粒长大,低温时起沉淀强化作用。固溶微合金元素作用:溶质“拖曳”微合金元素化合物作用:“钉扎”晶界、位错运动。高温主要析出物是TiN,随温度降低,析出主要是Nb(C,N),所以,高温奥氏体中主要析出物是复合的(Ti,Nb)(C,N)。钢中的析出粒子通常为包心特征,高温析出的富Ti、N化合物先形成,后随温度降低依次形成的Nb、V析出相富集在其外部。也就是说,先形成的TiN(或(Ti,Nb)(C,N))可以作为低温析出相的核心。TiN在奥氏体中几乎不溶解。这些氮化钛可在热加工前的再加热过程抑制奥氏体晶粒长大,以及焊接过程中,抑制热影响区奥氏体的晶粒长大。铌是最有效的细化晶粒微合金化元素。它的细化效果是通过控制奥氏体晶粒而实现的。在热轧时的奥氏体变形过程中推迟再结晶而产生晶粒细化,这是任何热处理工艺都做不到的。形成TiN消除了钢中的自由氮,对钢的韧性是有益的

19.为什么在TMCP工艺中把水称为“最廉价的合金元素”?

通过控制冷却的手段,一方面可以起到细化晶粒的效果,另一方面可以改变相变途径,在一定程度上可以在尽量少加合金元素的基础上,通过冷却手段达到添加合金元素的效果。1.加速冷却可提高相变驱动力、降低Ar3温度、使铁素体细化;2.促使强韧性的低碳贝氏体形成并呈岛状弥散分布,提高钢材强度;

3.铁素体细化的同时珠光体也得到细化,珠光体片层间距减小,带状组织基本消失;

4.在不降低强度的前提下,可减少钢中碳当量,有利于改善焊接性能。

20.固态相变和液固相变有何异同点?

不同点:液固相变:通过原子的扩散进行相变;凝固过程中有大量的结晶潜热释放;内部基本上无弹性应变产生小,可以忽略;固态相变:分为扩散、半扩散和非扩散相变;相变过程基本上无潜热释放;由于新旧相比容差和晶粒取向差,在晶胚及其周围区域产生弹性应力场,产生相变阻力;可以在晶体的缺陷处形核。相同点:相变过程均为形核与长大的过程;均需要一定的过冷度,提供形核驱动力;均是晶胚达到临界形核半径时,才有可能变为晶核;均存在成分过冷和成分起伏;均存在均质形核和非均质形核。

20.固态相变的特点

相变阻力大;新相晶核与母相晶核之间存在一定的晶体学位向关系;母相晶体缺陷处对相变起促进作用;易于出现过渡相。

21.扩散型和无扩散型相变各有那些特征?

扩散型相变:在化学位的驱动下,旧相原子单个地、无序地、统计地越过相界面进入新相;在新相中原子打乱重排,新旧相原子排列顺序不同,界面不断向旧相推移。对于界面控制的扩散型相变,界面推移速度exp()b G Q v A kT kT

αβ-?=??-。非扩散型相变:如M 转变,新旧相结构不同,但化学成分相同;M 相变界面的推移速度与原子的热激活跃迁因素exp()b

Q kT

-无关;相界面处母相一侧的原子不是单个地、无序地、统计地越过界面进入新相,而是集体定向的协同位移;相界面推移过程中保持共格关系。

22.晶粒长大驱动力,晶粒长大时界面移动方向与晶核长大时的界面移动方向有何不同,为什么?

晶粒长大的驱动力224dG F R dR R

γπ=-=与界面能γ成正比与界面曲率半径R 成反比。晶粒长大时界面的推移方向为大晶粒向小晶粒,原因:大小晶粒的界面处,小晶粒以较小的曲率半径凸出于大晶粒内部,大晶粒的晶界是凹入的,由上式可知,指向曲率中心的F 作用于晶界,R 越小,F 越大,则小晶粒不断迅速地被吃掉,界面由大晶粒向小晶粒推进;晶核长大时的界面的推移方向有新相向母相推进,这是因为对于达到临界形核半径的晶胚,母相原子越过界面向新相跃迁时,会使系统自由能下降,是一个自发过程,故界面由新相推向母相。

23.概念:固态相变;平衡转变;扩散型相变;均匀形核;形核率

固态相变:指当外界条件如温度、压力等发生变化时,物相在某一特定条件下发生的突变;平衡转变:在极为缓慢的加热或冷却条件下形成符合状态图的平衡组织的相的转变;扩散型相变:固态相变发生相的晶体结构的改造或化学成分的调整,需要原子迁移才能完成,若原子的迁移造成原有原子邻居关系的破坏,属于扩散型相变;均匀形核:固态相变增加了表面能、弹性应变能、缺陷能等,晶体缺陷具有能量d G ?,对形核具有一定的影响,当d G ?=0时,晶核均匀形成,为均匀形核;形核率:单位时间、单位体积母相中形成新相晶核的数目。

24..说明亚共析钢的加热转变过程

对于F+P 的亚共析刚,加热时,转变开始线与共析刚转变开始

线基本上一致;至于转变终了线,在Ac3温度以上,也是随着

过热度的增加,转变终了线移向时间短的一侧,这与共析刚的

转变终了线变化趋势一致;但在Ac1-Ac3温度之间,转变终了

线并不是随着过热度的增加单调地移向时间短的一侧,而是曲

线向相反的方向延伸,呈现复杂的非线性关系。

25.试说明临界点A1、A3、Acm 与加热、冷却过程中临界点之间有何关系?

A 1、A3和Acm 线是钢在缓慢加热或冷却过程中组织转变的临界点,实际上,钢进行热处理时组织转变并不按Fe-C 相图所示的平衡温度进行,通常有不同程度的滞后,并且是加热冷却速度越快滞后现象越严重,亦即加热时的临界点和冷却时的临界点与平衡温度点差别越大。加热时的临界点为Ac1、Ac3和Accm ,且在平衡临界点上方,冷却时的临界点为Ar1、Ar3和Arcm ,且在平衡温度点的下方。并且共析点也会发生左右平移现象,偏离共析成分点0.77%C 。

26.何谓晶粒,晶粒为什么长大,细化奥氏体晶粒的措施有那些?

