文档库 最新最全的文档下载
当前位置:文档库 › 销轴的计算精编

销轴的计算精编

销轴的计算精编
销轴的计算精编

销轴的计算精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

销轴连接常用于两个结构构件之间的连接,以满足构件之间的相对转动的需要,也用于一些结构构件吊装过程中。无论是构件连接节点还是吊装节点,其节点都需要进行必要的验算,以满足结构安全及吊装安全的需要。

销轴连接方式多种多样,最常采用的连接的结构方式为单剪连接、双剪连接和多耳板连接。而建筑结构销轴连接的结构形式受到加工精度的限制比较单一,多为三耳板(下二上一或下一上二)组成的双剪结构,这种结构形式由一根销轴将一侧耳板与另一侧耳板连接起来,销轴与耳板之间可以发生相对转动,相互间的荷载通过销轴和耳板的接触面来传递。

以吊装耳板为例(图中数值为假定,并不一定为常规数值),简要说明一般常用的计算方法及公式,以供大家讨论。

销轴大样如下:

P1=400KN,P2=300KN (合力Ta=500KN)

其中销轴采用45号钢,耳板采用Q345B

销轴连接计算分为销轴的强度计算和耳板的强度计算。

一、销轴计算:

1、销轴弯曲强度验算

把销轴当作简支梁进行分析

销轴弯曲强度验算

最大弯矩值:

销轴弯曲强度计算

计算满足。

公式中:M——把销轴作为简支梁分析所求得的最大弯矩值W——销轴截面的抗弯模量,

——销轴的许用弯曲应力,这里采用45号钢

2、销轴剪切强度验算

把销轴当作简支梁进行分析

销轴剪切强度计算

最大剪应力值(取在中和轴位置,此位置剪应力最大):

计算满足。

公式中:Q——把销轴作为简支梁分析所求得的最大剪力值d——销轴直径

——销轴的许用剪切应力,这里采用45号钢

3、平均剪应力复核:

将销轴按双剪进行平均剪应力计算

计算满足。

二、耳板强度验算

首先耳板的尺寸必须满足构造要求(这里我们可以参照螺栓构造要求其满足~2d,在此构造满足的情况下,可不进行耳板孔周的抗拉验算,直接进行抗剪验算,此理解可供大家讨论,此处仅为笔者个人理解),在满足这一条件下进行计算。

1、耳板孔壁承压应力验算

上耳板:

计算满足。

下耳板:

计算满足。

公式中:N——构件中的轴力,即构件通过承压传给销轴的力;

——构件的承压面积,,其中d为销轴直径,为孔壁的承压总厚度

——耳板孔壁的许用承压应力,采用Q345钢取值为

注意:此处取承压面面积时,近似取用销轴直径为承压面长度,一般是可以满足结构安全的需求的,但是实际上圆柱体体侧承压,经试验表明多为沿圆周45度到135度范围内承压面接触,也就是圆柱销轴的圆周的1/4范围进行接触,所以此处的承压面长度(上文公式取为d)取为销轴周长的1/4更为准确,即:。

2、耳板抗剪验算

上耳板:

计算满足。

公式中:耳板抗剪强度设计值,采用Q345钢取值为

下耳板:

计算满足。

公式中:耳板抗剪强度设计值,采用Q345钢取值为

三、下耳板焊缝计算

下耳板连接焊缝常规情况下有两种形式,一种为等强剖口全熔透焊缝连接,一种为双面角焊缝连接,采用何种焊缝形式与耳板厚度、间距、荷载大小、施焊可操作性等都有关系,根据实际节点形式选择合理的可实施的节点焊缝形式。

将耳板作为拉弯构件进行计算

底部附加弯矩由偏心水平力产生:

公式中:——构件中的轴力的水平分力

——力作用点到支座距离

根据《钢结构设计规范》拉弯构件和压弯构件规定,5.2.1弯矩作用在主平面内的拉弯构件和压弯构件,其强度应按下列规定计算:

当为等强剖口焊缝连接时,计算(焊缝和母材等强计):

计算满足。

当为双面角焊缝连接时,(焊脚高度16mm)计算:

计算满足。

若焊缝为直角角焊缝时,净截面模量为倍焊脚尺寸作为焊缝有效厚度进行计算。

参数说明:为构件所受轴力;

为构件净截面面积;

为构件所受绕X轴弯矩作用;

