文档库 最新最全的文档下载
当前位置:文档库 › (浙江专用)202x版高考数学一轮总复习 专题7 不等式 7.5 绝对值不等式检测

(浙江专用)202x版高考数学一轮总复习 专题7 不等式 7.5 绝对值不等式检测

(浙江专用)202x版高考数学一轮总复习 专题7 不等式 7.5 绝对值不等式检测
(浙江专用)202x版高考数学一轮总复习 专题7 不等式 7.5 绝对值不等式检测

7.5 绝对值不等式

挖命题

【考情探究】

考点内容解读

5年考情预测热

度考题示例考向关联考点

含绝对值不等式的解法

1.理解绝对值三角不等式的

代数证明和几何意义,能利

用绝对值三角不等式证明

一些简单的绝对值不等式.

2.理解|x|a的解

法与几何意义.掌握

|x|a,|ax+b|≤c,|ax

+b|≥c型不等式的解法.

3.掌握|x-a|+|x-b|≤c和

|x-a|+|x-b|≥c型不等式的

解法.

2017浙江,15,17

绝对值三角不

等式

的应用,含绝对

不等式的解法

向量的模的最值,

函数最值

★★

2016浙江,8,20

绝对值三角不

等式

的应用

不等式命题的判

断、

数列不等式的证明

2015浙江,18

绝对值三角不

等式

的应用,含绝对

不等式的解法

二次函数的最值

分析解读 1.主要考查绝对值的几何意义和绝对值不等式的解法,利用绝对值三角不等式

证明一些简单的绝对值不等式.

2.绝对值不等式常与函数(例:2015浙江,18)、导数、数列(例:2016浙江,20)等知识联系在一起,

难度较大,是近两年浙江高考命题的热点.

3.预计2020年高考中,仍会对绝对值不等式进行考查.利用绝对值三角不等式证明一些简单的

绝对值不等式,以及含绝对值不等式的解法仍是重点之一,复习时要足够重视.

破考点

【考点集训】

考点含绝对值不等式的解法

1.(2018浙江杭州高三教学质检,1)设集合A={x||x+2|≤2},B=[0,4],则?R(A∩B)=()

A.R

B.{0}

C.{x|x∈R,x≠0}

D.?

答案 C

2.(2018浙江浙东北联盟期中,17)设a,b∈R,a

答案

炼技法

【方法集训】

方法形如|x-a|+|x-b|≥c(或≤c,c>0)型的不等式的解法

1.已知不等式|2x-1|-|x+1|<2的解集为{x|a

解析当x≥时,原不等式即为2x-1-(x+1)<2,解得x<4,故≤x<4.

当-1≤x<时,原不等式即为1-2x-(x+1)<2,解得x>-,故-

当x<-1时,原不等式即为1-2x+(x+1)<2,解得x>0,此时无解.

综上得-

评析本题考查绝对值不等式的解法,考查分类讨论的思想.

2.(2017课标Ⅰ,23,10分)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.

解析本题考查含绝对值的不等式的解法,考查学生的运算求解能力以及对数形结合思想的应用能力.

(1)解法一(零点分段法):当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①

当x<-1时,①式化为x2-3x-4≤0,无解;

当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;

当x>1时,①式化为x2+x-4≤0,从而1

所以f(x)≥g(x)的解集为.

解法二(图象法):由已知可得g(x)=

当a=1时, f(x) =-x2+x+4,两个函数的图象如图所示.

易得图中两条曲线的交点坐标为(-1,2)和,-1+,所以f(x)≥g(x)的解集为

.

(2)解法一(等价转化法):当x∈[-1,1]时,g(x)=2.

所以f(x)≥g(x)的解集包含[-1,1]等价于当x∈[-1,1]时f(x)≥2.

又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,

所以f(-1)≥2且f(1)≥2,得-1≤a≤1.

所以a的取值范围为[-1,1].

解法二(分类讨论法):当x∈[-1,1]时,g(x)=2,

所以f(x)≥g(x)的解集包含[-1,1]等价于x∈[-1,1]时f(x)≥2,即-x2+ax+4≥2,

当x=0时,-x2+ax+4≥2成立;

当x∈(0,1]时,-x2+ax+4≥2可化为a≥x-,而y=x-在(0,1]单调递增,最大值为-1,所以a≥-1;当x∈[-1,0)时,-x2+ax+4≥2可化为a≤x-,而y=x-在[-1,0)单调递增,最小值为1,所以a≤1.综上,a的取值范围为[-1,1].