结晶物质在生长过程中,由于受到外界空间的限制,未能发育成具有规则形态的晶体,而只是结晶成颗粒状,称晶粒。大小晶粒的界面处,小晶粒以较小的曲率半径凸出于大晶粒内部,大晶粒的晶界是凹入的,由上式

可知,指向曲率中心的F 作用于晶界,R 越小,224dG F R dR R

γπ=-=越大,则小晶粒不断迅速地被吃掉,出现晶粒的长大现象。降低元素的扩散系数因素,可以延缓晶粒粗化,如降低加热温度或增加原子扩散激活能;界面处第二相粒子钉扎位错,阻碍晶界迁移;降低界面能,减小驱动力;使晶粒的大小尽可能的均匀,降低晶界两侧的驱动力大小的

差异。

27.共析钢的奥氏体形成过程,为什么铁素体先消失,部分渗碳体未溶解完毕?

答:奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体继续向奥氏体转变而进行的。由于铁素体与奥氏体相界面上的浓度差远小于渗碳体与奥氏体相界面上的浓度差,使铁素体向奥氏体的转变速度比渗碳体溶解的速度快得多,因此,珠光体中的铁素体总是首先消失。

28.连续加热时,奥氏体形成特点是什么?

答:在连续加热的过程中,在形成奥氏体的同时,温度还在不断升高。P转变为A要洗手相变潜热,A 升温过程也要吸收热量,只是供给热量大于相变消耗热量。与等温转变不同,具有以下特点:奥氏体转变是在一个温度范围为内;奥氏体成分的不均匀性随加热速度的增大而增大;奥氏体起始晶粒随着加热速度的增加而细化。

29.影响珠光体片间距的因素有哪些?

1.转变温度:随着冷却速度的增大,过冷度越大,片层间距越小。这是由于温度愈低,碳原子扩散速度越小;过冷度越大,形核率越高。

2.过冷A晶粒的大小,晶粒越小,形核点越多,在一定程度上影响片间距,但此因素与P片间距关系不大。

30.影响非平衡组织加热转变的因素。

对于非平衡组织,加热转变不仅与加热前的组织状态有关,而且与加热过程有关,因为非平衡组织加热过程中要发生从非平衡到平衡或准平衡组织状态的转变,而转变的程度又与钢件的化学成分及加热速度有关。与平衡组织相比,非平衡组织具有以下特征:可能存在残余奥氏体;α相的成分和状态;碳化物的种类、形状、大小、数量级分布也不同。所以说加热速度是一个极为重要的影响因素。

31.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体(以及获得粒状P的途径)?片状珠光体的形成条件:一是将钢进行充分的A化,成为成分均匀的A;二是在近于平衡的缓慢冷却条件下,含碳量0.77%的奥氏体在下形成的珠光体或者在较高奥氏体化温度下形成的均匀奥氏体于A1—550℃之间温度等温时也能形成片状珠光体。P转变温度的高低影响着P的片间距。

粒状珠光体形成的条件:一是将钢进行特定的A化,即加热温度低,保温时间短,没有使之进行充分的A化,形成成分不均匀的A,就会存在许多富C区,成为过冷A分解时的形核点;二是特定的冷却条件,使A在A1线稍下较高的温度下等温分解。获得粒状P的途径:一是加热转变不充分,存在尚未溶解的碳化物颗粒,然后将过冷奥氏体换冷得到;二是片状P球化退火得到;三是M、B在A1稍下高温回火得到。

32.试述马氏体相变的主要特征及马氏体相变的判据。

主要特征:无需扩散性;不变平面应变的晶格改组;存在惯习面;相变伴有大量的亚结构,即极高密度的警惕缺陷;相变诱发特有的浮凸现象。

判据:不变平面应变的晶格改组;无需扩散;相变伴生极高密度的晶体缺陷:孪晶、位错、位错、层错等亚结构

33.马氏体的定义?

答:M是原子经无需扩散切变位移的不变平面应变的晶格改组过程,得到的具有严格晶体学关系和惯习面,形成相中伴有极高密度位错、层错或精细孪晶等晶体缺陷的整合组织。

34.扩散学派和切变学派给贝氏体的定义有那些,试分析这些定义?

切变学派的定义:B是指中文转变时形成的针状分解产物,具有针状组织形貌、浮凸效应、有自己的TTT 图和Bs点三个特征,将B定义为:F和碳化物的非层片状混合组织。此定义不妥:一是不是混合而是整合,混合系统没有子组织功能;二是F和碳化物的非片层状组织不是B特有的。

扩散学派的定义:B为扩散的、非协作的两种沉淀相竞争台阶生长的共析分解产物。此定义不妥:一是把B看作共析分解产物,不能把B转变看为共析分解;二是转变性质不同,B与P分解有着本质上的区别。

35.贝氏体相变与珠光体共析分解的组织形貌和亚结构。

P由F和Fe3C两相组成,B可以有F+Fe3C、F+残留A、F+M/A、F+Fe3C+A+M等组成;P晶核为两相(F+Fe3C),B为单相晶核(BF);P为A共析分解的产物,B非共析分解;P分解在晶界处形核,B相变可在晶界和晶粒内部形核;P是在高温区分解得到近似平衡的组织,B为中温区非平衡相变产物;P中的F可以为片状或粒状;P中的F和Fe3C成一定的比例,B中没有固定的比例关系。P中的亚结构较少,位错密度低,B 中有许多亚结构,位错密度极高。

36.贝氏体相变与马氏体相变的异同点。

相同点:1.均存在晶体缺陷;2.存在以非简单指数晶面为不变平面,即存在惯习面;3.相变引发特有的浮凸现象;4.M和B相变均为非平衡相变;

不同点:1.晶体缺陷的密度不同,M相变中有极高密度的位错,B相变中位错密度相对较低;2.B中的浮凸呈帐篷状,形貌不同于M;3.M相变为不变平面应变的晶格改组;4.M相变无扩散性,B相变为半扩散型相变;5.M相变在低温区进行,转变速度比较快,B相变在中温区进行,具有一定的孕育期;6.M 相变无成分改变,仅仅是晶格改组,B相变有成分的改变;7.相变后的组织不一样;8.M相变界面为切变共格界面,B相变界面为非共格弯曲面。

37.试述贝氏体转变的动力学特点。

a.与M长大速度(近声速)相比,B转变速度较慢;b. 在许多合金钢中,B转变TTT图不与珠光体的C-曲线重叠,两曲线分开,并形成河湾区;c. 许多合金钢的B相变有一个明显的上限温度,即所谓的Bs点,在此温度等温,A不能全部转变为B。