为构件所受绕Y轴弯矩作用;

为与X轴截面模量相应的截面塑性发展系数;

为与Y轴截面模量相应的截面塑性发展系数;

为对X轴的净截面模量(按边缘屈曲准则,取最大抵抗矩位置);

为对Y轴的净截面模量(按边缘屈曲准则,取最大抵抗矩位置);

为对接焊缝抗拉强度设计值。这里采用Q345钢=295;

为角焊缝抗拉强度设计值。这里采用Q345钢=200。

小结:销轴主要受力特征:

1、销轴直径相对于耳板厚度越粗壮,销轴刚度越大,销轴以剪切变形为主;销轴直径相对于耳板厚度比较细,销轴刚度较小,销轴逐渐转变为以弯曲变形为主。

2、上下耳板之间的间距(图中为5mm)越大,则销轴承受的弯矩越大,承压面受力分布越不均匀;间距越小甚至达到紧密贴合的程度,销轴承受的弯矩达到最小,受力状态较为理想(上文中取弯矩受力点为板中心位置,和实际受力略有区别,计算时要根据实际情况加以区分),承压面分布均匀。

3、销轴孔径与销轴直径比值越大,则显然造成销轴承压接触面变小,计算与假定误差较大,并且应力集中现象严重;一般要求孔径与直径比尽量接近1:1,一般情况为孔径大于直径约2~5mm,这样承压区域分布均匀且接触面积与计算接近。

4、销轴直径与耳板厚度的比值需协调,尽量不要出现极端的薄耳板大销轴或者厚耳板小销轴的情况,计算假定应尽量与实际节点形式相符合,只有此种情况下的计算结果才是可以采用的。

轴的设计计算

轴的设计计算 【一】能力目标 1.了解轴的功用、分类、常用材料及热处理。 2.能合理地进行轴的结构设计。 【二】知识目标 1.了解轴的分类,掌握轴结构设计。 2.掌握轴的强度计算方法。 3.了解轴的疲劳强度计算和振动。 【三】教学的重点与难点 重点:轴的结构设计 难点:弯扭合成法计算轴的强度 【四】教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。【五】教学任务及内容 任务知识点 轴的设计计算 1. 轴的分类、材料及热处理 2. 轴的结构设计 3. 轴的设计计算 (一)根据承受载荷的情况,轴可分为三类 1、心轴工作时只受弯矩的轴,称为心轴。心轴又分为转动心轴(a)和固定心轴(b)。 2、传动轴工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。

3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。 (二)按轴线形状分: 1、直轴 (1)光轴 作传动轴(应力集中小) (2)阶梯轴 优点:1)便于轴上零件定位;2)便于实现等强度 2、曲轴 另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。如牙铝的传动轴。 二、轴的结构设计 轴的结构设计就是确定轴的外形和全部结构尺寸。但轴的结构设计原则上应满足如下要求: 1)轴上零件有准确的位置和可靠的相对固定; 2)良好的制造和安装工艺性; 3)形状、尺寸应有利于减少应力集中; 4)尺寸要求。

(一)轴上零件的定位和固定 轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。作为轴的具体结构,既起定位作用又起固定作用。 1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。 2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。 (二)轴的结构工艺性 轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。为此,常采用以下措施: 1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。 2、轴上所有键槽应沿轴的同一母线布置。 3、为了便于轴上零件的装配和去除毛刺,轴及轴肩端部一般均应制出45o的倒角。过盈配合轴段的装入端常加工出带锥角为30o的导向锥面。 4、为便于加工,应使轴上直径相近处的圆角、倒角、键槽、退刀槽和越程槽等尺寸一致。 (三)提高轴的疲劳强度 轴大多在变应力下工作,结构设计时应尽量减少应力集中,以提高其疲劳强度。 1、结构设计方面轴截面尺寸突变处会造成应力集中,所以对阶梯轴相邻轴段直径不宜相差太大,在轴径变化处的过渡圆角半径不宜过小。尽量避免在轴上开横孔、凹槽和加工螺纹。在重要结构中可采用凹切圆角、过渡肩环,以增加轴肩处过渡圆角半径和减小应力集中。为减小轮毂的轴压配合引起的应力集中,可开减载槽。 2、制造工艺方面提高轴的表面质量,降低表面粗糙度,对轴表面采用碾压、喷丸和表面热处理等强化方法,均可显著提高轴的疲劳强度。

