文档库 最新最全的文档下载
当前位置:文档库 › 用数学归纳法证明不等式-高中数学知识点讲解

用数学归纳法证明不等式-高中数学知识点讲解

用数学归纳法证明不等式-高中数学知识点讲解
用数学归纳法证明不等式-高中数学知识点讲解

用数学归纳法证明不等式

1.用数学归纳法证明不等式

【知识点的认识】

1.数学归纳法

一般地,当要证明一个命题对于不小于某正整数n0 的所有正整数n 都成立时,可以用以下两个步骤:

(1)证明当n=n0 时命题成立;

(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明n=k+1 时命题也成立.

在完成了这两个步骤后,就可以断定命题对于不小于n0 的所有正整数都成立.这种证明方法称为数学归纳法.

2.用数学归纳法证明时,要分两个步骤,两者缺一不可.

(1)证明了第一步,就获得了递推的基础,但仅靠这一步还不能说明结论的正确性.

在这一步中,只需验证命题结论成立的最小的正整数就可以了,没有必要验证命题对几个正整数成立.

(2)证明了第二步,就获得了推理的依据.仅有第二步而没有第一步,则失去了递推的基础;而只有第一步而没有第二步,就可能得出不正确的结论,因为单靠第一步,我们无法递推下去,所以我们无法判断命题对n0+1,

n0+2,…,是否正确.

在第二步中,n=k 命题成立,可以作为条件加以运用,而n=k+1 时的情况则有待利用命题的已知条件,公理,定理,定义加以证明.

完成一,二步后,最后对命题做一个总的结论.

3.用数学归纳法证明恒等式的步骤及注意事项:

①明确初始值n0 并验证真假.(必不可少)

②“假设n=k 时命题正确”并写出命题形式.

③分析“n=k+1 时”命题是什么,并找出与“n=k”时命题形式的差别.弄清左端应增加的项.

④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.

1/ 2

【解题方法点拨】

1、观察、归纳、猜想、证明的方法:

这种方法解决的问题主要是归纳型问题或探索性问题,结论如何?命题的成立不成立都预先需要归纳与探索,而归纳与探索多数情况下是从特例、特殊情况下入手,得到一个结论,但这个结论不一定正确,因为这是靠不完全归纳法得出的,因此,需要给出一定的逻辑证明,所以,通过观察、分析、归纳、猜想,探索一般规律,其关键在于正确的归纳猜想,如果归纳不出正确的结论,那么数学归纳法的证明也就无法进行了.

在观察与归纳时,n 的取值不能太少,否则将得出错误的结论.例如证明n2>2n 只观察前 3 项:a1=1,b1=2?a1<b1;a2=4,b2=4?a2=b2,a3=9,b3=8?a3>b3,就此归纳出n2>2n(n∈N+,n≥3)就是错误的,前n 项的关系可能只是特殊情况,不具有一般性,因而,要从多个特殊事例上探索一般结论.

2.从“n=k”到“n=k+1”的方法与技巧:

在用数学归纳法证明不等式问题中,从“n=k”到“n=k+1”的过渡中,利用归纳假设是比较困难的一步,它不像用数学归纳法证明恒等式问题一样,只需拼凑出所需要的结构来,而证明不等式的第二步中,从“n=k”到“n=k+1”,只用拼凑的方法,有时也行不通,因为对不等式来说,它还涉及“放缩”的问题,它可能需通过“放大”或“缩小”的过程,才能利用上归纳假设,因此,我们可以利用“比较法”“综合法”“分析法”等来分析从“n=k”到“n=k+1”的变化,从中找到“放缩尺度”,准确地拼凑出所需要的结构.

2/ 2

高二数学归纳法证明不等式

第四讲:数学归纳法证明不等式 数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位。 本讲主要复习数学归纳法的定义、数学归纳法证明基本步骤、用数学归纳法证明不等式的方法:作差比较法、作商比较法、综合法、分析法和放缩法,以及类比及猜想、抽象及概括、从特殊到一般等数学思想方法。 在用数学归纳法证明不等式的具体过程中,要注意以下几点: (1)在从n=k 到n=k+1的过程中,应分析清楚不等式两端(一般是 左端)项数的变化,也就是要认清不等式的结构特征; (2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析; (3)活用起点的位置; (4)有的试题需要先作等价变换。 例题精讲 例1、用数学归纳法证明 n n n n n 212111211214131211+++++=--++-+- 分析:该命题意图:本题主要考查数学归纳法定义,证明基本步骤 证明: 1 当n=1时,左边=1-21=21,右边=111+=21 ,所以等式成立。

