文档库 最新最全的文档下载
当前位置:文档库 › 步进电机正反转

步进电机正反转

步进电机正反转
步进电机正反转

课程设计报告

题目步进电动机正反转课程设计

课程名称微机原理及应用

院部名称机电工程学院

专业电气工程及其自动化

班级 10电气(1)班

学生姓名邢文韬

学号 1004103019

课程设计地点工科楼 C304

课程设计学时 20

指导教师李国利

金陵科技学院教务处制

摘要:本次课程设计是对于步进电机的设计、仿真以及调试。步进电机是一种将电脉冲转变为角位移的执行机构,通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。可通过控制脉冲数来控制角位移量,从而达到准确的定位目的,也可通过控制脉冲的频率来控制电机的转速和加速度;从而达到调速的目的。

本次设计中,要求使用8086CPU作为主控制器,通过与外部接口芯片的配合工作,以实现控制步进电机的启动、停止、正转、反转等功能。设计要求为,通过编写正确的汇编程序,并使用仿真软件PROTEUS进行该控制系统的仿真。

关键字:步进电机正反转控制 8086CPU

目录

一、概述 (3)

二、总体设计方案及说明 (3)

三、系统硬件电路设计 (4)

1.8086的工作原理 (4)

2.8086的引脚介绍 (4)

3.74LS273功能介绍 (5)

4.74L S154功能表 (6)

5.74LS244功能介绍 (7)

6.输入模块工作原理 (8)

7.输出模块工作原理 (8)

8.步进电动机工作原理简介 (9)

四、系统软件部分设计 (10)

1.系统软件流程图 (10)

2.系统源程序 (10)

五、课程设计心得体会 (12)

六、参考文献 (12)

附录:原理图 (13)

一、概述

1.设计目的:用汇编语言设计一个步进电机的控制,在Proteus仿真环境下完成,功能上实现步进电机的基本功能。

2.设计要求:编制完整的程序并在Proteus仿真环境下进行调试,并能控制步进电机的启动和停止,正传和反转。撰写符合学校要求的课程设计报告,并通过老师准备的现场答辩,简述其运行流程。

3.设计认识:本次设计使我对步进电机有了更深入的了解。步进电机是将电脉冲信号转变为角位移或者线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。

二、总体设计方案与说明

据步进电机的励磁顺序列写控制步进电机顺序转动的输出的数据表→初始化8255的工作方式→设定需要步进电机转过的步数→顺序依次逐个延时(调用延时函数1:延时较长,实现慢转)输出表中数据→设定需要步进电机快速转过的步数→顺序依次逐个延时(调用延时函数2:延时较短,实现快转)输出表中数据→设定需要反向转过的步数→逆序依次逐个延时(调用延时函数1,慢速)输出表中数据→设定需要步进电机快速反向转过的步数→逆序依次逐个延时(调用延时函数2,快速)输出表中数据。以此循环,则可实现让步进电机先低速正转到高速正转,再从高速正转到低速反转,再高速反转,周而复始。

三、系统硬件部分设计

1.8086的工作原理

3.1 8086最小模式模块图

1.最小模式:只有一个8086,控制信号全由8086/8088产生。M不太大, I/O较少时使用。引脚MN/ MX接电源即可。

最小模式配置,硬件包括:3片74LS273,用来作为地址锁存器;1片74LS154,用来作为译码器;当系统中所连的存储器和外设较多时,需要增加数据总线的驱动能力,这时,要用两片8286/8287作为总线收发器。

2.8086引脚介绍

(1)、AD15~AD0(address data bus)地址/数据复用引脚(双向工作)分时复用的地址/数据线。

(2)、A19/S6~A16/S3(Address/Status)输出,是分时复用的地址/状态线。用作地址线时,A19~A16与A15~A0一起构成访问存储器的20位物理地址。

(3)、BHE/ S7 (Bus High Enabale/Status)总线高字节有效信号。三态输出,低电平有效,用来表示当前高8 位数据线上的数据有效。

(4)、NMI(Non Maskable Interrupt Request)不可屏蔽中断请求信号。由外部输入,上升沿触发,不受中断允许标志的限制。

(5)、INTR(Interrupt Request)可屏蔽中断请求信号。由外部输入,电平触发,高电平有效。

(6)、RD(Read)读信号。三态输出,低电平有效,表示当前CPU正在读存储器或IO端口。

(7)、CLK(Clock)主时钟引脚(输入)。由8284时钟发生器输入。8286CPU可使用的最高时钟频率随芯片型号不同而异,8086为5MHz,8086-1为10MHz,8086-2 为8MHz。

(8)、RESET(reset)复位信号。由外部输入,高电平有效。

(9)、READY(ready)准备就绪信号。由外部输入,高电平有效,表示CPU 访问的存储器或IO端口已准备好传送数据。

(10)、TEST 测试信号。由外部输入,低电平有效。CPU 执行WAIT 指令时,每隔5 个时钟周期对TEST 进行一次测试,若测试TEST 无效,则CPU 处于踏步等待状态,直到TEST有效,CPU才继续执行下一条指令。

