文档库 最新最全的文档下载
当前位置:文档库 › “弹簧”10大模型

“弹簧”10大模型

“弹簧”10大模型
“弹簧”10大模型

图 1

图2 “弹簧”模型10大问题

太原市第十二中学 姚维明

模型建构:

在我们的日常生活中,弹簧虽然形态各异,大小不同,但是从弹簧秤,机动车的减震装置,各种复位按钮和机械钟表内的动力装置等,弹簧处处在为我们服务.因为弹簧本身的特性,如弹簧弹力的方向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类试题多年来深受物理命题专家的青睐。

【模型】弹簧

【特点】:(1)一般问题中的轻弹簧是一种理想模型,不计质量。(2) 弹簧弹力不能突变,弹力变化需要形变量变化,需要时间的积累。(3)弹力变化:F = kx 或△F =k △x ,其中F 为弹力(△F 为弹力变化),k 为劲度系数,x 为形变量(△x 为形变变化量)。(4)弹簧可以贮存能量,弹力做功和弹性势能的关系为:W =-△E P 其中W 为弹簧弹力做功,

△E P 为弹性势能变化。另外, 弹性势能计算公式暂不做要求。

一、轻弹簧的弹力与弹簧秤的读数问题

【典案1】如图1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同:

⑴弹簧的左端固定在墙上

⑵弹簧的左端受到大小也为F 的拉力作用

⑶弹簧的左端拴一小物块m ,物块在光滑的

水平面上滑动

⑷弹簧的左端拴一个小物块m ,物块在粗糙

的水平面上滑动

以1l 、2l 、3l 、4l 依次表示四条弹簧的伸长量,则有

A 、1l >2l

B 、4l >3l

C 、1l >3l

D 、2l =4l

〖解析〗因轻弹簧自身质量不计,则轻弹簧的伸长量与轻弹簧上的弹力大小成正比,因为四种状态中轻弹簧的弹力均为F ,故四种状态轻弹簧的伸长量相同;选D

【体验1】如图2,四个完全相同的弹簧秤都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同:

⑴弹簧秤的左端固定在墙上

⑵弹簧秤的左端受到大小也为F 的拉力

作用

⑶弹簧秤的左端拴一小物块m 1,物

块在光滑的水平面上滑动

⑷弹簧秤的左端拴一个小物块m 1,

物块在粗糙的水平面上滑动

以1l 、2l 、3l 、4l 依次表示四条弹簧的伸长量,则有

A 、1l =2l

B 、4l =3l

C 、1l >3l

D 、2l =4l

〖解析〗弹簧秤的读数取决于弹簧的伸长量,而弹簧秤自身有质量,前两种情况弹簧秤处于平衡状态,则弹簧的伸长量相同,则读数相同;后两种情况弹簧秤处于加速状态,则弹簧上的弹力不等

于F ,则读数不同。对⑶设弹簧秤自身质量也为m 2,则有弹簧秤的读数为2111'm m F m a m F +== 对⑷设物块所受的滑动摩擦力为F ,弹簧秤自身质量为m 2,弹簧秤的拉力为F ’,物块与弹簧秤的共同加速度为2

1m m f F a +-=,则弹簧秤的读数为21211'm m fm Fm f a m F ++=+=,因此,应选A 、C 【点评】轻弹簧的伸长量或弹簧秤的读数只与弹簧上的弹力大小成正比,而当弹簧秤自身有质量时,弹簧秤的读数与作用在弹簧秤钮上的力没有直关系。

二、弹簧与绳子约束问题的区别

【典案2】(1)如图3所示,物体的质量为m ,L 2为质量不计的轻弹簧,一端悬挂在天花板上,与竖直方向夹角为θ,L 1为一水平绳,现将L 1剪断,求剪断瞬间物体的加速度与弹簧的弹力。

〖解析〗设L 1的拉力为T 1,弹簧的拉力为T 2,重力为mg ,物体在三个力的作用下保持平衡, 沿着水平竖直方向建立直角坐标系。则:

θθθtan sin cos 11

22mg T T T mg T ===,

剪断线的瞬间,T 1消失,而弹簧的长度L 2未及发生变化,T 2的大小和方向都不变,物体即在T 1反方向获得加速度。

因为mg ma tan θ=

所以瞬时物体加速度:a g =tan θ,方向水平向右。 瞬时弹簧的弹力:θ

cos 2mg T =

方向沿弹簧向上。 【点评】弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

(2)如果把案例2中的弹簧换成细绳子,其它条件不变,将L 1剪断,求剪断瞬间物体的加速度和绳子的张力。

〖解析〗设L 1的拉力为T 1,弹簧的拉力为T 2,重力为mg 图 3 图

5

剪断绳子时,由于绳子要发生突变,因此小球将做单摆运动,小球受力如图。

沿着径向和切向建立直角坐标系。则:

ma mg =θsin

θcos 2mg T =

解得瞬时物体的加速度:θsin g a = 方向为切向。

瞬时绳子的张力:θcos 2mg T = 方向沿绳子向上。

?点评?弹簧发生渐变,所以瞬时弹簧弹力“来不及变化”。绳子发生突变,瞬时张力“突然发生变化”,它们有质的变化。因此要具体问题,具体处理。比较上面的两典案可以发现:弹簧与绳子的加速度、拉力大小方向都发生了变化。