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

轴的强度计算

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 33102.09550?=n d P W T ρ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ []3 33 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率,KW ; n 为轴的转速,r/min ;d 为轴径,mm 。 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。 2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。 分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为 σ=W M τ= ρ W T

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

销轴的计算教学提纲

销轴的计算

销轴连接常用于两个结构构件之间的连接,以满足构件之间的相对转动的需要,也用于一些结构构件吊装过程中。无论是构件连接节点还是吊装节点,其节点都需要进行必要的验算,以满足结构安全及吊装安全的需要。 销轴连接方式多种多样,最常采用的连接的结构方式为单剪连接、双剪连接和多耳板连接。而建筑结构销轴连接的结构形式受到加工精度的限制比较单一,多为三耳板(下二上一或下一上二)组成的双剪结构,这种结构形式由一根销轴将一侧耳板与另一侧耳板连接起来,销轴与耳板之间可以发生相对转动,相互间的荷载通过销轴和耳板的接触面来传递。 以吊装耳板为例(图中数值为假定,并不一定为常规数值),简要说明一般常用的计算方法及公式,以供大家讨论。 销轴大样如下:

P1=400KN,P2=300KN (合力Ta=500KN) 其中销轴采用45号钢,耳板采用Q345B 销轴连接计算分为销轴的强度计算和耳板的强度计算。 一、销轴计算: 1、销轴弯曲强度验算 把销轴当作简支梁进行分析 销轴弯曲强度验算

最大弯矩值: 销轴弯曲强度计算 计算满足。 公式中:M——把销轴作为简支梁分析所求得的最大弯矩值W——销轴截面的抗弯模量, ——销轴的许用弯曲应力,这里采用45号钢 2、销轴剪切强度验算 把销轴当作简支梁进行分析

销轴剪切强度计算 最大剪应力值(取在中和轴位置,此位置剪应力最大): 计算满足。 公式中:Q——把销轴作为简支梁分析所求得的最大剪力值d——销轴直径 ——销轴的许用剪切应力,这里采用45号钢 3、平均剪应力复核:

将销轴按双剪进行平均剪应力计算 计算满足。 二、耳板强度验算 首先耳板的尺寸必须满足构造要求(这里我们可以参照螺栓构造要求其满足1.5~2d,在此构造满足的情况下,可不进行耳板孔周的抗拉验算,直接进行抗剪验算,此理解可供大家讨论,此处仅为笔者个人理解),在满足这一条件下进行计算。 1、耳板孔壁承压应力验算 上耳板: 计算满足。

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

销轴的计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 销轴连接常用于两个结构构件之间的连接,以满足构件之间的相对转动的需要,也用于一些结构构件吊装过程中。无论是构件连接节点还是吊装节点,其节点都需要进行必要的验算,以满足结构安全及吊装安全的需要。 销轴连接方式多种多样,最常采用的连接的结构方式为单剪连接、双剪连接和多耳板连接。而建筑结构销轴连接的结构形式受到加工精度的限制比较单一,多为三耳板(下二上一或下一上二)组成的双剪结构,这种结构形式由一根销轴将一侧耳板与另一侧耳板连接起来,销轴与耳板之间可以发生相对转动,相互间的荷载通过销轴和耳板的接触面来传递。 以吊装耳板为例(图中数值为假定,并不一定为常规数值),简要说明一般常用的计算方法及公式,以供大家讨论。

销轴大样如下: P1=400KN,P2=300KN (合力Ta=500KN) 其中销轴采用45号钢,耳板采用Q345B 销轴连接计算分为销轴的强度计算和耳板的强度计算。 一、销轴计算:

1、销轴弯曲强度验算 把销轴当作简支梁进行分析销轴弯曲强度验算 最大弯矩值: 销轴弯曲强度计算

计算满足。 公式中:M——把销轴作为简支梁分析所求得的最大弯矩值W——销轴截面的抗弯模量, ——销轴的许用弯曲应力,这里采用45号钢 2、销轴剪切强度验算 把销轴当作简支梁进行分析 销轴剪切强度计算 最大剪应力值(取在中和轴位置,此位置剪应力最大):

计算满足。 公式中:Q——把销轴作为简支梁分析所求得的最大剪力值d——销轴直径 ——销轴的许用剪切应力,这里采用45号钢 3、平均剪应力复核: 将销轴按双剪进行平均剪应力计算 计算满足。 二、耳板强度验算