(11)、MN/MX 工作模式选择信号。由外部输入,MN/MX 为高电平时,CPU 工作在最小模式;MN/MX为低电平时,CPU工作在最大模式。

(12)、GND/VCC电源地和电源。8086CPU只需要单一的+5V电源,由VCC引脚输入。

(13)、INTA 中断响应信号。向外部输出,低电平有效。在中断响应周期,该信号表示CPU响应外部发来的INTR信号,用作读中断类型码的选通信号。

(14)、ALE 地址锁存允许信号。向外部输出,高电平有效。在最小模式系统中用作地址锁存器的片选信号。

(15)、DEN数据允许信号,三态输出,低电平有效。

(16)、DT/R 数据发送/接收控制信号

(17)、M/IO 存储器/IO 端口访问信号。

(18)、WR写信号。三态输出,低电平有效,表示当前CPU正在写存储器或IO端口。

(19)、HOLD总线请求信号。由外部输入、高电平有效。表示有其他共享总线的处理器/控制

器向CPU请求使用总线。

(20)、HLDA 总线请求响应信号。向外部输出,高电平有效。CPU 一旦测试到有HOLD 请求,就在当前总线周期结束后,使HLDA有效,表示响应这一总线请求,并立即让出总线使用权。在不要求使用总线的情况下,CPU中指令执行部件可继续工作。HOLD 变为无效后,CPU也将HLDA置成无效,并收回对总线的使用权,继续操作。

3.74LS273功能介绍

74LS273引脚图

74LS273是一种带清除功能的8D触发器,1D~8D为数据输入端,1Q~8Q为数据输出端,正脉冲触发,低电平清除,常用作数据锁存器,地址锁存器。

D0~D7:出入;Q0~Q7:输出

第一脚WR:主清除端,低电平触发,即当为低电平时,芯片被清除,输出全为0(低电平);

CP(CLK):触发端,上升沿触发,即当CP从低到高电平时,D0~D7的数据通过芯片,为0时将数据锁存,D0~D7的数据不变。

4.74LS154的功能表

5.74LS244功能介绍

74LS244真值表:

L =低逻辑电平

H =高逻辑电平

X =高或低的逻辑电平

? =高阻抗

74LS244引脚图及引脚功能:

1A1~1A4,2A1~2A4 输入端

/1G, /2G 三态允许端(低电平有效)

1Y1~1Y4,2Y1~2Y4 输出端

图1 74244逻辑引脚功能图

6.输入模块工作原理

输入模块原理图

假设正转时,按下SW1,A0电位被拉电,A0A1A2A3相应为0111,从而信号到输入输出模块,相应的1C2C3C4C对应0111,则电动机的BCD端的电平为高电平,电动机正转运行,同理,反转也是如此。

7.输出模块工作原理图

输出模块原理图

程序扫描端口,判断有无按钮按下,然后将端口的数据传入到8086中,经过控制与处理,使输出模块的输入做出相应的变化,从而步进电动机做出相应反应。

8.步进电动机工作原理简介

步进电动机原理图

ULN2003是一个7路反向器电路,即当输入端为高电平时ULN2003输出端为低电平,当输入端为低电平时ULN2003输出端为高电平,继电器得电吸合。

功能特点:高电压输出50V

输出钳位二极管

输入兼容各种类型的逻辑电路

应用继电器驱动器

四.系统软件部分

1.系统软件流程图:

2.系统源程序

.MODEL SMALL

.8086

.STACK

.CODE

.STARTUP

MOV DX,0200H

MOV AL,0B3H

OUT DX,AL AGAIN: MOV DX,0400H

IN AL,DX

TEST AL,01H

JZ CLOCKWISE

TEST AL,02H

JZ UNCLOCKWISE

JMP AGAIN CLOCKWISE: MOV SI,0 LOP0: MOV DX,0200H

MOV AL,FFW[SI]

OUT DX,AL

CALL DELAY

MOV DX,0400H

IN AL,DX

TEST AL,02H

JZ UNCLOCKWISE

TEST AL,04H

JZ STOP

INC SI

CMP SI,8

JB LOP0

JMP CLOCKWISE UNCLOCKWISE:MOV SI,0 LOP1: MOV DX,0200H

MOV AL,REV[SI]

OUT DX,AL

CALL DELAY

MOV DX,0400H

IN AL,DX

TEST AL,01H

JZ CLOCKWISE

TEST AL,04H

JZ STOP

INC SI

CMP SI,8

JB LOP1

JMP UNCLOCKWISE

STOP: MOV DX,0200H

MOV AL,0B3H

OUT DX,AL

JMP AGAIN

DELAY PROC NEAR

PUSH BX

PUSH CX

MOV BX,25

DEL1: MOV CX,295

DEL2: LOOP DEL2

DEC BX

JNZ DEL1

POP CX

POP BX

RET

DELAY ENDP

.DA TA

FFW DB 069H,068H,06CH,064H,066H,062H,063H,061H

REV DB 051H,053H,052H,056H,054H,05CH,058H,059H

END

五.课程设计心得体会

经过这周的课程设计,做关于步进电机正反转控制的设计,自己认真查阅资料,学习关于这方面的知识,比如说要了解8086芯片中各个引脚的功能,步进电机到底是怎样工作的,其工作原理是什么。在理论学习的基础上,又下了一次苦工夫,算是明白了设计一个系统的过程;也让我体会到要想成功地设计某个东西,光学好专业知识是不够的,必须要系统的知识,无论在哪方面都要有个明白的概念,只有这样才不至于在设计过程中摸不着头脑,也要知道哪些是需要查找的资料,这样做起设计来才会节省更多的时间。而且在设计中,把死板的课本知识变得生动有趣,激发了学习的积极性。把学过的计算机编译原理的知识强化,能够把课堂上学的知识通过自己设计的程序表示出来,加深了对理论知识的理解。以前对与计算机操作系统的认识是模糊的,概念上的,现在通过自己动手做实验,从实践上认识了操作系统是如何处理命令的,如何协调计算机内部各个部件运行,对计算机编译原理的认识更加深刻。

六、参考文献

[1]李大友.微型计算机原理.北京:清华大学出版社,2002.