2假设当n=k 时,等式成立, 即 k k k k k 212111211214131211+++++=--++-+- 。 那么,当n=k+1时, 221121211214131211+-++--++-+- k k k k 221121212111+-+++++++=k k k k k )2 2111(1212131214131211+-+++++++++=++-+-k k k k k k )1(21 121213121+++++++++= k k k k k 这就是说,当n=k+1时等式也成立。 综上所述,等式对任何自然数n 都成立。 点评: 数学归纳法是用于证明某些及自然数有关的命题的一种方法.设要证命题为P (n ).(1)证明当n 取第一个值n 0时,结论正确,即验证P (n 0)正确;(2)假设n=k (k ∈N 且k≥n 0)时结论正确,证明当n=k+1时,结论也正确,即由P (k )正确推出P (k+1)正确,根据(1),(2),就可以判定命题P (n )对于从n 0开始的所有自然数n 都正确. 要证明的等式左边共2n 项,而右边共n 项。f(k)及f(k+1)相比较,左边增加两项,右边增加一项,并且二者右边的首项也不一样,因此 在证明中采取了将11+k 及221 +k 合并的变形方式,这是在分析了f(k) 及f(k+1)的差异和联系之后找到的方法。 练习: 1.用数学归纳法证明3k ≥n 3(n≥3,n∈N)第一步应验证( )

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

用数学归纳法证明不等式

用数学归纳法证明不等式 在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫) (2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx. 师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑. 师:现将命题转化成如何证明不等式 (1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x. 提问:证明不等式的基本方法有哪些? (学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结) 师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k +1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立. (通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)例2证明:2n+2>n2,n∈N+. 证:(1)当n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立. (2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2. 现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立. 师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立. 师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证? 师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书) (2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k +2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0) ≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立. 师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

归纳法证明不等式

归纳法证明不等式 数学归纳法证明不等式的本质 数学归纳法证明不等式的典型类型是与数列或数列求和有关的问题,凡是与数列或数列求和有关的问题都可统一表述成f(n)?g(n)(n?n?)的形式或近似于上述形式。 这种形式的关键步骤是由n?k时,命题成立推导n?k?1时,命题也成立。为了表示的方便,我们记?左n?f(k?1)?f(k),?右n?g(k?1)?g(k)分别叫做左增量,右增量。那么,上述证明的步骤可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 例1.已知an?2n?1,求证: 本题要证后半节的关键是证 an1a1a2n????n?(n?n?) 23a2a3an?12 2k?1?11?中k??右k即证k?2? 2?12 而此式显然成立,所以可以用数学归纳法证明。 而要证前半节的关键是证 12k?1?1?左k??中k即证?k?2 22?1 而此式显然不成立,所以不能用数学归纳法证明。如果不进行判断就用数学归纳法证前半节,忙乎半天,只会徒劳。 有时,f(n)?g(n)(n?n?)中f(n),g(n)是以乘积形式出现,且f(n)?0,g(n)?0是显然成立的。此时,可记 ?左k?f(k?1)g(k?1),?右k? f(k)g(k) 分别叫做左增倍,右增倍。那么,用数学归结法证明由n?k时,成立推导 n?k?1成立,可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 和前面所讲相似,上述四步中,两个“=”和“<”都显然成立,而“≤”是否成立,就需要判断和证明了,既“?左k??右k”若成立,既可用数学归纳法证明;若不成立,则不能用数学归纳法证明。因此,可以这样说,此时,数学归纳法证明不等式的本质是证“左增倍≤右增倍”,而判断能否用数学归纳法证明不等式的标准就是看“左增倍≤右增倍”是否成立。 第二篇:归纳法证明不等式