过专题

【五年高考】

A组自主命题·浙江卷题组

考点含绝对值不等式的解法

(2016浙江,8,5分)已知实数a,b,c.( )

A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100

B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100

C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100

D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100

答案 D

B组统一命题、省(区、市)卷题组

考点含绝对值不等式的解法

1.(2015山东,5,5分)不等式|x-1|-|x-5|<2的解集是( )

A.(-∞,4)

B.(-∞,1)

C.(1,4)

D.(1,5)

答案 A

2.(2018课标全国Ⅱ理,23,10分)设函数f(x)=5-|x+a|-|x-2|.

(1)当a=1时,求不等式f(x)≥0的解集;

(2)若f(x)≤1,求a的取值范围.

解析(1)当a=1时, f(x)=

可得f(x)≥0的解集为{x|-2≤x≤3}.

(2)f(x)≤1等价于|x+a|+|x-2|≥4.

而|x+a|+|x-2|≥|a+2|,

且当x=2时等号成立.

故f(x)≤1等价于|a+2|≥4.

由|a+2|≥4可得a≤-6或a≥2.

所以a的取值范围是(-∞,-6]∪[2,+∞).

方法总结解含有两个或两个以上绝对值的不等式,常用零点分段法或数形结合法求解;求含有两个或两个以上绝对值的函数的最值,常用绝对值三角不等式或数形结合法求解.

3.(2018课标全国Ⅲ,23,10分)[选修4—5:不等式选讲]

设函数f(x)=|2x+1|+|x-1|.

(1)画出y=f(x)的图象;

(2)当x∈[0,+∞)时, f(x)≤ax+b,求a+b的最小值.

解析本题考查函数的图象与绝对值不等式恒成立问题.

(1)f(x)=

y=f(x)的图象如图所示.

(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时, f(x)≤ax+b在[0,+∞)成立,因此a+b的最小值为5.

易错警示对“零点分段法”的理解不到位

若不等式含有两个或两个以上的绝对值并含有未知数,通常先把每个绝对值内代数式等于零时的未知数的值求出(即零点),然后将这些零点标在数轴上,此时数轴被零点分成了若干段(区间),在每一段区间里,每一个绝对值符号内的代数式的符号确定,此时利用绝对值的定义可以去掉绝对值符号.

解后反思绝对值不等式问题常见类型及解题策略

(1)直接求解不等式,主要利用绝对值的意义、不等式的性质想办法去掉绝对值符号求解.

(2)已知不等式的解集求参数值,利用绝对值三角不等式或函数求相应最值,然后再求参数的取值范围.

C组教师专用题组

考点含绝对值不等式的解法

1.(2015重庆,16,5分)若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a= .

答案-6或4

2.(2014广东,9,5分)不等式|x-1|+|x+2|≥5的解集为.

答案{x|x≤-3或x≥2}

3.(2014湖南,13,5分)若关于x的不等式|ax-2|<3的解集为x-

答案-3

4.(2014江西,15,5分)x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围为.

答案[0,2]

5.(2016课标Ⅲ,24,10分)已知函数f(x)=|2x-a|+a.

(1)当a=2时,求不等式f(x)≤6的解集;

(2)设函数g(x)=|2x-1|.当x∈R时, f(x)+g(x)≥3,求a的取值范围.

解析(1)当a=2时, f(x)=|2x-2|+2.

解不等式|2x-2|+2≤6得-1≤x≤3.

因此f(x)≤6的解集为{x|-1≤x≤3}.(5分)

(2)当x∈R时,

f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,

当x=时等号成立,所以当x∈R时, f(x)+g(x)≥3等价于|1-a|+a≥3.①(7分)

当a≤1时,①等价于1-a+a≥3,无解.

当a>1时,①等价于a-1+a≥3,解得a≥2.

所以a的取值范围是[2,+∞).(10分)

方法指导(1)将a=2代入不等式,化简后去绝对值求解;

(2)要使f(x)+g(x)≥3恒成立,只需f(x)+g(x)的最小值≥3即可,利用|a|+|b|≥|a±b|可求最值.