[2] 周明德. 微型计算机系统原理及应用(第四版).北京:清华大学出版社,2002

[3] 李顺增,吴国东,赵河明,乔志伟. 微机原理及接口技术.北京:机械工业出版社,2006

附录:

步进电机正反转启停控制的设计

电机控制课程设计报告书 题 目 步进电机正反转启停控制的设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 组 长 姓 名 学 号 同 组 学 生 设 计 地 点 工科楼C 设 计 学 时 1周 指 导 教 师 金陵科技学院教务处制

目录 一、设计任务和要求 二、设计思路 2.1系统总框图------------------------------------------------------------------------02 2.2设计原理--------------------------------------------------------03 三、系统硬件设置 3.1时钟信号控制电路原理介绍----------------------------------------03 3.1.1 芯片89C51介绍--------------------------------------------03 3.1.2 芯片管脚说明----------------------------------------------03 3.1.3 时钟信号控制电路------------------------------------------05 3.2系统复位电路原理介绍--------------------------------------------06 3.2.1 系统复位电路----------------------------------------------06 3.3驱动电路原理介绍------------------------------------------------06 3.3.1步进电机原理介绍-------------------------------------------06 3.3.2驱动电路---------------------------------------------------08 3.4正反转控制电路原理介绍------------------------------------------08 3. 4.1正反转控制电路---------------------------------------------08 四、系统软件设置 4.1主程序流程图----------------------------------------------------09 4.2源程序----------------------------------------------------------09 五、调试过程与结果----------------------------------------------18 六、总结与体会---------------------------------------------------18 七、参考资料------------------------------------------------------19 八、附录-----------------------------------------------------------20附录一总电路图

西门子S 系列PLC控制步进电机进行正反转的方法

1、主程序先正转,等到正转完了就中断,中断中接通个辅助触点(),当闭合,住程序中的反转开始运做。这样子就OK了。 2、用PTO指令让OR 高速脉冲,另一个点如做方向信号,就可以控制正反转了,速度快慢就要控制输出脉冲周期了,周期越短速度越快,如果你速度很快的话请考虑缓慢加速,不然它是启动不了的,如果方向也变的快的话就要还做一个缓慢减速,不然它振动会蛮厉害,而且也会失步。 3、程NETWORK 1 // 用于单段脉冲串操作的主程序(PTO) // 首次扫描时,将映像寄存器位设为低 // 并调用子程序0 LD R 1 CALL SBR_0 NETWORK 1 // 子程序0开始 LD MOVB 16#8D SMB67 // 设置控制字节: // - 选择PTO操作 // - 选择单段操作 // - 选择毫秒增加 // - 设置脉冲计数和周期数值 // - 启用PTO功能 MOVW +500 SMW68 // 将周期设为500毫秒。 MOVD +4 SMD72 // 将脉冲计数设为4次脉冲。 ATCH INT_0 19 // 将中断例行程序0定义为 // 处理PTO完成中断的中断。 ENI // 全局中断启用

PLS 0 // 激活PTO操作,PLS0 =》 MOVB 16#89 SMB67 // 预载控制字节,用于随后的 // 周期改动。 NETWORK 1 // 中断0开始 // 如果当前周期为500毫秒: // 将周期设为1000毫秒,并生成4次脉冲 LDW= SMW68 +500 MOVW +1000 SMW68 PLS 0 CRETI NETWORK 2 // 如果当前周期为1000毫秒: // 将周期设为500毫秒,并生成4次脉冲 LDW= SMW68 +1000 MOVW +500 SMW68 PLS 0序注释 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关PLC产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。

PLC实现步进电机地正反转和调整控制系统

实训课题三 PLC实现步进电机正反转和调速控制 一、实验目的 1、掌握步进电机的工作原理 2、掌握带驱动电源的步进电机的控制方法 3、掌握DECO指令实现步进电机正反转和调速控制的程序 二、实训仪器和设备 -48MR PLC一台 1、FX 2N 2、两相四拍带驱动电源的步进电机一套 3、正反切换开关、起停开关、增减速开关各一个 三、步进电机工作原理 步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图。从图中可以看出,它分成转子和定子两部分。定子是由硅钢片叠成,定子上有六个磁极(大极),每两个相对的磁极(N、S极)组成一对。共有3对。每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相。可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推。 反应式步进电动机的动力来自于电磁力。在电磁力的作用下,转子被强行推动到最大磁导率(或者最小磁阻)的位置,如图3-1(a)所示,定子小齿与转子小齿对齐的位置,并处于平衡状态。对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1(b)所示,即定子小齿与转子小齿不对齐的位置。 把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿。错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态。 本实验的电机采用两相混合式步进电机,其部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转。因为中间