37.试述片状珠光体形成的过程

过冷奥氏体中贫碳区和富碳区是珠光体共析分解的一个必要条件。在过冷奥氏体中出现的贫碳区和富碳区的涨落,再加上随机出现的结构涨落和能量涨落,一旦满足形核条件时,则在贫碳区形成铁素体的同时,在富碳区也构建渗碳体,二者同时同步,共析共生,非线性相互作用,互为因果,形成一个珠光体晶核。这种演化机制属于放大型的因果正反馈作用,它使微小的随机涨落经过连续的相互作用逐渐增强,而使原奥氏体系统瓦解,建构新的稳定结构珠光体系统。因此珠光体形成时,是铁素体和渗碳体共析共生,同步形核的整合和机制,不存在领先相。珠光体形核后,铁素体片和渗碳体片将同时长大,它们各侧的奥氏体中碳浓度将有不同趋势的变化。铁素体旁侧的奥氏体中富碳,有利于渗碳体的形成,同理,渗碳体侧贫碳,有利于铁素体的形成。这样就交互形成了铁素体片和珠光体片,二者互为因果,非线性相互作用,重复进行,迅速沿着晶界展宽,使珠光体团长大,珠光体端向长大依靠铁素体和渗碳体的协同长大进行,这样,由一个珠光体核长大而成为平行片区的珠光体领域。

37.珠光体形成的动力学因素(仅供参考)

珠光体的形成动力学是指珠光体转变速度问题,其转变速度主要取决于形核率和线长大速度。形核率N 与长大速度v与转变温度具有极大值的特征,也就是说N和v随着过冷度的增加先增加后减小,这是因为,随着过冷度的增加,相变驱动力大,故N和v都大;另外过冷度大,转变温度低,奥氏体中碳浓度梯度大,形成珠光体片间距小,扩散距离小,同样会促使N和v增加,但是随着温度的继续降低,原子扩散的热激活能降低,使得N和v下降(形核和长大均是一个扩散过程)。N还与转变时间有关,随着等温时间的延长,晶界形核很快达到饱和,使N下降,但v与等温时间无关,仅与温度有关。

38.多晶体塑性变形的特点及过程

特点:1)不同时性:软取向先滑移2)相互协调性3)不均匀性。过程:滑移首先在取向有利的晶粒中发生→扩展→终止在晶界;晶界和晶粒间取向差共同作用的结果:相邻晶粒取向差↑,晶界处原子排列紊乱↑,畸能↑,阻碍↑。滑移转入相邻晶粒时阻力↑。多晶体屈服的实质:滑移越过晶界。多晶体屈服条件:滑移从一个晶粒传到另一晶粒。细晶强化:晶粒越细,屈服强度越高。

39.单晶体塑性变形的特点

特点

1)塑性变形是位错运动的结果。塑性变形不是整体滑移造成的,而是在远远低于整体滑移切应力的位错滑移阻力被克服、位错率先滑移来实现的,位错滑移是逐步滑移。2)位错滑移的切应力极小;

材料性能学作业 (2)

1.与单晶体相比,多晶体变形有哪些特点? 多晶金属材料由于各晶粒的位向不同和晶界的存在,其塑性变形有以下特点: ① 多晶体各晶粒变形的不同时性和不均匀性 位向有利的晶粒先塑变,各晶粒处组织性能不同,要求塑变的临界切应力不同,表现为不同时性和不均匀性。 ② 各晶粒变形相互协调与制约 各晶粒塑变受塑变周围晶粒牵制,不可无限制进行下去,晶界对位错的阻碍,必须有5个以上滑移系方可协调发展。 2.金属材料的应变硬化有何实际意义? 材料的应变硬化性能,在材料的加工和应用中有十分明显的实用价值。在加工方面,利用应变硬化和塑性变形的合理配合,可使使塑性变形均匀进行,保证冷变形工艺顺利实施;另外,低碳钢切削时,容易产生粘刀现象,且表面加工质量差。如果切削加工前进行冷变形降低塑性,改善机械加工性能;在材料应用方面,应变硬化使材料具一定的抗偶然过载能力,以免薄弱处无限塑性变形;应变硬化也是一种强化金属的手段,尤其是适用不能热处理的材料。 3.一个典型拉伸试样的标距为50mm ,直径为13mm ,实验后将试样对接起来以重现断裂时的外形,试问: (1)若对接后的标距为81mm ,伸长率是多少? (2)若缩颈处最小直径为6.9mm 则断面收缩率是多少? (1) 008150100%100%62%50 K L L L δ--=?=?= (2) 2200200 44100%100%71.8%4 K K d d A A d A ππψπ--=?=?= 4.有一材料E=2×1011N/m2,γ=8N/m 。试计算在7×107N/m2的拉应力作用下,该材料中能扩展的裂纹之最小长度是多少? 即求理论断裂强度 ()11422 7222108 2.0710710s c c E a m γπσπ-???===??? 5.推导颈缩条件、颈缩时的工程应力 ()()()11,00 n n n n n F KAe F A e dF Ke dA KAne de LA L dL A dA LA AdL LdA dLdA dL dA de L A dF Ke Ade KAne de n e --==+=++=+++∴==-=?-+=?=载荷为瞬时截面积和真应变的函数 对上式全微分

钢筋混凝土材料的力学性能 复习题

第一章 钢筋混凝土的材料力学性能 一、填空题: 1、《混凝土规范》规定以 强度作为混凝土强度等级指标。 2、测定混凝土立方强度标准试块的尺寸是 。 3、混凝土的强度等级是按 划分的,共分为 级。 4、钢筋混凝土结构中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点 的钢筋,通常称它们为 和 。 5、钢筋按其外形可分为 、 两大类。 6、HPB300、 HRB335、 HRB400、 RRB400表示符号分别为 。 7、对无明显屈服点的钢筋,通常取相当于于残余应变为 时的应力作为名 义屈服点,称为 。 8、对于有明显屈服点的钢筋,需要检验的指标有 、 、 、 等四项。 9、对于无明显屈服点的钢筋,需要检验的指标有 、 、 等三项。 10、钢筋和混凝土是两种不同的材料,它们之间能够很好地共同工作是因 为 、 、 。 11、钢筋与混凝土之间的粘结力是由 、 、 组成的。其 中 最大。 12、混凝土的极限压应变cu ε包括 和 两部分, 部分越 大,表明变形能力越 , 越好。 13、钢筋的冷加工包括 和 ,其中 既提高抗拉又提高抗 压强度。 14、有明显屈服点的钢筋采用 强度作为钢筋强度的标准值。 15、钢筋的屈强比是指 ,反映 。 二、判断题: 1、规范中,混凝土各种强度指标的基本代表值是轴心抗压强度标准值。( ) 2、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。( ) 3、采用边长为100mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为 0.95。( ) 4、采用边长为200mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为 1.05。( ) 5、对无明显屈服点的钢筋,设计时其强度标准值取值的依据是条件屈服强度。( ) 6、对任何类型钢筋,其抗压强度设计值y y f f '=。( )