6.(2016课标全国Ⅱ,24,10分)已知函数f(x)=+,M为不等式f(x)<2的解集.

(1)求M;

(2)证明:当a,b∈M时,|a+b|<|1+ab|.

(1)f(x)=(2分)

当x≤-时,由f(x)<2得-2x<2,解得-1

当-

当x≥时,由f(x)<2得2x<2,解得≤x<1.(5分)

所以f(x)<2的解集M={x|-1

(2)证明:由(1)知,当a,b∈M时,-1

方法总结解含有两个绝对值的不等式时,主要采用零点分段法求解.另外,若所证不等式的两边均为非负数,则先把两边平方,然后利用作差法求解.

评析本题考查绝对值不等式的解法及不等式的证明,考查分类讨论的思想.属中档题. 7.(2016课标全国Ⅰ,24,10分)已知函数f(x)=|x+1|-|2x-3|.

(1)画出y=f(x)的图象;

(2)求不等式|f(x)|>1的解集.

解析(1)f(x)=(4分)

y=f(x)的图象如图所示.

(6分) (2)解法一:由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;

当f(x)=-1时,可得x=或x=5,(8分)

故f(x)>1的解集为{x|1

所以|f(x)|>1的解集为.(10分)

解法二:根据y=f(x)的分段函数表达式,有:当x≤-1时,|f(x)|>1的解集为{x|x≤-1};

当-11的解集为∪;

当x>-时,|f(x)|>1的解集为∪{x|x>5}.

综上,|f(x)|>1的解集为.

8.(2015课标Ⅰ,24,10分)已知函数f(x)=|x+1|-2|x-a|,a>0.

(1)当a=1时,求不等式f(x)>1的解集;

(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.

解析(1)解法一:当a=1时, f(x)>1化为|x+1|-2|x-1|-1>0.

当x≤-1时,不等式化为x-4>0,无解;

当-10,解得

当x≥1时,不等式化为-x+2>0,解得1≤x<2.

所以f(x)>1的解集为.(5分)

解法二:当a=1时, f(x)=

画出f(x)的图象(如图所示),根据图象可得不等式f(x)>1的解集为.(5分)

(2)由题设可得, f(x)=

所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为

A,B(2a+1,0),C(a,a+1),△ABC的面积为(a+1)2.

由题设得(a+1)2>6,故a>2.

所以a的取值范围为(2,+∞).(10分)

9.(2015江苏,21D,10分)解不等式x+|2x+3|≥2.

解析原不等式可化为或

解得x≤-5或x≥-.

综上,原不等式的解集是.

评析本小题主要考查含绝对值不等式的解法,考查分类讨论的能力.

10.(2014辽宁,24,10分)设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1,记f(x)≤1的解集为M,g(x)≤4的解集为N.

(1)求M;

(2)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤.

解析(1)f(x)=

当x≥1时,由f(x)=3x-3≤1得x≤,

故1≤x≤;

当x<1时,由f(x)=1-x≤1得x≥0,

故0≤x<1.

所以f(x)≤1的解集为

M=.

(2)证明:由g(x)=16x2-8x+1≤4得16≤4,

解得-≤x≤.

因此N=,故M∩N=.

当x∈M∩N时, f(x)=1-x,

于是x2f(x)+x·[f(x)]2

=xf(x)[x+f(x)]=x·f(x)=x(1-x)= -≤.

11.(2014课标Ⅱ,24,10分)设函数f(x)=+|x-a|(a>0).

(1)证明:f(x)≥2;

(2)若f(3)<5,求a的取值范围.

解析(1)证明:由a>0,得f(x)=+|x-a|≥=+a≥2.所以f(x)≥2.

(2)f(3)=+|3-a|.

当a>3时, f(3)=a+,由f(3)<5得3

当0

综上,a的取值范围是.

评析本题考查了含绝对值不等式的解法,考查了分类讨论思想.

12.(2013辽宁,24,10分)已知函数f(x)=|x-a|,其中a>1.

(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;

(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.

解析(1)当a=2时, f(x)+|x-4|=

当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;

当2

当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5,

所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(4分)

(2)记h(x)=f(2x+a)-2f(x),则h(x)=

由|h(x)|≤2,解得≤x≤.