【体验2】A 、B 两球质量分别为m 1与m 2,用一劲度系数为k 的弹簧相连,一长为l 1的细线与m 1相连,置于水平光滑桌面上,细线的另一端拴在竖直轴OO /上,如图7所示,当m 1与m 2均以角速度ω绕OO /做匀速圆周运动时,弹簧长度为l 2。求:

(1)此时弹簧伸长量多大?绳子张力多大?

(2)将线突然烧断瞬间两球加速度各多大?

〖解析〗(1)m 2只受弹簧弹力,设弹簧伸长Δl ,满足

k Δl =m 2ω2(l 1+l 2)

∴弹簧伸长量Δl =m 2ω2(l 1+l 2)/k

对m 1,受绳拉力T 和弹簧弹力F 做匀速圆周运动,

满足:T -F =m 1ω2l 1

绳子拉力T =m 1ω2l 1+m 2ω2(l 1+l 2)

(2)线烧断瞬间

A 球加速度a 1=F /m 1=m 2ω2(l 1+l 2)/m 1

B 球加速度a 2=F /m 2=ω2(l 1+l 2)

三、静态平衡下的弹簧问题

【典案3】一个重为G 的小圆环套在一个竖直放置的半径为R 的光滑圆环上,小圆环由一根劲度系数为k ,自然长度为L (L <2R)的轻弹簧系着,轻弹簧的另一端固定在大圆环的最高点,如图8所示,当小圆环静止时,轻弹簧与竖直方向的夹角θ为多少?

〖解析〗选小环为研究对象,它受到重力G ,弹簧拉力T 和大环支持力N ,由于小环处于平衡状态,所以T 、N 、G 组成一个封闭的三角形,根据数学知识可以看出三角形A OB 跟力三角形TNG 相似,得

θ

cos 2R R T G = )c o s 2(L R k kx T -==θ

G kR kL

22cos -=θ 轻弹簧与竖直方向的夹角为)

(21G KR kL cso -=-θ 【点评】这类问题一般形式比较单一,通常用胡克定律F =kx 和数学知识求解.

【体验3】如图9所示S 1和S 2表示劲度系数分别为k 1和k 2的两根弹簧,k 1>k 2。a 和b 表示质量分别为m a 和m b 的两个物块,m a >m b ,将弹簧与物块按如图所示方式悬挂起来。现要求两根弹簧的总长度最大,则应使:( )

8 图7

A .S 1在上,a 在上

B .S 1在上,b 在上

C .S 2在上,a 在上

D .S 2在上,b 在上

[解析]上面弹簧弹力是确定的,等于a b 两物体的重力

要使上面的伸长量大,应使劲度系数小的在上,即S 2在上面

要使下面伸长量大,应让质量大的物体在下面,即a 物体在下面

正确答案D 【点评】本题是根据胡克定律解题的,由F =kx 知要使形变量x 最大,则必有

F 最大或k 最小。

四、动态平衡涉及到的弹簧问题

【典案4】如图10所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1 、m 2 的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中物块2的重力势能增加了多少?物块1的重力势能增加了多少?

〖解析〗本题中有两个关键性词语应予重视,“轻质”弹簧——即不计弹簧质量;

“缓慢地”竖直上提,系统动能无变化,且上提过程中,系统受合力始终为零。 原先,系统平衡时,k 1 压缩x 1 = m 1 g / k 1 k 2 压缩x 2=(m 1 + m 2 )g /k 2

后来,k 2 下端刚脱离地面时,k 2 没形变,此时k 1 弹簧伸长 x 1′= m 2 g / k 1

故物块2的重力势能增加 ?E p2 = m 2 g x 2=(m 1 + m 2 )m 2 g 2/k 2 物块1的重力势能增加 ?E p1= m 1 g (x 1 +x 2 + x 1′)= m 1(m 1 + m 2 ) g

2(1/k 1+ 1/k 2 ) 〖体验4〗如图11所示,两个木块质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面的弹簧,在这过程中下面木块移动的距离 A .11k g m B. 22k g m C.21k g m D.22

k g m 解析:对弹簧2分析:△F =m 2g , 所以△x =K

F ?=K g m 2,故选D 【点评】因“缓慢”上提木块,故整个装置在上提过程中是处于一种动态平衡过程中,同静态平衡一样,涉及到的知识是胡克定律,一般用F =kx 或△F =k ?△x 来求解。

五、变速运动中的弹簧问题

弹簧连续形变其弹力为变力,在弹簧作用下的运动一般是加速度变化的变速运动,简谐运动只是其中的一种。如果连接弹簧的物体做匀变速,必有变化的外力作用,要注意变化的外力存在极值问题。