轴的强度计算与设计A

§11—4-1 轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条 : Mpa (11-1) 件 设计公式:mm (11-2) 轴上有键槽需要按一定比例修正:一个键槽轴径加大3~5%;二个键槽轴径加大7~11%。 ——许用扭转剪应力(N/mm2) C——轴的材料系数,与轴的材料和载荷情况有关。 对于空心轴:(mm)(11-3) ,d1—空心轴的内径(mm) 二、按弯扭合成强度条件计算: 条件:已知支点、扭距,弯距可求时 步骤: 1、作轴的空间受力简图(将分布力看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力; 2、求水平面支反力R H1、R H2作水平内弯矩图; 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图; 4、作合成弯矩图;

5、作扭矩图; 6、作当量弯矩图; ——为将扭矩折算为等效弯矩的折算系数。 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关: ——扭矩对称循环变化 ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——M emax处;M e较大,轴径d较小处。 Mpa (11-4) W——抗弯截面模量mm3,见附表11不同截面的W。 设计公式:(mm)(11-5) 如果计算所得d大于轴的结构设计d结构,则应重新设计轴的结构。 对于心轴:T=0,Me=M:转动心轴,许用应力用; 固定心轴,许用应力用——弯曲应力为脉动循环。 三、轴的安全系数校核计算 1、疲劳强度校核——精确计算(比较重要的轴) 要考虑载荷性质、应力集中、尺寸因素和表面质量及强化等因素的影响。根据结构设计选择Me较大,并有应力集中的几个截面,计算疲劳强度安全系数

(完整版)耳板验算方法

销轴连接节点的计算方法 典型的销轴连接节点如图5.4.2所示。 图5.4.2 典型销轴连接节点(图示长度以上耳板为例) 1、销轴计算 首先进行销轴抗剪计算,确定销轴的直径。 销轴承受的总剪力为bolt V = 销轴直径D ≥v n 为受剪面的数目,b v f 为销轴的抗剪强度设计值,若销轴采用调质45号钢制作,则其250b v f MPa =。 2、耳板设计 根据构件、埋件以及销轴的尺寸,初步确定耳板的尺寸,耳板的厚度可以通过下面的计算确定,若计算出的厚度与构件尺寸不协调,则可以对耳板尺寸进行调整。 对于受拉耳板、需进行耳板抗剪设计、局部承压设计和抗拉设计;对于受压耳板、需进行耳板局部承压设计和受压设计; (1)耳板抗剪设计

(115v v bolt f n t V ./??≥?耳耳板抗剪长度),其中v n 耳为耳板受剪面的数量, 若为单耳板则2v n =耳,v f 为耳板钢材的抗剪强度设计值,1.5为剪应力不均匀系 数。 若耳板抗剪设计计算出的耳板厚度1t 较大,可以通过在耳板侧面贴环板的方式加以解决。 (2)耳板局部承压设计 ()2b bolt c t V /f D ≥?,其中为销轴直径,b c f 为螺栓的承压强度设计值,根据耳 板的材质查《钢结构设计规范》表3.4.1-4确定。这里需要注意的是,如果直径D 较大可能造成销轴与耳板孔壁的局压接触长度不足D ,根据文献,此时可取0.75D 进行计算。 若耳板局部承压设计计算出的耳板厚度2t 较大,可以通过在耳板侧面贴环板的方式加以解决。 (3)耳板抗拉设计 (3bolt t V /f ≥?耳板抗拉长度),其中f 为耳板抗拉强度设计值。 (4)耳板受压设计 (4bolt t V /f ≥?耳板承压宽度),其中f 为耳板抗压强度设计值。 ()1234t max t ,t ,t ,t =耳板,其中t 耳板为耳板的总厚度,若设置两块耳板,则单块 耳板厚度应除以2。 3、耳板端部截面强度校核 对耳板端部截面应进行强度校核,特别是对面外不能设置加劲肋的耳板,该项校核是必要的。 以图5.4.2中的上耳板为例,假定该耳板截面的面积为A ,其强轴抗弯截面模量为x W ,弱轴抗弯截面模量为y W ,需验算下述三式是否满足要求,其中e 为 耳孔中心至耳板端部的距离。 y x z x y F e F e F f A W W σ=++≤ ,v f τ=≤ 11.f