材料力学性能试题(卷)集

判断 1.由内力引起的内力集度称为应力。(×) 2.当应变为一个单位时,弹性模量即等于弹性应力,即弹性模量是产生100%弹性变形所需的应力。(√) 3.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。(×) 4.弹性比功表示金属材料吸收弹性变形功的能力。(√) 5.滑移面和滑移方向的组合称为滑移系,滑移系越少金属的塑性越好。(×) 6.高的屈服强度有利于材料冷成型加工和改善焊接性能。(×) 7.固溶强化的效果是溶质原子与位错交互作用及溶质浓度的函数,因而它不受单相固溶合金(或多项合金中的基体相)中溶质量所限制。(×) 8.随着绕过质点的位错数量增加,留下的位错环增多,相当于质点的间距减小,流变应力就增大。(√) 9.层错能低的材料应变硬度程度小。(×) 10.磨损、腐蚀和断裂是机件的三种主要失效形式,其中以腐蚀的危害最大。(×) 11.韧性断裂用肉眼或放大镜观察时断口呈氧化色,颗粒状。(×) 12.脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,长呈放射状或结晶状。(√) 13.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量、熔点就越小。(×) 14.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。(√) 15.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。(√)

16.弯曲试验主要测定非脆性或低塑性材料的抗弯强度。(×) 17.可根据断口宏观特征,来判断承受扭矩而断裂的机件性能。(√) 18.缺口截面上的应力分布是均匀的。(×) 19.硬度是表征金属材料软硬程度的一种性能。(√) 20.于降低温度不同,提高应变速率将使金属材料的变脆倾向增大。(×) 21.低温脆性是材料屈服强度随温度降低急剧下降的结果。(×) 22.体心立方金属及其合金存在低温脆性。(√) 23.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。(√) 24.细化晶粒的合金元素因提高强度和塑性使断裂韧度K IC下降。(×) 25.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大裂纹扩展的阻力,提高断裂韧度K IC。(√) 26.一般大多数结构钢的断裂韧度K IC都随温度降低而升高。(×) 27.金属材料的抗拉强度越大,其疲劳极限也越大。(√) 28.宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。(√) 29.材料的疲劳强度仅与材料成分、组织结构及夹杂物有关,而不受载荷条件、工作环境及表面处理条件的影响。(×) 30.应力腐蚀断裂并是金属在应力作用下的机械破坏与在化学介质作用下的腐蚀性破坏的叠加所造成的。(×) 31.氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。(√) 32.含碳量较低且硫、磷含量较高的钢,氢脆敏感性低。(×) 33.在磨损过程中,磨屑的形成也是一个变形和断裂的过程。(√)

《材料力学性能》教学大纲

《材料力学性能》课程教学大纲 课程名称:材料力学性能(Mechanical Properties of Materials) 课程编号:012009 总学时数:48学时(其中含实验 8 学时) 学分:3学分 课程类别:专业方向指定必修课 先修课程:大学物理、工程化学、工程力学、材料科学基础 教材:《工程材料力学性能》(机械工业出版社、束德林主编,2005年)参考书目:[1] 王从曾编著,《材料性能学》,北京工业大学出版社,2001年 [2] Thomas H.Courtney(美)著,材料力学行为(英文版),机械工业 出版社,2004年 《课程内容简介》: 本课程主要讲授材料的力学性能与测试方法,主要内容有金属在静载荷(单向拉伸、压缩、扭转、弯曲)和冲击载荷下的力学性能、金属的断裂韧度、金属的疲劳、金属的应力腐蚀和氢脆断裂、金属的磨损和接触疲劳、金属的高温力学性能。 一、课程性质、目的和要求 本课程是材料成型及控制工程专业本科生金属材料工程方向指定必修课。本课程的主要任务是讨论工程材料的静载力学性能、冲击韧性及低温脆性、断裂韧性、疲劳性能、磨损性能以及高温力学性能的基本理论与性能测试方法,使学生掌握材料力学性能的基本概念、基本原理和测试材料力学性能的基本方法,探讨改善材料力学性能的基本途径,提高分析材料力学性能的思维能力与测试材料力学性能的能力,为研究开发和应用工程材料打下基础。 二、教学内容、要点和课时安排 《材料力学性能》授课课时分配表

本课程的教学内容共分八章。 第一章:金属在单项静拉伸载荷下的力学性能 6学时 主要内容:载荷—伸长曲线和应力—应变曲线;塑性变形及性能指标;断裂 重点、难点:塑性变形机理,应变硬化机理,裂纹形核的位错模型,断裂强度的裂纹理论,断口形貌。 第二章:金属在其它静载荷下的力学性能 6学时 主要内容是:缺口试样的静拉伸及静弯曲性能;材料缺口敏感度及其影响因素;扭转、弯曲与压缩的力学性能;硬度试验方法。 重点、难点:缺口处的应力分布特点及缺口效应 第三章:金属在冲击载荷下的力学性能 4学时 主要内容:冲击弯曲试验与冲击韧性;低温脆性;韧脆转化温度及其评价方法;影响材料低温脆性的因素。 重点、难点:韧脆转化 第四章:金属的断裂韧度 7学时 主要内容:裂纹扩展的基本方式;应力场强度因子;断裂韧性和断裂k判据;断裂韧度在工程上的应用;J积分的概念;影响材料断裂韧度的因素。 重点、难点:断裂韧性。 第五章:金属的疲劳 5学时 主要内容:疲劳破坏的一般规律;疲劳破坏的机理;疲劳抗力指标;影响材料及机件疲劳强度的因素。 重点、难点:疲劳破坏的机理。 第六章:金属的应力腐蚀和氢脆断裂 5学时 主要内容:应力腐蚀;氢脆 重点、难点:应力腐蚀和氢脆的机理 第七章:金属磨损和接触疲劳 6学时 主要内容:粘着磨损;磨粒磨损;接触疲劳;材料的耐磨性;减轻粘者磨损的主要措施;减轻磨粒磨损的主要措施;提高接触疲劳的措施。 重点、难点:磨损机理 第八章:金属高温力学性能 5学时