又已知|h(x)|≤2的解集为{x|1≤x≤2},所以

于是a=3.(10分)

13.(2013课标Ⅰ,24,10分)已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.

(1)当a=-2时,求不等式f(x)

(2)设a>-1,且当x∈时, f(x)≤g(x),求a的取值范围.

解析(1)当a=-2时,不等式f(x)

设函数y=|2x-1|+|2x-2|-x-3,则

y=

其图象如图所示.从图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0

(2)当x∈时, f(x)=1+a.

不等式f(x)≤g(x)化为1+a≤x+3.

所以x≥a-2对x∈都成立.

故-≥a-2,即a≤.

从而a的取值范围是.

方法总结(1)解含有绝对值符号的不等式的关键是去掉绝对值符号,可利用零点分段讨论法把绝对值不等式转化为我们熟悉的一元一次不等式或一元二次不等式,也可设出函数,利用函数图象解决.

(2)对于不等式恒成立求参数问题,常分离参数,进而构造函数,转化为求最值问题.

14.(2012课标全国,24,10分)选修4—5:不等式选讲

已知函数f(x)=|x+a|+|x-2|.

(1)当a=-3时,求不等式f(x)≥3的解集;

(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

解析(1)当a=-3时,

f(x)=

当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;

当2

当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4,

所以f(x)≥3的解集为{x|x≤1}∪{x|x≥4}.

(2)f(x)≤|x-4|?|x-4|-|x-2|≥|x+a|.

当x∈[1,2]时,|x-4|-|x-2|≥|x+a|

?4-x-(2-x)≥|x+a|?-2-a≤x≤2-a.

由条件得-2-a≤1且2-a≥2,即-3≤a≤0.

故满足条件的a的取值范围为[-3,0].

评析本题考查了含绝对值不等式的解法,运用分类讨论解含绝对值的不等式,考查了学生的运算求解能力.

【三年模拟】

一、选择题(每小题4分,共12分)

1.(2019届浙江嘉兴9月基础测试,10)已知m∈R,函数f(x)=+m在[2,5]上的最大值是5,则m的取值范围是( )

A. B.

C.[2,5]

D.[2,+∞)

答案 A

2.(2018浙江稽阳联谊学校高三联考(4月),1)已知集合P={x||2x-1|<1},Q={0,1,2,3,4},则

P∩Q=()

A.{2,3,4}

B.(0,1)

C.{0,1}

D.?

答案 D

3.(2018浙江杭州高三教学质检,9)设函数f(x)=x2+ax+b(a,b∈R),记M为函数y=|f(x)|在[-1,1]上的最大值,N为|a|+|b|的最大值,下列正确的是( )

A.若M=,则N=3

B.若M=,则N=3

C.若M=2,则N=3

D.若M=3,则N=3

答案 C

二、填空题(单空题4分,多空题6分,共20分)

4.(2019届浙江“七彩阳光”联盟期初联考,14)已知a,b为实数,不等式|x2+ax+b|≤|x2-7x+12|对一切实数x都成立,则a+b= .

答案5

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

2019高考数学不等式:基本不等式

基本不等式 【考点梳理】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号且不为零); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)? ?? ??a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【考点突破】 考点一、配凑法求最值 【例1】(1)若x < 54,则f (x )=4x -2+145 x -的最大值为________. (2)函数y = x -1 x +3+x -1 的最大值为________. [答案] (1) 1 (2) 1 5 [解析] (1)因为x <5 4 ,所以5-4x >0,

=-2+3=1. 当且仅当5-4x =1 5-4x ,即x =1时,等号成立. 故f (x )=4x -2+1 4x -5的最大值为1. (2)令t =x -1≥0,则x =t 2 +1, 所以y = t t 2 +1+3+t = t t 2 +t +4 . 当t =0,即x =1时,y =0; 当t >0,即x >1时,y = 1 t +4t +1 , 因为t +4 t ≥24=4(当且仅当t =2时取等号), 所以y = 1t +4t +1 ≤1 5, 即y 的最大值为1 5(当t =2,即x =5时y 取得最大值). 【类题通法】 1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. 2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C [解析] 当x >2时,x -2>0,f (x )=(x -2)+ 1 x -2 +2≥2(x -2)× 1 x -2 +2=4,当