基于单片机ATS控制步进电机正反转

基于单片机A T S控制步进 电机正反转 The latest revision on November 22, 2020

目录 步进电机 (7) 附件A 源程序 .......................................... (12) 附件B 仿真结果 (15) 致谢 (18)

摘要 能够实现步进电机控制的方式有多种,可以采用前期的模拟电路、数字电路或模拟与数字电路相结合的方式。近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测日新月异更新。本文介绍一种用AT89S52作为核心部件进行逻辑控制及信号产生的单片机技术和汇编语言编程设计的步进电机控制系统,步进电机背景与现状、硬件设计、软件设计及其仿真都做了详细的介绍,使我们不仅对步进电机的原理有了深入的了解,也对单片机的设计研发过程有了更加深刻的体会。本控制系统采用单片机控制,通过人为按动开关实现步进电机的开关,复位。该系统还增加了步进电机的加速及减速功能。具有灵活方便、适用范围广的特点,基本能够满足实践需求。 关键词: AT89S52 步进电机 ULN2003 第一章系统分析 框图设计 根据系统要求画出基于AT89S52单片机的控制步进电机的控制框图如图2-1所示。

图2-1基于AT89C52单片机的控制步进电机的控制框图 系统主要包括单片机、复位电路、晶振电路、按键电路、步进电机及驱动电路几部分。 晶振电路 AT89C52单片机有一个用于构成内部振荡器的反相放大器,XTAL1 和XTAL2 分别是放大器的输入、输出端。石英晶体和陶瓷谐振器都可以用来一起构成自激振荡器。 晶振模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行。最常用的两种类型是晶振模块和集成RC振荡器(硅振荡器)。晶振模块提供与分立晶振相同的精度。硅振荡器的精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当的精度。图2-2为晶振电路。 图2-2 晶振电路 第二章系统设计 硬件连接图 根据图2-1,可以设计出单片机控制步进电机的硬件电路图,如图3-1所示。

步进电机启动停止正反转控制程序的汇编语言的实现

DELAY 1MS MACRO TIME ;延时宏命令 LOCAL AA LOCAL BB PUSH CX MOV CX,TIME AA: PUSH CX MOV CX,1000 BB: NOP LOOP BB POP CX LOOP AA POP CX ENDM DATA SEGMENT TABA DB 01H,03H,02H,06H,04H,05H;正转的模型 TABB DB 05H,04H,06H,02H,03H,01H;反转的模型DATA ENDS CODE SEGMENT ZZ PROC NEAR PUSH DS MOV AX,DATA MOV DS,AX MOV AX,0 PUSH AX MOV DX,203H MOV AL,80H OUT DX,AL ;8255的控制字设定 MOV DX,200H MOV AL,0 OUT DX,AL ;先输出制动命令 MOV CX,360 ;设定正转步数 DD: MOV BL,6 ;六拍 MOV DX,200H LEA DI,TABA ;指针指向正转的数字模型 CC: MOV AL,[DI] OUT DX,AL DELAY 1MS 10 INC DI ;指针加1,指向下一步的数字模型 DEC BL ;拍数减1 JNZ CC ;六拍未结束,则继续循环 LOOP DD;360个周期的六拍未结束,继续循环 ZZ ENDP

FZ PROC NEAR MOV CX,400 ;设定反转步数 FF: MOV BL,6 MOV DX,200H LEA DI,TABB ;指针指向反转的数字模型 EE: MOV AL,[DI] OUT DX,AL DELAY 1MS 10 DEC DI ;指针减1,指向反转下一步数字模型 DEC BL JNZ EE LOOP FF FZ ENDP MOV DX,200H MOV AL,0 OUT DX,AL ;结束后,输出制动命令 RET MAIN ENDP CODE ENDS END START

片机课程设计步进电机启动停止正反转

单片机课程设计报告 步进电机控制设计 姓名:黄盛海 201030480108 詹志勋 201030480125 郑榕生 201030480128 班级: 10车辆工程1班 指导老师:李震姜晟 日期: 2012.6.18~6.20 华南农业大学工程学院

摘要:步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,它的的驱动电路根据控制信号工作,控制信号由单片机产生。 本次课程设计主要采用AT89S52芯片,用汇编语言编写出电机的正转、反转、加速、减速、停止程序,通过单片机、电机的驱动芯片ULN2003以及相应的按键实现以上功能,并且步进电机的工作状态要用相应的发光二极管显示出来。控制系统主要由硬件设计和软件设计两部分组成。其中,硬件设计包括单片机的最小系统模块、电源模块、控制模块、步进电机ULN2003A驱动模块、彩灯显示模块5个功能模块的设计。并且通过仿真控制系统对硬件、软件进行了调试和改善,实现了上述功能。本系统具有智能性、实用性及可靠性的特点。 关键词:步进电机单片机电脉冲驱动系统汇编语言

目录 1、课程设计目的及要求 (4) 2、整体系统分析 (4) 3、硬件系统分析 (6) 4、软件系统分析 (10) 5、调试结果 (10) 6、结论 (11) 7、参考文献 (12) 附一:源程序 (12)