材料力学性能考试题及答案

07 秋材料力学性能 一、填空:(每空1分,总分25分) 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有,中心处切 应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根 部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉 应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。

11.诱发材料脆断的三大因素分别是、和 。 二、选择:(每题1分,总分15分) ()1. 下列哪项不是陶瓷材料的优点 a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ()2. 对于脆性材料,其抗压强度一般比抗拉强度 a)高b)低c) 相等d) 不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/ 30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ()4.对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定 ()5.下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7.下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。

材料性能学作业及答案

本学期材料性能学作业及答案 第一次作业P36-37 第一章 1名词解释 4、决定金属屈服强度的因素有哪些? 答:在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 10、将某材料制成长50mm,直径5mm的圆柱形拉伸试样,当进行拉伸试验时塑性变形阶段的外力F与长度增量ΔL的关系为: F/N 6000 8000 10000 12000 14000 ΔL 1 2.5 4.5 7.5 11.5

求该材料的硬化系数K及应变硬化指数n。 解:已知:L0=50mm,r=2.5mm,F与ΔL如上表所示,由公式(工程应力)σ=F/A0,(工程应变)ε=ΔL/L0,A0=πr2,可计算得:A0=19.6350mm2 σ1= 305.5768,ε1=0.0200, σ2=407.4357 ,ε2=0.0500, σ3= 509.2946,ε3=0.0900, σ4= 611.1536,ε4=0.1500, σ5= 713.0125,ε5=0.2300, 又由公式(真应变)e=ln(L/L0)=ln(1+ε),(真应力)S=σ(1+ε),计算得: e1=0.0199,S1=311.6883, e2=0.0489,S2=427.8075, e3=0.0864,S3=555.1311, e4=0.1402,S4=702.8266, e5=0.2076,S5=877.0053, 又由公式S=Ke n,即lgS=lgK+nlge,可计算出K=1.2379×103,n=0.3521。 11、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆

2020年智慧树知道网课《材料性能学(山东联盟)》课后章节测试满分答案

绪论单元测试 1 【单选题】(10分) 钢丝在室温下反复弯折,会越弯越硬,直到断裂,而铅丝在室温下反复弯折,则始终处于软态,其原因是() A. Fe发生加工硬化,发生再结晶,Pb发生加工硬化,不发生再结晶 B. Pb发生加工硬化,发生再结晶,Fe发生加工硬化,不发生再结晶 C. Fe不发生加工硬化,不发生再结晶,Pb发生加工硬化,不发生再结晶 D. Pb不发生加工硬化,不发生再结晶,Fe发生加工硬化,不发生再结晶 2 【单选题】(10分) 冷变形的金属,随着变形量的增加() A. 强度降低,塑性降低 B. 强度增加,韧性降低 C. 强度增加,塑性增加 D. 强度降低,塑性增加

3 【单选题】(10分) 金属的塑性变形主要是通过下列哪种方式进行的() A. 位错类型的改变 B. 晶粒的相对滑动 C. 位错的滑移 D. 晶格的扭折 4 【单选题】(10分) 在不考虑其他条件的影响下,面心立方晶体的滑移系个数为() A. 12 B. 8 C.

6 D. 16 5 【单选题】(10分) 下列对再结晶的描述的是() A. 再结晶后的晶粒大小主要决定于变形程度 B. 原始晶粒越细,再结晶温度越高 C. 发生再结晶需要一个最小变形量,称为临界变形度。低于此变形度,不能再结晶 D. 变形度越小,开始再结晶的温度就越高 6 【单选题】(10分) 冷加工金属经再结晶退火后,下列说法的是() A. 其机械性能会发生改变

B. 其晶粒大小会发生改变 C. 其晶粒形状会改变 D. 其晶格类型会发生改变 7 【单选题】(10分) 加工硬化使金属的() A. 强度减小、塑性增大 B. 强度增大、塑性增大 C. 强度减小、塑性降低 D. 强度增大、塑性降低 8

工程材料力学性能习题答案模板

《工程材料力学性能》课后答案 机械工业出版社第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功: 金属材料吸收弹性变形功的能力, 一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性: 金属材料在弹性范围内快速加载或卸载后, 随时间延长产生附加弹性应变的现象称为滞弹性, 也就是应变落后于应力的现象。 3.循环韧性: 金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应: 金属材料经过预先加载产生少量塑性变形, 卸载后再同向加载, 规定残余伸长应力增加; 反向加载, 规定残余伸长应力降低的现象。 5.解理刻面: 这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性: 金属材料断裂前发生不可逆永久( 塑性) 变形的能力。 韧性: 指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶: 当解理裂纹与螺型位错相遇时, 便形成一个高度为b 的台阶。 8.河流花样: 解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面: 是金属材料在一定条件下, 当外加正应力达到一定数值 后, 以极快速率沿一定晶体学平面产生的穿晶断裂, 因与大理石断 裂类似, 故称此种晶体学平面为解理面。 10.穿晶断裂: 穿晶断裂的裂纹穿过晶内, 能够是韧性断裂, 也能够 是脆性断裂。 沿晶断裂: 裂纹沿晶界扩展, 多数是脆性断裂。 11.韧脆转变: 具有一定韧性的金属材料当低于某一温度点时, 冲击 吸收功明显下降, 断裂方式由原来的韧性断裂变为脆性断裂, 这种 现象称为韧脆转变 12.弹性不完整性: 理想的弹性体是不存在的, 多数工程材料弹性 变形时, 可能出现加载线与卸载线不重合、应变滞后于应力变化等 现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、 弹性后效、弹性滞后和循环韧性等 2、说明下列力学性能指标的意义。 答: E弹性模量G切变模量 σ规定残余伸长应力2.0σ屈服强 r 度 δ金属材料拉伸时最大应力下的总伸长率n 应变硬化指数gt 【P15】 3、金属的弹性模量主要取决于什么因素? 为什么说它是一个对组 织不敏感的力学性能指标? 答: 主要决定于原子本性和晶格类型。合金化、热处理、冷塑 性变形等能够改变金属材料的组织形态和晶粒大小, 可是不改 变金属原子的本性和晶格类型。组织虽然改变了, 原子的本性和