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

不等式-高考数学解题方法归纳总结专题训练

专题20 不等式训练 【训练目标】 1、掌握不等式的性质,能利用不等式的性质,特殊值法等判断不等式的正误; 2、熟练的解一元二次不等式,分式不等式,绝对值不等式,对数不等式,指数不等式,含根式的不等式; 3、掌握分类讨论的思想解含参数的不等式; 4、掌握恒成立问题,存在性问题; 5、掌握利用基本不等式求最值的方法; 6、掌握线性规划解决最优化问题; 7、掌握利用线性规划,基本不等式解决实际问题。 【温馨小提示】 在高考中,不等式无处不在,不论是不等式解法还是线性规划,基本不等式,一般单独出现的是线性规划或基本不等式,而不等式的解法则与集合、函数、数列相结合。 【名校试题荟萃】 1、若实数且,则下列不等式恒成立的是() A. B. C. D. 【答案】C 【解析】根据函数的图象与不等式的性质可知:当时,为正确选项,故选C. 2、已知,,则() A. B. C. D. 【答案】A 3、,设,则下列判断中正确的是() A. B. C. D. 【答案】B 【解析】令,则,故选B

4、若,且,则下列不等式成立的是() A. B. C. D. 【答案】B 【解析】 . 5、袋子里有大小、形状相同的红球个,黑球个().从中任取个球是红球的概率记为.若将红球、黑球个数各增加个,此时从中任取个球是红球的概率记为;若将红球、黑球个数各减少个,此时从中任取个球是红球的概率记为,则() A. B. C. D. 【答案】D 6、若,,则下列不等式错误的是() A. B. C. D. 【答案】C 【解析】 因为,,所以,,故A、B正确;由已知得, ,所以,所以C错误;由,得,,所以 成立,所以D正确.故选C.

高中数学高考题详解-基本不等式

考点29 基本不等式 一、选择题 1.(2013·重庆高考理科·T3 )63)a -≤≤的最大值为 ( ) A.9 B.2 9 C.3 D. 2 2 3 【解题指南】直接利用基本不等式求解. 【解析】选B. 当6-=a 或3=a 时, 0)6)(3(=+-a a ,当36<<-a 时, 2 9263)6)(3(=++-≤ +-a a a a ,当且仅当,63+=-a a 即23 =a 时取等号. 2. (2013·山东高考理科·T12)设正实数x,y,z 满足x 2-3xy+4y 2-z =0.则当 xy z 取得最大值时,212x y z +-的最大值为( ) A.0 B.1 C. 94 D.3 【解题指南】此题可先利用已知条件用x,y 来表示z ,再经过变形,转化为基本不等式的问题,取等号的条件可直接代入212x y z +-,进而再利用基本不等式求出2 12x y z +-的最值. 【解析】选B. 由22340x xy y z -+-=,得2234z x xy y =-+. 所以 22 14343xy xy x y z x xy y y x ==-++ -1≤=,当且仅当4x y y x =,即2x y =时取等号此时22y z =, 1)(max =z xy . xy y y z y x 2122212-+=-+)211(2)11(2y y x y -=-=2 11122412y y ??+- ? ?≤= ? ??? . 3. (2013·山东高考文科·T12)设正实数z y x ,,满足04322=-+-z y xy x ,

则当 z xy 取得最大值时,2x y z +-的最大值为( ) A.0 B.9 8 C.2 D.94 【解题指南】此题可先利用已知条件用x,y 来表示z ,再经过变形,转化为基本不等式的问题,取等号的条件可直接代入2x y z +-,进而再利用基本不等式求出2x y z +-的最值. 【解析】 选C. 由22340x xy y z -+-=,得2234z x xy y =-+. 所以1342344322=-?≥-+=+-=x y y x x y y x xy y xy x xy z ,当且仅当4x y y x = , 即2x y =时取等号此时22y z =, 所以()2222222422222 22=?? ? ??-+≤-=-=-+=-+y y y y y y y y y z y x , 当且仅当y=2-y 时取等号. 4.(2013·福建高考文科·T7)若2x +2y =1,则x+y 的取值范围是 ( ) A .[]0,2 B .[]2,0- C .[)2,-+∞ D .(],2-∞- 【解题指南】“一正二定三相等”,当题目出现正数,出现两变量,一般而言,这种题就是在考查基本不等式. 【解析】选D. ≤2x +2y =1,所以2x+y ≤14 ,即2x+y ≤2-2,所以x+y ≤-2. 二、填空题 5. (2013·四川高考文科·T13)已知函数()4(0,0)a f x x x a x =+>>在3x =时取得最小值,则a =____________。 【解题指南】本题考查的是基本不等式的等号成立的条件,在求解时需要找到等号成立的条件,将3x =代入即可. 【解析】由题()4(0,0)a f x x x a x =+>>,根据基本不等式4a x x +≥