1. 课程设计目的及要求 1.1 课程设计目的 增进对单片机的感性认识,加深对单片机理论方面的理解; 掌握单片机的内部功能模块的应用,如定时器/计数器、中断、存贮器、I/O口、A/D转换等; 了解和掌握单片机应用系统的软硬件设计过程及实现方法。 1.2 课程设计要求 设计一个步进电机控制器,要求用多个按键控制电机的启动/停止、加速、减速、反转等控制功能; 用彩灯显示电机的转动状态,如加速就控制彩灯快速闪烁,减速则控制彩灯慢速闪烁等。 2. 整体系统分析 2.1步进电机控制工作原理 步进电机实际上是一个数字\角度转换器,也是一个串行的数\模转换器。步进电机的基本控制包括启停控制、转向控制、速度控制、换向控制4 个方面。从结构上看 ,步进电机分为三相、四相、五相等类型 ,本次设计的是四相电机。四相步进电机的工作方式有单四拍、双四拍和单双八拍 3 种。

西门子S系列PLC控制步进电机进行正反转的方法

西门子S系列P L C控制步进电机进行正反转 的方法 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

1、主程序先正转,等到正转完了就中断,中断中接通个辅助触点(),当闭合,住程序中的反转开始运做。这样子就OK了。 2、用PTO指令让 OR 高速脉冲,另一个点如做方向信号,就可以控制正反转了,速度快慢就要控制输出脉冲周期了,周期越短速度越快,如果你速度很快的话请考虑缓慢加速,不然它是启动不了的,如果方向也变的快的话就要还做一个缓慢减速,不然它振动会蛮厉害,而且也会失步。 3、程NETWORK 1 // 用于单段脉冲串操作的主程序(PTO) // 首次扫描时,将映像寄存器位设为低 // 并调用子程序0 LD R 1 CALL SBR_0 NETWORK 1 // 子程序0开始 LD MOVB 16#8D SMB67 // 设置控制字节: // - 选择PTO操作 // - 选择单段操作 // - 选择毫秒增加 // - 设置脉冲计数和周期数值 // - 启用PTO功能 MOVW +500 SMW68 // 将周期设为500毫秒。 MOVD +4 SMD72 // 将脉冲计数设为4次脉冲。 ATCH INT_0 19 // 将中断例行程序0定义为 // 处理PTO完成中断的中断。 ENI // 全局中断启用

PLS 0 // 激活PTO操作,PLS0 =》 MOVB 16#89 SMB67 // 预载控制字节,用于随后的 // 周期改动。 NETWORK 1 // 中断0开始 // 如果当前周期为500毫秒: // 将周期设为1000毫秒,并生成4次脉冲 LDW= SMW68 +500 MOVW +1000 SMW68 PLS 0 CRETI NETWORK 2 // 如果当前周期为1000毫秒: // 将周期设为500毫秒,并生成4次脉冲 LDW= SMW68 +1000 MOVW +500 SMW68 PLS 0序注释 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关PLC产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。

单片机课设步进电机控制正反转

单片机课程设计报告设计题目:步进电机控制系统 学院自动化与信息工程学院 专业电气工程及其自动化 班级 姓名 学号 指导教师王水鱼 2010 年秋季学期

目录 1.设计目的 (2) 2.设计的主要内容和要求 (2) 3.题目及要求功能分析 (2) 4.设计方案 (5) 4.1 整体方案 (5) 4.2 具体方案 (5) 5.硬件电路的设计 (6) 5.1 硬件线路 (6) 5.2 工作原理 (7) 5.3 操作时序 (8) 6. 软件设计 (8) 6.1 软件结构 (8) 6.2 程序流程 (9) 6.3 源程序清单 (9) 7. 系统仿真 (9) 8. 使用说明 (10) 9. 设计总结 (10) 参考文献 (11) 附录 (12)

步进电机的控制 1.设计目的 (1)熟悉单片机编程原理。 (2)熟练掌握51单片机的控制电路和最小系统。 (3)单片机基本应用系统的设计方法。 2.设计的主要内容和要求 (1)查阅资料,了解步进电机的工作原理。 (2)通过单片机给参数控制电机的转动。 (3)通过按钮控制启停及反转。 (4)其他功能。 3.题目及要求功能分析 步进电机:步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其精度高等特点,广泛应用于各种工业控制系统中。 三相单、双六拍步进电机的结构和工作原理: 三相单、双六拍步进电机通电方式:这种方式的通电顺

最新单片机课设步进电机控制正反转

单片机课设步进电机控制正反转

单片机课程设计报告设计题目:步进电机控制系统 学院自动化与信息工程学院 专业电气工程及其自动化 班级 姓名 学号 指导教师王水鱼 2010 年秋季学期 起止时间:2011年1月10日至2011年1月14日 平时 (10%) 任务完成 (30%) 答辩 (30%) 课设报告 (30%) 总评成绩

目录 1.设计目的 (2) 2.设计的主要内容和要求 (2) 3.题目及要求功能分析 (2) 4.设计方案 (5) 4.1 整体方案 (5) 4.2 具体方案 (5) 5.硬件电路的设计 (6) 5.1 硬件线路 (6) 5.2 工作原理 (7) 5.3 操作时序 (8) 6. 软件设计 (8) 6.1 软件结构 (8) 6.2 程序流程 (9) 6.3 源程序清单 (9) 7. 系统仿真 (9) 8. 使用说明 (10) 9. 设计总结 (10) 参考文献 (11) 附录 (12)