机械设计手册-销轴-接触应力计算全面讨论汇总

传递动力的高副机构,如摩擦轮、凸轮齿轮、链轮传动、滚动轴承、滚动螺旋等,都有接触强度问题,自然也涉及到接触应力。在此对接触应力计算作较为全面的讨论。 两曲面的弹性体在压力作用下,相互接触时,都会产生接触应力,传递动力的高副机构在工作中往往出现的是交变应力,受交变接触应力的机器零件在一定的条件下会出现疲劳点蚀的现象,点蚀扩散到一定程度,零件就不能再用了,也就是说失效了,这样失效的形式称之为疲劳点蚀破坏,在ISO标准中是以赫兹应力公式为基础的。本文较为集中地讨论了几种常见曲面的赫兹应力公式及常用机械零件的接触应力计算方法,便于此类零件的设计及强度验算。 1 任意两曲面体的接触应力 1.1 坐标系 图1所示为一曲面体的一部分,它在E点与另外一曲面体相接触,E点称为初始接触点。取曲面在E点的法线为z轴,包括z轴可以有无限多个剖切平面,每个剖切平面与曲面相交,其交线为一条平面曲线,每条平面曲线在E点有一个曲率半径。不同的剖切平面上的平面曲线在E 点的曲率半径一般是不相等的。这些曲率半径中,有一个最大和最小的曲率半径,称之为主曲率半径,分别用R′和R表示,这两个曲率半径所在的方向,数学上可以证明是相互垂直的。平面曲线AEB所在的平面为yz平面,由此得出坐标轴x和y的位置。任何相接触的曲面都可以用这种方法来确定坐标系。由于z轴是法线方向,所以两曲面在E点接触时,z轴是相互重合的,而x1和x2之间、y1和y2之间的夹角用Φ表示(图2所示)。

图1 曲面体的坐标 图2 坐标关系及接触椭圆 1.2 接触应力 两曲面接触并压紧,压力P沿z轴作用,在初始接触点的附近,材料发生局部的变形,靠接触点形成一个小的椭圆形平面,椭圆的长半轴a在x轴上,短半轴b在y轴上。椭圆形接触面上各点的单位压力大小与材料的变形量有关,z轴上的变形量大,沿z轴将产生最大单位压力P0。其余各点的单位压力P是按椭圆球规律分布的。 其方程为 单位压力 总压力P总=∫PdF ∫dF从几何意义上讲等于半椭球的体积,故 接触面上的最大单位压力P0称为接触应力σH (1) a、b的大小与二接触面的材料和几何形状有关。 2 两球体的接触应力

轴的强度计算.

轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936T T T d n P W T ττ≤?== Mpa (11-1) 设计公式: 3036][1055.95n P A n P d T =??≥τ(mm )?轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。?取标准植 ][T τ——许用扭转剪应力(N/mm 2) ,表11-3 T ][τ——考虑了弯矩的影响 A 0——轴的材料系数,与轴的材料和载荷情况有关。注意表11-3下面的说明 对于空心轴:340) 1(β-≥n P A d (mm )? 6.0~5.01≈=d d β, d 1—空心轴的内径(mm ) 注意:如轴上有键槽,则d ?放大:3~5%1个;7~10%2个?取整。 二、按弯扭合成强度条件计算 条件:已知支点、距距,M 可求时 步骤:如图11-17以斜齿轮轴为例 1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a ) 2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b ) 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c ) 4、作合成弯矩图22V H M M M +=(图11-17d ) 5、作扭矩图T α(图11-17e ) 6、作当量弯矩图22)(T M M ca α+= α——为将扭矩折算为等效弯矩的折算系数 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴α与扭矩变化情况有关 1][][11=--b b σσ ——扭矩对称循环变化 α= 6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩 b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。

销轴的计算

销轴连接常用于两个结构构件之间的连接,以满足构件之间的相对转动的需要,也用于一些结构构件吊装过程中。无论是构件连接节点还是吊装节点,其节点都需要进行必要的验算,以满足结构安全及吊装安全的需要。 销轴连接方式多种多样,最常采用的连接的结构方式为单剪连接、双剪连接和多耳板连接。而建筑结构销轴连接的结构形式受到加工精度的限制比较单一,多为三耳板(下二上一或下一上二)组成的双剪结构,这种结构形式由一根销轴将一侧耳板与另一侧耳板连接起来,销轴与耳板之间可以发生相对转动,相互间的荷载通过销轴和耳板的接触面来传递。 以吊装耳板为例(图中数值为假定,并不一定为常规数值),简要说明一般常用的计算方法及公式,以供大家讨论。 销轴大样如下:

P1=400KN,P2=300KN (合力Ta=500KN) 其中销轴采用45号钢,耳板采用Q345B 销轴连接计算分为销轴的强度计算和耳板的强度计算。 一、销轴计算: 1、销轴弯曲强度验算 把销轴当作简支梁进行分析 销轴弯曲强度验算

最大弯矩值: 销轴弯曲强度计算 计算满足。 公式中:M——把销轴作为简支梁分析所求得的最大弯矩值W——销轴截面的抗弯模量, ——销轴的许用弯曲应力,这里采用45号钢 2、销轴剪切强度验算 把销轴当作简支梁进行分析

销轴剪切强度计算 最大剪应力值(取在中和轴位置,此位置剪应力最大): 计算满足。 公式中:Q——把销轴作为简支梁分析所求得的最大剪力值d——销轴直径 ——销轴的许用剪切应力,这里采用45号钢 3、平均剪应力复核:

将销轴按双剪进行平均剪应力计算 计算满足。 二、耳板强度验算 首先耳板的尺寸必须满足构造要求(这里我们可以参照螺栓构造要求其满足1.5~2d,在此构造满足的情况下,可不进行耳板孔周的抗拉验算,直接进行抗剪验算,此理解可供大家讨论,此处仅为笔者个人理解),在满足这一条件下进行计算。 1、耳板孔壁承压应力验算 上耳板: 计算满足。

轴的设计计算

轴的设计计算 轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。 一、轴的强度计算 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算; 对于只承受弯矩的轴(心轴),应按弯曲强度条件计算; 对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。 此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 下面介绍几种常用的计算方法: 按扭转强度条件计算。 1、按扭转强度估算轴的直径 对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。若有弯矩作用,可用降低许用应力的方法来考虑其影响。 扭转强度约束条件为: [] 式中:为轴危险截面的最大扭剪应力(MPa); 为轴所传递的转矩(N.mm); 为轴危险截面的抗扭截面模量(); P为轴所传递的功率(kW); n为轴的转速(r/min); []为轴的许用扭剪应力(MPa);

对实心圆轴,,以此代入上式,可得扭转强度条件的设计式: 式中:C为由轴的材料和受载情况决定的系数。 当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。 应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。 此外,也可采用经验公式来估算轴的直径。如在一般减速器中,高速输入轴 的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。 几种轴的材料的[]和C值 轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52 160~135148~125135~118118~107107~98 2、按弯扭合成强度条件校核计算

轴的强度校核例题及方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 1.3.1、轴的设计概要 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 1.3.2、轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高

其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性,是目前工业中应用最广泛的氮化钢。 铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 1.3.3、轴的结构设计 根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。 1). 轴的组成 轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。 轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。 2). 结构设计步骤 设计中常采用以下的设计步骤:

某膜结构工程销轴连接节点计算

某膜结构工程销轴连接节点计算根据软件计算得拉杆最大轴力N=482.6kN,计算简图如下:

根据《钢结构设计标准》11.6.2条,销轴连接的构造应符合下列规定(图11.6.2): 图11.6.2销轴连接耳板 1销轴孔中心应位于耳板的中心线上,其孔径与直径相差不应大于1mm。 2耳板两侧宽厚比b/t不宜大于4,几何尺寸应符合下列公式规定:

式中:b——连接耳板两侧边缘与销轴孔边缘净距(mm); t——耳板厚度(mm); a——顺受力方向,销轴孔边距板边缘最小距离(mm)。 3销轴表面与耳板孔周表面宜进行机加工。 根据计算简图有99mm a mm 99 b mm 20t ===,,本工程中mm 99b mm 561620216t 2b e =≤=+?=+=,,mm 64483 4b 34a e =?=≥满足要求。 11.6.3连接耳板应按下列公式进行抗拉、抗剪强度的计算: 式中:N——杆件轴向拉力设计值(N); b 1——计算宽度(mm); d 0——销轴孔径(mm);

f——耳板抗拉强度设计值(N/mm 2)。 Z——耳板端部抗剪截面宽度(图11.6.3)(mm); f v ——耳板钢材抗剪强度设计值(N/mm 2)。 mm 563/829916202min b 1=-+?=),(,耳板抗拉强度:满足要求!,mm /295f mm /44.21556 202106.482223 N N =≤=???=σ端部抗拉(劈开)强度: 223 N/mm 295f 272.14N/mm 823 299202106.482=≤=?-??=)(σ,满足要求!抗剪强度: mm 86.133)2/82()2/8299(22=-+=Z 满足要求!,mm /170f mm /79.100133 182106.4822v 23 N N =≤=???=τ11.6.4销轴应按下列公式进行承压、抗剪与抗弯强度的计算:

轴的强度计算

第一讲 一、教学目标 (一)能力目标 1.了解轴的功用、分类、常用材料及热处理。 2.能合理地进行轴的结构设计。 (二)知识目标 1.了解轴的分类,掌握轴结构设计。 2.掌握轴的强度计算方法。 3.了解轴的疲劳强度计算和振动。 二、教学内容 1.轴的分类、材料及热处理 2.轴的结构设计 3.轴的设计计算 三、教学的重点与难点 重点:轴的结构设计 难点:弯扭合成法计算轴的强度 四、教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。 13.1 概述 13.1.1 轴的分类 根据承受载荷的情况,轴可分为三类 1、心轴工作时只受弯矩的轴,称为心轴。心轴又分为转动心轴(a)和固定心轴(b)。

2、传动轴工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。 3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。 按轴线形状分: 1、直轴 (1)光轴 作传动轴(应力集中小) (2)阶梯轴 优点:1)便于轴上零件定位;2)便于实现等强度 2、曲轴 另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的

空间位置。如牙铝的传动轴。 13.2 轴的结构设计 轴的结构设计就是确定轴的外形和全部结构尺寸。但轴的结构设计原则上应满足如下要求:1)轴上零件有准确的位置和可靠的相对固定; 2)良好的制造和安装工艺性; 3)形状、尺寸应有利于减少应力集中; 4)尺寸要求。 13.2.1 轴上零件的定位和固定 轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。作为轴的具体结构,既起定位作用又起固定作用。 1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。 2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。 13.2.1 轴的结构工艺性 轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。为此,常采用以下措施: 1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。 2、轴上所有键槽应沿轴的同一母线布置。

轴强度校核

一、横截面上的切应力 实心圆截面杆和非薄壁的空心圆截面杆受扭转时,我们没有理由认为它们在横截面上的切应力象薄壁圆筒中那样沿半径均匀分布 导出这类杆件横截面上切应力计算公式,关键就在于确定切应力在横截面上的变化规律。即横截面上距圆心τp任意一点处的切应力p与p的关系 为了解决这个问题,首先观察圆截面杆受扭时表面的变形情况,据此做出内部变形假设,推断出杆件内任意半径p处圆柱表面上的切应变γp,即γp与p的几何关系利用切应力与切应变之间的物理关系,再利用静力学关系求出横截面上任一点处切应力τp的计算公式 实验表明:等直圆杆受扭时原来画在表面上的圆周线只是绕杆的轴线转动,其大小和形状均不变,而且在小变形情况下,圆周线之间的纵向距离也不变 图8-56 扭转时的平面假设:等直圆杆受扭时它的横截面如同刚性圆盘那样绕杆轴线转动显然这就意味着:等直圆杆受扭时,其截面上任一根沿半径的直线仍保持为直线,只是绕圆心旋转了一个角度φ 图8-57 现从等直圆杆中取出长为dx的一个微段,从几何、物理、静力学三个方面来具体分析圆杆受扭时的横截面上的应力

图8-58 1.几何方面 小变形条件下 dφ为dx长度内半径的转角,γ为单元体的角应变 图8-59 或 因为dφ和dx是一定的,故越靠近截面中心即半径R越小,角应变γ也越小且γ与R成正比例(或线性关系) 由平面假设:对同一截面上各点 θ表示扭转角沿轴长的变化率,称为单位扭转角,在同一截面上其为常数

所以截面上任一点的切应力与该点到轴心的距离p成正比 p为圆截面上任一点到轴心距离,R为圆轴半径 图8-60 上式为切应力的变化规律 2.物理方面(材料在线性弹性范围内工作)由剪切胡克定律 由于G和为常数,所以 上式表明受扭等直圆杆在线性弹性范围内工作时,横截面上的切应力在同一半径p 的圆周上各点处大小相同,但它们随p做线性变化 同一横截面上的最大切应力在横截面的边缘处。这些切应力的方向均垂直于各自所对应的半径,指向与扭矩对应 3.静力学方面 前面已找出了受扭等直圆杆横截面上的切应力τp随p变化的规律,但还没有把与扭矩T联系起来。所以一般情况下还不能计算τp的大小 现利用静力学关系求T