高考数学不等式解题方法技巧

高考数学不等式解题方法 技巧 Newly compiled on November 23, 2020

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或 >4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若;④b a b a 11,0<<<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答: 137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______(答:12,2??-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较2 1log log 21+t t a a 和的大小(答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或43 x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当43 x =时,1+3log x =2log 2x )

历年高考数学真题精选23 基本不等式

历年高考数学真题精选(按考点分类) 专题23 基本不等式(学生版) 一.选择题(共10小题) 1.(2015?湖南)若实数a ,b 满足12 a b +=,则ab 的最小值为( ) A B .2 C . D .4 2.(2015?上海)已知0a >,0b >,若4a b +=,则( ) A .22a b +有最小值 B C . 11 a b +有最大值 D 有最大值 3.(2015?福建)若直线1(0,0)x y a b a b +=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 4.(2014?重庆)若42log (34)log a b +=a b +的最小值是( ) A .6+ B .7+ C .6+ D .7+5.(2013?山东)设正实数x ,y ,z 满足22340x xy y z -+-=.则当 xy z 取得最大值时,212 x y z +-的最大值为( ) A .0 B .1 C . 94 D .3 6.(2013?福建)若221x y +=,则x y +的取值范围是( ) A .[0,2] B .[2-,0] C .[2-,)+∞ D .(-∞,2]- 7.(2012?浙江)若正数x ,y 满足35x y xy +=,则34x y +的最小值是( ) A . 24 5 B . 285 C .5 D .6 8.(2010?四川)设0a b c >>>,则2211 21025() a ac c a b a a b ++-+-的最小值是( ) A .2 B .4 C . D .5 9.(2010?四川)设0a b >>,则211 () a a b a a b ++-的最小值是( ) A .1 B .2 C .3 D .4 10.(2010?重庆)已知0x >,0y >,228x y xy ++=,则2x y +的最小值是( )

2020高考数学不等式专题测试试卷

高考数学不等式专题测试试卷 班级 .姓名 .得分 . 一、填空题:(每小题5分,共70分) 1.不等式242x x ->+的解集是 . 2.设A ={x |x 2-2x -3>0},B ={x |x 2+5x ≤0},则A B I 等于 . 3. 若0≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0 a x ->的解集为 。 5.若关于x 的不等式a x 2-a x +1>0对于x ∈R 恒成立,则实数a 的取值范围是 . 6.若实数a 、b 满足a +b =2,则3a +3b 的最小值是 . 7.???????≥≥-<-<+0 011234x y y x y x 表示的平面区域内的整点的个数是 . 8.建造一个容积为18 m 3,深为2 m 的长方体无盖水池,如果池底和池壁每平方米的造价分别为200元和150元,那么池的最低造价为 (元) 9. 设a b ==a b 与的大小关系是 10.不等式(x-2)(x+1)<0解集为 11.设y x ,满足约束条件:?? ? ??≥≤≤+,0,, 1y x y y x 则y x z +=2的最大值是 12.已知方程2(2)50x m x m ++++=有两个正实数根,则实数m 的取值范围是_____________ 13.若y x y x -=+则,422的最大值是 . 14.已知集合{1,1}M =-,11 {| 24,}2 x N x x Z +=<<∈则M N =I .

二、解答题:(6小题,共90分) 15.(14分)解关于x 的一元二次不等式2(3)30x a x a -++> 16.(14分)二次函数2()f x ax bx c =++的图象开口向下,且满足,,a b c -是等差数列,(),,a b a c -是等比数列,试求不等式()0f x ≥的解集。

高考数学专题不等式选讲高考真题

2019届高考数学专题-不等式选讲-高考真题 解答题 1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分) 已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分) 设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.