步进电机的控制 1.设计目的 (1)熟悉单片机编程原理。 (2)熟练掌握51单片机的控制电路和最小系统。 (3)单片机基本应用系统的设计方法。 2.设计的主要内容和要求 (1)查阅资料,了解步进电机的工作原理。 (2)通过单片机给参数控制电机的转动。 (3)通过按钮控制启停及反转。 (4)其他功能。 3.题目及要求功能分析 步进电机:步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其精度高等特点,广泛应用于各种工业控制系统中。 三相单、双六拍步进电机的结构和工作原理:

步进电机正反转控制C语言程序 只为初学者

只为初学者的步进电机正反控制程序 #include<> #define uchar unsigned char #define uint unsigned int #define MotorData P2 //步进电机控制接口定义 sbit zheng=P3^0; sbit fan=P3^1; sbit stop=P3^2; uchar phasecw[8] ={0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x09};//正转 uchar phaseccw[8]={0x09,0x08,0x0c,0x04,0x06,0x02,0x03,0x01};//反转 //ms延时函数 void delay(uint t) { uint k; while(t--) { for(k=0; k<125; k++); } } void Delay_xms(uint x) { uint i,j; for(i=0;i

void Motor_work(uint t) { uchar i,j; switch(t) { case 0: while(1) {if(stop==0) break; for(i=0;i<8;i++) {MotorData=phasecw[i]; delay(50);//转速调节 } } break; case 1: while(1) {if(stop==0) break; for(j=0;j<8;j++) {MotorData=phaseccw[j]; delay(50);//转速调节 } } break; } } //停止转动 void Motor_test(void) { if(zheng==0) { Delay_xms(10); if(zheng==0) Motor_work(0); } if(fan==0) { Delay_xms(10); if(fan==0) Motor_work(1); } } //主函数 void main(void) {

单片机课程设计---步进电机正反转设计

单片机课程设计课题:步进电机正反转设计 系别:电气与电子工程系 专业: 姓名: 学号 指导老师: 2013年01月09日

一设计目的 1、增进对单片机的感性认识,加深对单片机理论方面的理解; 2、掌握单片机的内部功能模块的应用,如定时器/计数器、中断、片内外存贮器、I/O口、A/D、 3; 4、掌握控制步进电机转动的编程方法。 二设计要求 1、具有速度和转向设定功能; 2、设置开始、停止以及正反转健; 3、转速以及转向有数码管显示(本设计使用的为LCD12864)。 三、总体设计 步进电机是一种将电脉冲转化为角位移的数字控制执行机构。它将电脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。 步进电机具有控制简便、定位准确等特点。随着科学技术的发展,在许多领域将得到广泛的应用。鉴于传统的脉冲系统移植性不好,本文提出微机控制系统代替脉冲发生器和脉冲分配器,用软件的方法产生控制脉冲,通过软件编程可以任意设定步进电机的转速、旋转角度、转动次数和控制步进电机的运行状态。以简化控制电路,降低生产成本,提高系统的运行效率和灵活性。 步进电机的角位移与输入脉冲数严格成正比,因此,当它转动一周后,没有累计误差,具有良好的跟随性。由步进电机与驱动电路组成的开环数控系统,既非常简单、廉价,又非常可靠。同时,它也可以与角度反馈环节组成高性能的闭环数控系统。步进电机的动态响应快,易于起停、正反转及变速。速度可在相当宽的范围内平滑调节,低速下仍能保证获得大转矩。步进电机只能通过脉冲电源供电才能运行,它不能直接使用交流电源和直流电源。步进电机存在振荡和失步现象,必须对控制系统和机械负载采取相应的措施。步进电机自身的噪声和振动较大,带惯性负载的能力较差。 步进电机是自动控制系统中常用的执行部件。步进电机的输入信号为脉冲电流,它能将输入的脉冲信号转换为阶跃型的角位移或直线位移,因而步进电机可看作是一个串行的数/模转换器。由于步进电机能够直接接受数字信号,而不需数/模转换,所以使用微机控制步进电机显得非常方便。 步进电机有以下优点: (1)通常不需要反馈就能对位置和速度进行控制; (2)位置误差不会积累; (3)与数组设备兼容,能够直接接收数字信号; (4)可以快速启停。 步进电机的品种规格很多,按照它们的结构和工作原理可以划分为磁阻式(也称反应式或变磁阻式)电机、混合式电机、永磁式电机和特种电机等四种主要型式。步进电机不需位移传感器就可精确定位,所以在精确定位系统中应用广泛。目前打字机、计算机外部设备、数控机床、传真机等设备中都使用了步进电机。

步进电机正反转控制及转速显示

/***************************************************** 程序调试成功 *********************************************************/ #include #define uchar unsigned char #define uint unsigned int sbit wale = P1^4; sbitdula = P1^5; sbitjia_key=P3^3; sbitjian_key=P3^2; sbitZ_key=P3^0; sbitF_key=P3^1; sbit Z_LED=P1^0; sbit F_LED=P1^1; sbit J_LED=P1^2; sbit JA_LED=P1^3; uint flag; ucharnum,show_num=2,maichong=4,table_begin; uchar code SHU[10]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,0x7f,0x6f};//共阳数码管驱动信号0---9,不显示 uchar code table[]={0xf1,0xf3,0xf2,0xf6,0xf4,0xfc,0xf8,0xf9,0xf1,0xf9,0xf8,0xfc,0xf4,0xf6,0xf2,0xf3};//电机正反转 void delay(uchar x) { uint y; for(;x>0;x--) for(y=0;y<124;y++); } void display() //显示函数 { uint a; a=num; if(a<10) a=a+1; else a=a%10; wale=1; P0=0xfb; wale=0; dula=1; P0=SHU[(num/10)]; dula=0; delay(10);