(完整版)材料性能学历年真题及答案

一、名词解释 低温脆性:材料随着温度下降,脆性增加,当其低于某一温度时,材料由韧性状态变为脆性状态,这种现象为低温脆性。 疲劳条带:每个应力周期内疲劳裂纹扩展过程中在疲劳断口上留下相互平行的沟槽状花样。 韧性:材料断裂前吸收塑性变形功和断裂功的能力。 缺口强化:缺口的存在使得其呈现屈服应力比单向拉伸时高的现象。 50%FATT:冲击试验中采用结晶区面积占整个断口面积 50%时所应的温度表征的韧脆转变温度。 破损安全:构件内部即使存在裂纹也不导致断裂的情况。 应力疲劳:疲劳寿命N>105 的高周疲劳称为低应力疲劳,又称应力疲劳。 韧脆转化温度:在一定的加载方式下,当温度冷却到某一温度或温度范围时,出现韧性断裂向脆性断裂的转变,该温度称为韧脆转化温度。 应力状态软性系数:在各种加载条件下最大切应力与最大当量正应力的比值,通常用α表示。 疲劳强度:通常指规定的应力循环周次下试件不发生疲劳破坏所承受的上限应力值。 内耗:材料在弹性范围内加载时由于一部分变形功被材料吸收,则这部份能量称为内耗。 滞弹性: 在快速加载、卸载后,随着时间的延长产生附加弹性应变的现象。 缺口敏感度:常用缺口试样的抗拉强度与等截面尺寸的光滑试样的抗拉强度的比值表征材料缺口敏感性的指标,往往又称为缺口强度比。 断裂功:裂纹产生、扩展所消耗的能量。 比强度::按单位质量计算的材料的强度,其值等于材料强度与其密度之比,是衡量材料轻质高强性能的重要指标。. 缺口效应:构件由于存在缺口(广义缺口)引起外形突变处应力急剧上升,应力分布和塑性变形行为出现变化的现象。 解理断裂:材料在拉应力的作用下原于间结合破坏,沿一定的结晶学平面(即所谓“解理面”)劈开的断裂过程。 应力集中系数:构件中最大应力与名义应力(或者平均应力)的比值,写为KT。 高周疲劳:在较低的应力水平下经过很高的循环次数后(通常N>105)试件发生的疲劳现象。 弹性比功:又称弹性应变能密度,指金属吸收变形功不发生永久变形的能力,是开始塑性变形前单位体积金属所能吸收的最大弹性变形功。 二、填空题

工程材料力学性能课后习题答案

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料 能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限 (σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服 强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包申格效应,如何解释,它有什么实际意义? 答案:包申格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

西工大——材料性能学期末考试总结

材料性能学 第一章材料单向静拉伸的力学性能 一、名词解释。 1.工程应力:载荷除以试件的原始截面积即得工程应力σ,σ=F/A0。 2.工程应变:伸长量除以原始标距长度即得工程应变ε,ε=Δl/l0。 3.弹性模数:产生100%弹性变形所需的应力。 4.比弹性模数(比模数、比刚度):指材料的弹性模数与其单位体积质量的比值。(一般适用于航空业) 5.比例极限σp:保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力—应变曲线上开始偏离直线时的应力值。 6.弹性极限σe:弹性变形过渡到弹-塑性变形(屈服变形)时的应力。 7.规定非比例伸长应力σp:即试验时非比例伸长达到原始标距长度(L0)规定的百分比时的应力。 8.弹性比功(弹性比能或应变比能) a e: 弹性变形过程中吸收变形功的能力,一般用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功来表示。 9.滞弹性:是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 10.粘弹性:是指材料在外力作用下,弹性和粘性两种变形机理同时存在的力学行为。 11.伪弹性:是指在一定的温度条件下,当应力达到一定水平后,金属或合金将产生应力诱发马氏体相变,伴随应力诱发相变产生大幅的弹性变形的现象。 12.包申格效应:金属材料经预先加载产生少量塑性变形(1-4%),然后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。 13.内耗:弹性滞后使加载时材料吸收的弹性变形能大于卸载时所释放的弹性变形能,即部分能量被材料吸收。(弹性滞后环的面积) 14.滑移:金属材料在切应力作用下,正应力在某面上的切应力达到临界切应力产生的塑变,即沿一定的晶面和晶向进行的切变。 15.孪生:晶体受切应力作用后,沿一定的晶面(孪生面)和晶向(孪生方向)在一个区域内连续性的顺序切变,使晶体仿佛产生扭折现象。 16.塑性:是指材料断裂前产生塑性变形的能力。 17.超塑性:在一定条件下,呈现非常大的伸长率(约1000%),而不发生缩颈和断裂的现象。 18.韧性断裂:材料断裂前及断裂过程中产生明显的塑性变形的断裂过程。 19.脆性断裂:材料断裂前基本上不产生明显的宏观塑性变形,没有明显预兆,往往表现为突然发生的快速断裂过程。 20.剪切断裂:材料在切应力的作用下沿滑移面滑移分离而造成的断裂。 21.解理断裂:在正应力的作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。 22.韧性:是材料断裂前吸收塑性变形功和断裂功的能力。 23.银纹:聚合物材料在张应力作用下表面或内部出现的垂直于应力方向的裂隙。当光线照射到裂隙面的入射角超过临界角时,裂隙因全反射而呈银色。 24.河流花样:在电子显微镜中解理台阶呈现出形似地球上的河流状形貌,故名河流状花样。 25.解理台阶:解理断裂断口形貌中不同高度的解理面之间存在台阶称为解理台阶。 26.韧窝:微孔聚集形断裂后的微观断口。 27.理论断裂强度:在外加正应力作用下,将晶体中的两个原子面沿着垂直于外力方向拉断所需的应力称为理论断裂强度。 28.真实断裂强度:用单向静拉伸时的实际断裂拉伸力Fk除以试样最终断裂截面积Ak所得应力值。 29.静力韧度:通常将静拉伸的σ——ε曲线下所包围的面积减去试样断裂前吸收的弹性能。 二、填空题。 1. 整个拉伸过程的变形可分为弹性变形,屈服变形,均匀塑性变形,不均匀集中塑性变形四个阶段。 2. 材料产生弹性变形的本质是由于构成材料原子(离子)或分子自平衡位置产生可逆位移的反应。 3. 在工程中弹性模数是表征材料对弹性变形的抗力,即材料的刚度,其值越大,则在相同应力下产生的弹性变形就越小。