3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分) 设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像; (2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值. 4.(2017新课标Ⅰ)已知函数2 ()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集; (2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.

5.(2017新课标Ⅱ)已知0a >,0b >,33 2a b +=,证明: (1)55()()4a b a b ++≥; (2)2a b +≤. 6.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--. (1)求不等式()1f x ≥的解集; (2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.

高考数学第一轮复习教案-基本不等式

高三数学一轮复习——10.4 基本不等式 一、 课标要求: 1.解基本不等式及成立条件. 2.能应用基本不等式判断大小求最值. 3.应用基本不等式解决实际问题和综合问题. 二、 重难点: 1. 重点:正确应用基本不等式进行判断和计算. 2. 难点:基本不等式的变形应用. 三、 教学方法: 以启发引导,探索发现为主导.讲解练习为主线.用一题多解,一题多变突出重点,突破难点.以综合应用提高分析解 决问题的能力,培养创新能力. 四、 教学过程: (一)、学情评估,导入新课: 1.下列不等式中不一定成立的是( ) A . 222a b ab +≥ B.222()a b a b +≥- C.12a a +≥ D.2212a a +≥ 2.0,0,2m n m n >>+=,则mn 的最大值为 。 3.0,0x y >>,且191x y +=,则x y +最小值是 。 (二)、探求、归纳知识体系: 1. 基本不等式:① 222a b ab +≥(,a b R ∈x y =) ②a b +≥(0,0)a b >> ③2b a a b +≥ (0)ab > 变形:①222()22a b a b ab ++≤≤ 2a b +≤≤(,)a b R ∈ 2.基本不等式与最值:若,x y R +∈ ①和定积最大:若x y s +=,则2 4 s xy ≤ (当且仅当x y =时“=”成立) ②积定和最小:若xy p =,则x y +≥(当且仅当x y =时“=”成立) 注意一:要用此结论需满足三个条件:① ② ③ 简称:一正二定三相等 注意二:条件不足时可通过拆分与配凑创设条件。

(三)基本不等式的应用: 例一:设0,0x y >>,且440x y +=,求lg lg x y +的最值 变式训练①.若221x y +=,求(1)(1)xy xy -+的最小值。 (变形应用)②.函数y =的最大值为 。 例二:①若0x >,求12()3f x x x = +的最小值。 ②若0x <,求12()3f x x x = +的最大值。 归纳:1(0)y x x x =+≠的值域是什么? 变式训练二:①求4()3lg lg f x x x =++ ,(1)x >的最小值。 (变形应用)②求14245y x x =-+ -,5()4 x <的最小值。 (对比应用)③若12x ≤≤,则1x x - 的最大值为 。

高考数学 不等式的证明 专题

高考数学 不等式的证明 专题 一.选择题 (1) 已知R c b a ∈,,,那么下列命题中正确的是 ( ) A .若b a >,则2 2 bc ac > B .若 c b c a >,则b a > C .若03 3 <>ab b a 且,则 b a 11> D .若022>>ab b a 且,则b a 11< (2) 设a >1,0< b <1,则a b b a log log +的取值范围为 ( ) A .[)+∞,2 B .),2(+∞ C .)2,(--∞ D .(]2,-∞- (3) 设x >0,P =2x +2- x ,Q =(sin x +cos x )2,则 ( ) A .P ≥Q B .P ≤Q C .P >Q D .P <Q (4)命题p:若a 、b ∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件. 命题 q:函数 y= 21--x 的定义域是(-∞,-1][?3,+∞).则 ( ) A . “p 或q”为假 B . “p 且q”为真 C . p 真q 假 D . p 假q 真 (5)如果a ,b ,c 满足cac B . c(b-a)>0 C . cb 20, q>0, 则不等式1)(log 1 (8) 设42,=+∈+ y x R y x 且,则y x lg lg +的最大值是 ( ) A .2lg - B .2lg C .2lg 2 D .2 (9) 设a >0, b >0,则以下不等式中不恒成立....的是 ( ) A .)11)((b a b a ++≥4 B .33b a +≥22ab C .22 2++b a ≥b a 22+ D .b a -≥b a -

相关文档
相关文档 最新文档