步进电机正反转程序

步进电机正反转程序 #include //51芯片管脚定义头文件 #include //内部包含延时函数 _nop_(); #define uchar unsigned char #define uint unsigned int uchar code FFW[8]={0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x09}; //四相八拍正转编码 uchar code REV[8]={0x09,0x08,0x0c,0x04,0x06,0x02,0x03,0x01}; ////四相八拍反转编码 sbit K1 = P3^2; //正转 sbit K2 = P3^3; //反转 sbit K3 = P3^4; //停止 sbit BEEP = P3^6; //蜂鸣器 /********************************************************/ /* /* 延时t毫秒 /* 11.0592MHz时钟,延时约1ms /* /********************************************************/ void delay(uint t) { uint k; while(t--) {

for(k=0; k<125; k++) { } } } /********************************************************** / void delayB(uchar x) //x*0.14MS { uchar i; while(x--) { for (i=0; i<13; i++) { } } } /********************************************************** / void beep() { uchar i; for (i=0;i<100;i++) { delayB(4); BEEP=!BEEP; //BEEP取反

步进电机正反转程序 一

步进电机正反转程序一 #include <reg51.h> //51芯片管脚定义头文件 #include <intrins.h> //内部包含延时函数_nop_(); #define uchar unsigned char #define uint unsigned int uchar code FFW[8]={0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x09}; //四相八拍正转编码 uchar code REV[8]={0x09,0x08,0x0c,0x04,0x06,0x02,0x03,0x01}; ////四相八拍反转编码 sbit K1 = P3^2; //正转 sbit K2 = P3^3; //反转 sbit K3 = P3^4; //停止 sbit BEEP = P3^6; //蜂鸣器 /********************************************************/ /* /* 延时t毫秒 /* 11.0592MHz时钟,延时约1ms /* /********************************************************/ void delay(uint t) { uint k; while(t--) { for(k=0; k<125; k++) { } } } /**********************************************************/ void delayB(uchar x) //x*0.14MS { uchar i; while(x--) { for (i=0; i<13; i++) { } } } /**********************************************************/

基于单片机原理的步进电机的正反转程设计报告书

基于单片机原理的步进电机的正反转程设计报告书

电机控制课程设计报告书题目基于单片机原理的步进电机的正反转

目录....................................................................... 错误!未定义书签。摘要...................................................................... 错误!未定义书签。 1.概述................................................................... 错误!未定义书签。 1.1课程设计的任务和要求 ............................ 错误!未定义书签。 1.2设计思路框架............................................ 错误!未定义书签。 1.3设计方案的模块解释................................ 错误!未定义书签。 2.系统硬件设计 ..................................................... 错误!未定义书签。 2.1单片机最小系统原理介绍 ........................ 错误!未定义书签。 2.1.1 AT89C51的工作原理 ....................... 错误!未定义书签。 2.1.2复位电路的工作原理 ...................... 错误!未定义书签。 2.1.3晶振电路的工作原理 ...................... 错误!未定义书签。 2.2电机驱动电路原理介绍 ............................ 错误!未定义书签。 3.系统软件设计 ..................................................... 错误!未定义书签。 3.1系统流程图 ............................................... 错误!未定义书签。 3.2系统程序分析............................................ 错误!未定义书签。4.调试过程与结果 .............................................. 错误!未定义书签。5.总结与体会 ...................................................... 错误!未定义书签。 6.参考资料............................................................. 错误!未定义书签。 7.附录.................................................................... 错误!未定义书签。

步进电机正反转

步进电机控制设计 摘要 步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。结合对步进电机的了解,然后对步进电机的控制原理包括步进电机的控制方式和驱动方式作了系统的说明,采用8051单片机来控制步进电机,并给出了步进电机的双相三拍控制单片机控制和三相六拍的单片机控制的具体实现方法,用汇编程序进行控制运行。控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。 电机的控制系统由AT80C51单片机控制,具有抗干扰能力强,可靠性高而且系统扩展容易等优势。本次课程设计中着重于通过控制脉冲数来控制位移,实现准确定位。基于步进电机本身的优越性和应用的广泛性,这正是用单片机控制步进电机课程设计的实际意义。 关键字:步进电机 ,角位移,单片机 ,脉冲

目录 1 课题描述 (1) 2总体实现原理 (1) 3 步进电机原理及硬件设计 (2) 3.1 单片机电路 (2) 3.1.1 AT89C51单片机的组成结构 (2) 3.1.2 AT89C51单片机的引脚及功能 (4) 3.2步进电机 (6) 3.2.1 步进电机的工作原理 (6) 3.2.2控制原理 (7) 3.2.3步进电机的驱动方式 (8) 3.2.4最小系统 (9) 3.3输入显示部分 (10) 3.4 电源 (10) 4 软件程序设计 (11) 4.1 主程序的设计 (11) 4.2 定时中断设计 (12) 4.3 外部中断设计 (13) 4.4 系统软件程序 (14) 总结 (19) 致谢 (20) 参考文献 (21)