销轴强度校核说课材料

销轴强度校核

第三节销轴连接 销轴连接是起重机金属结构常用的连接形式,例如起重机臂架根部的连接(图4-30a)以及拉杆或撑杆的连接等(图4-30b),通常都采用销轴连接。 图4-30 销轴连接示例 (a) 臂架根部;(b) 拉杆。 一、销轴计算 (一)销轴抗弯强度验算 [] W W W M σ σ≤ = (4-43) 式中M──销轴承受的最大弯矩; 32 3 d W π =──销轴抗弯截面模数; [] W σ──许用弯曲应力,对于45号钢[]Wσ = 360MPa。 (二)销轴抗剪强度验算 []τ π π τ≤ ? = ?? ? ? ? ? ?? ? ? ? ? = = 2 4 3 max3 16 64 12 d Q d d d Q Ib QS(4-44) 式中Q──把销轴当作简支梁分析求得的最大剪力; []τ──销轴许用剪应力,45号钢[]τ=125MPa。 二、销孔拉板的计算

(一)销孔壁承压应力验算 []c c d P σδ σ≤?= (4-45) 式中 P ──构件的轴向拉力,即销孔拉板通过承压传给销轴的力; δ──销孔拉板的承压厚度; d ──销孔的直径; []c σ──销孔拉板的承压许用应力,[][]σσ4.1=c 。 (二)销孔拉板的强度计算 首先根据销孔拉板承受的最大拉力P 求出危险截面(图4-31a 中的水平截面b -b 及垂直截面a -a )上的内力,然后用弹性曲梁公式求出相应的应力,并进行强度校核。 图4-31 销孔拉板计算简图 1. 内力计算 拉板承受的拉力P 是通过销孔壁以沿孤长分布压力P 的形式传给销轴,假定P 沿弧长按正弦规律分布,即 ?sin max ?=p p (4-46) 由图4-31a ,根据拉板的平衡条件可得

销轴强度校核

第三节 销轴连接 销轴连接是起重机金属结构常用的连接形式,例如起重机臂架根部的连接(图4-30a )以及拉杆或撑杆的连接等(图4-30b ),通常都采用销轴连接。 图4-30 销轴连接示例 (a ) 臂架根部; (b ) 拉杆。 一、销轴计算 (一)销轴抗弯强度验算 []W W W M σσ≤= (4-43) 式中 M ──销轴承受的最大弯矩; 32 3 d W π= ──销轴抗弯截面模数; []W σ──许用弯曲应力,对于45号钢[]W σ = 360MPa 。 (二)销轴抗剪强度验算 []τππτ≤?=??? ? ?????? ??= =2 43max 3166412d Q d d d Q Ib QS (4-44) 式中 Q ──把销轴当作简支梁分析求得的最大剪力; []τ──销轴许用剪应力,45号钢[]τ=125MPa 。 二、销孔拉板的计算 (一)销孔壁承压应力验算

[]c c d P σδ σ≤?= (4-45) 式中 P ──构件的轴向拉力,即销孔拉板通过承压传给销轴的力; δ──销孔拉板的承压厚度; d ──销孔的直径; []c σ──销孔拉板的承压许用应力,[][]σσ4.1=c 。 (二)销孔拉板的强度计算 首先根据销孔拉板承受的最大拉力P 求出危险截面(图4-31a 中的水平截面b -b 及垂直截面a -a )上的内力,然后用弹性曲梁公式求出相应的应力,并进行强度校核。 图4-31 销孔拉板计算简图 1. 内力计算 拉板承受的拉力P 是通过销孔壁以沿孤长分布压力P 的形式传给销轴,假定P 沿弧长按正弦规律分布,即 ?sin max ?=p p (4-46) 由图4-31a ,根据拉板的平衡条件可得 2 sin 2sin 2 max 20 2max 20 rp d r p rd p P π= ????=????=? ? π π 则 r P p π= 2max (4-47) 根据拉板结构和受力的对称性,可知拉板上反对称的内力(即剪力)等于零。

相关文档