付华材料性能学部分习题答案

第一章材料的弹性变形 一、填空题: 1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂 的能力。 2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。 3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。 二、名词解释 1.弹性变形:去除外力,物体恢复原形状。弹性变形是可逆的 2.弹性模量: 拉伸时σ=EεE:弹性模量(杨氏模数) 切变时τ=GγG:切变模量 3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。 4.弹性比功 定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。 。 三、简答: 1.金属材料、陶瓷、高分子弹性变形的本质。 答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。 2.非理想弹性的概念及种类。 答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。表现为应力应变不同步,应力和应变的关系不是单值关系。种类主要包括

滞弹性,粘弹性,伪弹性和包申格效应。 3.什么是高分子材料强度和模数的时-温等效原理? 答:高分子材料的强度和模数强烈的依赖于温度和加载速率。加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。 四、计算题: 气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—+ E0为无气孔时的弹性模量;P为气孔率,适用于P≤50 %。370= E0 (1—×+×则E0= Gpa 260= (1—×P+×P2) P= 其孔隙度为%。 五、综合问答 1.不同材料(金属材料、陶瓷材料、高分子材料)的弹性模量主要受什么因素影响? 答:金属材料的弹性模量主要受键合方式、原子结构以及温度影响,也就是原子之间的相互作用力。化学成分、微观组织和加载速率对其影响不大。 陶瓷材料的弹性模量受强的离子键和共价键影响,弹性模量很大,另外,其弹性模量还和构成相的种类、粒度、分布、比例及气孔率有关,即与成型工艺密切相关。 高分子聚合物的弹性模量除了和其键和方式有关外,还与温度和时间有密切的关系(时-温等效原理)。 (综合分析的话,每一条需展开)。 第二章材料的塑性变形 一、填空题 1.金属塑性的指标主要有伸长率和断面收缩率两种。

安徽工业大学材料力学性能复习总结题

安徽工业大学材料力学性能复习总结题 第一章金属在单向静拉伸载荷下的力学性能— 1、名词解释 强度、塑性、韧性、包申格效应 2、说明下列力学性能指标的意义 E、σ0.2、σs、n、δ、ψ 3、今有45、40Cr、35CrMo钢和灰铸铁几种材料,你选择哪些材料作机床床身?为什么? 4、试述并画出退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸-伸长曲线图上的区别。 *5、试述韧性断裂和脆性断裂的区别?(P21-22) 6、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 7、何谓拉伸断口三要素? 8、试述弥散强化与沉淀强化的异同? 9、格雷菲斯判据是断裂的充分条件、必要条件还是充分必要条件?*10、试述构件的刚度与材料的刚度的异同。(P4)

第二章金属在其它静载荷下的力学性能— 1、名词解释 缺口效应、缺口敏感度、应力状态软性系数 2、说明下列力学性能指标及表达的意义 σbc、NSR、600HBW1/30/20 3、缺口试样拉伸时应力分布有何特点? 4、根据扭转试样的宏观断口特征,可以了解金属材料的最终断裂方式,比如切断、正断和木纹状断口。试画出这三种断口特征的宏观特征。 第三章金属在冲击载荷下的力学性能— 1、名词解释 低温脆性、韧脆转变温度 2、说明下列力学性能指标的意义 A K、FATT50 3、现需检验以下材料的冲击韧性,问哪种材料要开缺口?哪些材料不要开缺口?为什么? W18Cr4V、Cr12MoV、3Cr2W8V、40CrNiMo、30CrMnSi、20CrMnTi、铸铁

第四章金属的断裂韧度— 1、名词解释 应力场强度因子K I、小范围屈服 2、说明断裂韧度指标K IC和K C的意义及其相互关系。 3、试述K I与K IC的相同点和不同点。 4、试述K IC和A KV的异同及其相互关系。 *5、合金钢调质后的性能σ0.2=1400MPa, K IC=110MPa?m1/2,设此种材料厚板中存在垂直于外界应力的裂纹,所受应力σ=900MPa,问此时的临界裂纹长度是多少? *6、有一大型薄板构件,承受工作应力为400MN/m2,板的中心有一长为3mm的裂纹,裂纹面垂直于工作应力,钢材的σs=500 MN/m2,试确定:裂纹尖端的应力场强度因子K I及裂纹尖端的塑性区尺寸R 。

材料性能学重点(完整版)

第一章 1、 力—伸长曲线和应力—应变曲线,真应力—真应变曲线 在整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀集中塑性变形4个阶段 将力—伸长曲线的纵,横坐标分别用拉伸试样的标距处的原始截面积Ao 和原始标距长度Lo 相除,则得到与力—伸长曲线形状相似的应力(σ=F/Ao )—应变(ε=ΔL/Lo )曲线 比例极限σp , 弹性极限σe , 屈服点σs , 抗拉强度σb 如果以瞬时截面积A 除其相应的拉伸力F ,则可得到瞬时的真应力S (S =F/A)。同样,当拉伸力F 有一增量dF 时,试样瞬时长度L 的基础上变为L +dL ,于是应变的微分增量应是de =dL / L ,则试棒自L 0伸长至L 后,总的应变量为: 式中的e 为真应变。于是,工程应变和真应变之间的关系为 2、 弹性模数 在应力应变关系的意义上,当应变为一个单位时,弹性模数在数值上等于弹性应力,即弹性模数是产生100%弹性变形所需的应力。在工程中弹性模数是表征材料对弹性变形的抗力,即材料的刚度,其值越大,则在相同应力下产生的弹性变形就越小。 比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比刚度 3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③ 化学成分 (间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不大) 4、 比例极限和弹性极限 比例极限σp 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-应变曲线上开始偏离直线时的应力值。 弹性极限σe 试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力值 5、 弹性比功又称为弹性比能或应变比能,用a e 表示,是材料在弹性变形过程中吸收变形功 的能力。一般可用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功表示。 6、 根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性(完全弹 性)和非理想弹性(弹性不完整性)两类。 对于理想弹性材料,在外载荷作用下,应力和应变服从虎克定律σ=M ε,并同时满足3个条件,即:应变对于应力的响应是线性的;应力和应变同相位;应变是应力的单值函数。 材料的非理想弹性行为大致可以分为滞弹性、粘弹性、伪弹性及包申格效应等类型。 00ln 0L L L dL de e L e L ===??)1ln(ln 0ε+==L L e