(步进电机正反转)DOC

课程设计报告 题 目 步进电机正反转控制系统的设计 课 程 名 称 微机原理及应用 院 部 名 称 龙蟠学院 专 业 电气工程及其自动化 班 级 M12电气工程及其自动化 学 生 姓 名 葛忠恺 学 号 1221109023 课程设计地点 C304 课程设计学时 20 指 导 教 师 李国利 金陵科技学院教务处制

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,具有快速启动能力,定位精度高,能够直接接受数字量,因此被广泛地应用于数字控制系统中,如数模转换装置、精确定位、计算机外围设备等,在现代控制领域起着非常重要的作用。 本设计基于Proteus 7.8设计环境,运用了8086 CPU芯片以及74273芯片、74244芯片和步进电机以及7位小功率驱动芯片ULN2003A、按钮、指示灯等辅助硬件电路,设计了步进电机正反转及调速系统。绘制软件流程图,进行了软件设计并编写了源程序,最后对软硬件系统进行联合调试。该步进电机的正反转及调速系统具有控制步进电机正反转的功能,还可以对步进电机进行调速,不同的按钮对应不同的速度,并且在没有速度按钮按下的时候,步进电机自动切换到停止状态。 关键词:步进电机;正反转;调速控制;ULN2003A芯片;8086微机系统

一、概述 1.1 课程设计的目的 (4) 1.2课程设计的要求 (4) 二、总体设计方案及说明 2.1 系统总体设计方案 (5) 2.2系统工作框图 (5) 三、系统硬件电路设计 3.1 Intel 8086 微处理器的简介 (6) 3.2 步进电机的原理 (7) 3.3 ULN2003A的简介 (8) 3.4 74154芯片简介 (9) 3.5 74LS273芯片简介 (10) 3.6 8086最小系统的设计 (11) 3.7 步进电机及其驱动电路的设计 (12) 3.8 电机状态显示电路的设计 (12) 3.9 输入采样电路的设计 (13) 3.10系统总电路图 (14) 四、系统软件部分设计 4.1 系统流程图 (15) 4.2 系统软件源程序 (16) 4.2.1电机绕组通电顺序设定 (16) 4.2.2 延时子程序设计 (16) 4.2.3 汇编源程序及说明 (16) 五、总结 5.1 系统软硬件的联合调试 (21) 5.2 问题分析和解决方案 (23) 5.3 心得与体会 (23) 六、参考文献 (23) 附录:总电路图 (25)

步进电机正反转控制C语言程序只为初学者

步进电机正反转控制C 语言程序只为初学者公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

只为初学者的步进电机正反控制程序 #include<> #define uchar unsigned char #define uint unsigned int #define MotorData P2 //步进电机控制接口定义 sbit zheng=P3^0; sbit fan=P3^1; sbit stop=P3^2; uchar phasecw[8] ={0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x09};//正转uchar phaseccw[8]={0x09,0x08,0x0c,0x04,0x06,0x02,0x03,0x01};//反转//ms延时函数 void delay(uint t) { uint k; while(t--) { for(k=0; k<125; k++); } } void Delay_xms(uint x) { uint i,j; for(i=0;i

void Motor_work(uint t) { uchar i,j; switch(t) { case 0: while(1) {if(stop==0) break; for(i=0;i<8;i++) {MotorData=phasecw[i]; delay(50);//转速调节 } } break; case 1: while(1) {if(stop==0) break; for(j=0;j<8;j++) {MotorData=phaseccw[j]; delay(50);//转速调节 } } break; } } //停止转动 void Motor_test(void) { if(zheng==0) { Delay_xms(10); if(zheng==0) Motor_work(0); } if(fan==0) { Delay_xms(10); if(fan==0) Motor_work(1); } } //主函数 void main(void) {

步进电机正反转及调速设计

步进电机正反转及调速设计 陈超 渭南师范学院物理与电气工程系2008级电气(1)班 摘要:本系统用52系列单片机和LY-36电机驱动芯片并加入了按钮来控制步进电机实现转向、转速等。系统中使用的四相步进电机,相应的驱动和控制电路对于其整体性能起着非常重要的作用。经系统调试,能够很好的控制步进电机的正反转、加减速,从而达到预期目的。整个系统具有结构简单、可靠性高、成本低和实用性强等特点,具有较高的通用性和应用推广价值。 关键词:四相步进电机 52单片机控制 YL-36驱动电路正反转 1 绪论 1.1 概述 步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化系统中,与其他类型的电机相比具有易于精确控制,无累积误差等优点。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,就驱动步进电机按设定的方向转一个固定的角度,它的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有累积误差的特点,广泛应用于各种开环控制。 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上,用它来做一些控制电器一类不是很复杂的工作[1]。单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件。 本文设计一种用STC89C52作为核心部件进行逻辑控制及信号产生的步进电机控制系统。为使步进电机系统的可靠性、通用性、可维护性以及性价比最优,根据系统的功能要求,通过单片机存储器、I/O口、中断、键盘、LED显示器的扩展来实现步进电机的启停、正反转、加减速等功能。 1.2 步进电机及单片机的发展趋势 步进电机的发展,将依赖于新型材料的应用、设计手段,以及与驱动技术的最佳匹配。随着自动控制技术、计算机网络通信技术在众多领域中的快速发展,以及进一步数字化、智能化,步进电机将会在更深入广泛的领域中得意应用。电

相关文档
相关文档 最新文档