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

高中数学《不等式》选修题型归纳

6.不等式选讲 6.1均值不等式在证明中的应用 1. (1)已知,,,a b R x y R + ∈∈,求证:()2 22x y x y a b a b ++≥+; (2)已知实数,x y 满足:2221x y +=,试利用(1)求 2221 x y +的最小值。 (1)证:()()2222222 222x y bx ay a b x y x y xy x y a b a b ??++=+++≥++=+? ??? ()2 22x y x y a b a b ++≥ +(当且仅当x y a b =时,取等号); (2)解:()2 22222222212121922x y x y x y ++=+≥=+,当且仅当221 3x y ==时,2221x y +的最小值 是9。 考点:均值不等式在证明中的应用、综合法证明不等式 6.2绝对值不等式 6.2.1单绝对值不等式 2. 已知函数254,0 ()22,0 x x x f x x x ?++≤?=?->??若函数()y f x a x =-恰有4个零点,则实数a 的 取值范围为_______. 答案:(1,2)

解析:分别作出函数()y f x =与||y a x =的图像, 由图知,0a <时,函数()y f x =与||y a x =无交点, 0a =时,函数()y f x =与||y a x =有三个交点, 故0.a > 当0x >,2a ≥时,函数()y f x =与||y a x =有一个交点, 当0x >,02a <<时,函数()y f x =与||y a x =有两个交点, 当0x <时,若y ax =-与254,(41)y x x x =----<<-相切, 则由0?=得:1a =或9a =(舍), 因此当0x <,1a >时,函数()y f x =与||y a x =有两个交点, 当0x <,1a =时,函数()y f x =与||y a x =有三个交点, 当0x <,01a <<时,函数()y f x =与||y a x =有四个交点, 所以当且仅当12a <<时,函数()y f x =与||y a x =恰有4个交点.

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

浅谈高中数学不等式的证明方法

浅谈高中数学不等式的证明方法 姜堰市罗塘高级中学 李鑫 摘要:不等式是中学数学的重要知识,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解。 关键字:比较法,分析法,综合法,反证法,放缩法,数学归纳法,换元法,均值不等式,柯西不等式,导数法 不等式在中学数学中占有重要地位,因此在历年高考中颇为重视。由于不等式的形式各异, 所以证明没有固定的程序可循,技巧多样,方法灵活,因此有关不等式的证明是中学数学的难点之一。本文从不等式的各个方面进行讲解和研究。 一.比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。 例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 分析:两个多项式的大小比较可用作差法 证明 02 )(2222 ≥-=-+=-+b a ab b a ab b a , 故得 ab b a ≥+2 . 例2 设0>>b a ,求证:a b b a b a b a >. 分析:对于含有幂指数类的用作商法 证明 因为 0>>b a , 所以 1>b a ,0>- b a . 而 1>??? ??=-b a a b b a b a b a b a , 故 a b b a b a b a > 二.分析法 从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。

选修4-5学案§4.1.1数学归纳法证明不等式

选修4-5学案 §4.1.1数学归纳法证明不等式 姓名 ☆学习目标:1. 理解数学归纳法的定义、数学归纳法证明基本步骤; 2. 会运用数学归纳法证明不等式 重点:应用数学归纳法证明不等式. ?知识情景: 关于正整数n 的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性: 10. 验证n 取 时命题 ( 即n =n 时命题成立) (归纳奠基) ; 20. 假设当 时命题成立,证明当n=k +1时命题 (归纳递推). 30. 由10、20知,对于一切n ≥n 的自然数n 命题 !(结论) 要诀: 递推基础 , 归纳假设 , 结论写明 . ☆ 数学归纳法的应用: 例1. 用数学归纳法证明不等式sin sin n n θθ≤. 例2已知x > -1,且x ≠0,n ∈N*,n ≥2.求证:(1+x )n >1+nx .

例3 证明: 如果(n n 为正整数)个正数12,,,n a a a 的乘积121n a a a = , 那么它们的和12n a a a n +++ ≥. 例4 证明:2 2 2 111112(,2).2 3 ≥n N n n n + + +?+ <- ∈

例5.当2n ≥时,求证:1 + +++ > 选修4-5练习 §4.1.1数学归纳法证明不等式(1) 姓名 1、已知f(n)=(2n+7)·3n +9,存在自然数m,使得对任意n ∈N,都能使m 整除f(n),则最大的m 的 值为( ) A.30 B.26 C.36 D.6 2、.观察下列式子:2 2 2 2 2 1311511171, 1, 1222 3 32 3 4 4 + < + +< + ++<

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

相关文档
相关文档 最新文档