湖南大学材料性能学作业+习题标准答案

湖南大学材料性能学作业+习题标准答案

————————————————————————————————作者:————————————————————————————————日期:

第二章作业题 1应力状态软性系数:按“最大切应力理论”计算的最大切应力与按“相当最大正应力理论”计算的最大正应力的比值。 2缺口效应:截面的急剧变化产生缺口,在静载荷作用下,缺口截面上的应力状态将发生变化,产生缺口效应,影响金属材料的 力学性能。 3 布氏硬度:用一定直径的硬质合金球做压头,施以一定的试 验力,将其压入试样表面,经规定保持时间后卸除,试样表面残留 压痕。HBW通过压痕平均直径求得。 4 洛氏硬度:洛氏硬度以测量压痕深度标识材料的硬度。HR= (k-h)/0.002. 二、脆性材料的抗压强度 扭转屈服点 缺口试样的抗拉强度 NSR:缺口敏感度,为缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值。 HBS:用钢球材料的球压头表示洛氏硬度。 HRC:用金刚石圆锥压头表示的洛氏硬度。 三、试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围 1单向拉伸 特点:温度、应力状态和加载速率是确定的,且常用标准的光滑圆柱试样进行试验。 应用范围:一般是用于那些塑性变形抗力与切断强度较低的所谓塑性材料试验。 2压缩试验 特点:单向压缩试验的应力状态系数=2,比拉伸,弯曲,扭转的应力状态都软,拉伸时塑性很好的材料在压缩时只发生压缩变形而不会断裂。 应用范围:拉伸时呈脆性的金属材料的力学性能测定。如果产生明显屈服,还可以测定压缩屈服点。 3弯曲试验 特点:试样形状简单,操作方便,弯曲试样应力分布不均匀,表面最大,中心为零。可较灵敏的反映材料表面缺陷。 应用范围:对于承受弯曲载荷的机件,测定其力学性能。 4扭转试验 特点:1扭转的应力状态软性系数=0.8,比拉伸时大,易于显示金属的塑性行为。2圆柱形试样扭转时,整个长度上塑性变形是均匀的,没有颈缩现象,所以能实现大塑性变形量下的试验。3能较敏感的反映出金属表面缺陷及硬化层的性能。4扭转时试样中的最大正应力与最大切应力在数值上大体相等,而生产上所使用的大部分金属材料的正断强度大于切断强度,所以,扭转试验是测定这些材料切断最可靠的办法。 应用范围:研究金属在热加工条件下的流变性能与断裂性能,评定材料的热压力加工性;研究或检验工件热处理的表面质量和各种表面强化工艺的效果。 四、缺口拉伸时应力分布有何特点

材料性能学 3.4班复习资料

《材料性能学》期末复习总结·· 名词解释 抗拉强度:抗拉强度是拉伸试验时,试样拉断过程中最大试验力所对应的应力。标志着材料在承受拉伸载荷时的实际承载能力。 疲劳强度:在指定疲劳寿命下,材料能承受的上限循环应力。(疲劳寿命可分为有限周次和无限周次两种。) 屈服强度: 材料的屈服标志着材料在应力作用下由弹性变形转变为弹-塑性变形状态,因此材料屈服时所对应的应力值也就是材料抵抗起始塑性变形或产生微量塑性变形的能力。这一应力值称为材料的屈服强度或屈服点。 冲击韧性(Ak意义):表示单位面积吸收冲击功的平均值,由于缺口处应力分布不均匀,因此Ak无明确的意义;Ak可表示材料的脆性倾向,但不能真正反映材料的韧脆程度。 接触疲劳:接触疲劳是两接触材料作滚动或滚动加滑动摩擦时,交变接触压应力长期作用使材料表面疲劳损伤,局部区域出现小片或小块材料剥落,而使材料磨损的现象。 蠕变:材料在长时间的恒温、恒载荷作用下缓慢的产生塑性变形的现象。 磨损:在摩擦作用下物体相对运动时,表面逐渐分离出磨屑,使接触表面不断发生尺寸变化与重量损失现象 屈服现象:在变形过程中,外力不增加,试样仍然持续伸长,或外力增加到一定数值时,忽然下降,随后在外力不增加或上下波动的情况下试样可以继续伸长变形,这种现象称为屈服。 断裂韧度:KC>KIC;KIC是材料本身的力学性能指标,只与材料成分、组织结构有关。

载流子:具有电荷的自由粒子,在电场作用下可产生电流。 霍尔效应:置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势差,这种现象称霍尔效应。 电解效应:离子的迁移伴随着一定的质量变化,离子在电极附近发生电子得失,产生新物质,这就是电解现象。 固体电解质:同电解质溶液一样,有离子导体电流出现即为固体电解质。 压敏效应:压敏效应指对电压变化敏感的非线性电阻效应,即在某一临界电压以下,电阻值非常高,几乎无电流通过,超过该临界电压,电阻迅速降低,让电流通过。 PTC效应:采用阳离子半径同Ba2+、Ti4+相近,原子价不同的元素去置换固溶Ba2+、Ti4+位置,在氧化气氛中烧结,形成n型半导体其最大特征是存在着正方向与立方向相变的相变点,在其附近,电阻率随温度上升而发生突变,增大3-4个数目级。 电介质:在电场作用下,能建立极化的物质。 极化强度:电介质单位体积内的电偶极距总和,与面积电荷密度单位一样C/m2。铁电体:在一定温度范围内存在自发极化,且自发极化方向可随外电场作可逆转动的晶体。铁电晶体一定是极性晶体,但并非所有极性晶体都是铁电体,只有某些特殊晶体结构的极性晶体在自发极化改变方向时,晶体结构不发生打的畸变,具有自发极化随外电场转动的性质。 压电效应:某些晶体材料在一定方向上可按所施加的机械应力成比例地在受力两端表面上产生数量相等、符号相反的束缚电荷,反之在一定方向的电场作用下,会产生与电场强度成正比的几何应变。 热容:将m克质量的物质温度升高或降低一度,在没有相变或化学变化的条件下,所需要的热量称为该物质的热容,又称热容量。 比热:将1克物质温度升高1度所需要的热量称为该物质的比热容。 热膨胀:材料在加热或冷却时,物质尺寸或体积要发生变化,这种由于温度改变导致体积尺寸才发生变化的现象称为热膨胀。 膨胀系数:当温度变化1K时物质尺寸或体积的变化率。

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】 答: 2 12?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。

相关文档
相关文档 最新文档