【典案5】如图12所示,一升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中

A .升降机的速度不断减小

B .升降机的加速度不断变大

C .先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功

图10 图9

D .到最低点时,升降机加速度的值一定大于重力加速度的值

〖解析〗在一般的习题集中,本题常见形式是一个球从高处下落到一支竖在地面上的弹簧的顶端(图12)。升降机下落到弹簧下端触地后,就相当于球下落到直立的弹簧上,弄清图9 中的小球下落情况,也就明白了图12中升降机的运动情况,为了说明图13中小球接触弹簧后的运动,我们把球接触弹簧后的运动划分成三个点和三个点之间的两个阶段来研究,这三个点就是接触点、平衡点和最低点。从接触点到平衡点,小球所受的重力大于弹力,加速度逐渐减小,速度逐渐增大,重力的功大于弹力的功,动能逐渐增大,重力势能逐减少,弹性势能逐渐增大;从平衡点到最低点,小球所受的弹力大于重力,加速度逐渐增大,速度逐渐减小,重力的功小于弹力的负功,动能逐渐减少,重力势能逐渐减少,弹性势能逐渐增大。在本例中,对于选项(D ),可以用弹簧振子的一个知识点来分析,把小球接触弹簧后的运动看作简谐运动,那么最低点是简谐运动的一个端点,而接触点不是端点,接触点位置有速度,由于简谐运动过程中速度小处加速度大,接触点处的加速度为g ,所以最低点处(端点)的加速度就大于g 。

【点评】运用对称性解决简谐运动问题,是最有效的方法。要特别注意简谐运动回复力、加速度、位移的对称性。

【体验5】如图14所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端

各与小球相连,另一端分别用销钉M 、N 固定与杆上,小球处于平衡状态,设拔除销钉

M 的瞬间,小球加速度的大小为12m /s 2,若不拔除销钉M 而拔除销钉N 瞬间,小球的加

速度可能是(g =10 m /s 2)

A .22 m /s 2,方向竖直向上

B .22 m /s 2,方向竖直向下

C .2 m /s 2,方向竖直向上

D .2 m /s 2,方向竖直向下

〖解析〗拔去销钉之前,小球受到三个力的作用——自身的重力、弹簧1的拉力(或

推力)、弹簧2的拉力(或推力),这三个力的合力为零。拔去销钉M ,弹簧1的一端失

去了“依靠”,另一端也就“使不出力”了,即弹簧1对小球的作用力消失,

弹簧2 的作用力暂时不变。拔去销钉M 的瞬间,小球的加速度为12m /s 2 ,

其方向有两种可能,一种是方向向上,另一种是方向向下。

(1)若方向向上,则拔去M 之前,球的受力如图甲所示,若拔去

销钉N ,则F 合 =F M +mg =ma 1 ,a 1 =22m /s 2 ,方向向下。

(2)若方向向下,则拔去M 之前,球的受力如图乙所示, 若拔去

销钉N ,则F 合 =F M -mg =ma 2 ,a 2=2m /s 2 ,方向向上。

【点评】弹簧所处的状态不同如拉伸、压缩时,弹力的方向也不相同. 此题要明白弹簧可能所处的不同的状态就容易得出答案:B 、C

六、瞬时作用涉及到的弹簧问题

【典案6】质量相同的A 、B 两球,由弹簧连接后,挂在天花板

上,如图16所示,a A 、a B 分别表示A 、B 两球的加速度,则( )

A . 在c 处剪断瞬间0,2==

B A a g a

12 接触点 平衡点 最低点 图13

F M N 甲 F N M 乙 图15

B. 在c 处剪断瞬间g a a B A ==

C. 在d 处剪断瞬间g a a B A ==,0

D. 在d 处剪断瞬间g a g a B A =-=,

〖解析〗剪断前,A 、B 两球的受力情况如图17所示

在c 处剪断的瞬间,T 1变为零,由于A 、B 间弹簧的弹力不能发生突变,仍保持原来的大小、方向不变,由牛顿第二定律的瞬时性特征知,a B =0,a A =2g

在d 处剪断的瞬间,同理可得T 1不变,T 2变为零,故a B =g a A =-g

故选A D 项。

因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。

〖体验6〗如图18所示,木块A 与B 用一轻弹簧相连,竖直放在木块C 上,三者静置于地面,

A 、

B 、

C 的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出

木块C 的瞬时,木块A 和B 的加速度分别是a A =____ ,a B =____

〖解析〗 由题意可设A 、B 、C 的质量分别为m 、2m 、3m

以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,

抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均没变,故木块A 的

瞬时加速度为0

以木块A B 为研究对象,由平衡条件可知,木块C 对木块B 的作用力F cB =3mg

以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C

的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。瞬时加速度为1.5g

说明 区别不可伸长的轻质绳中张力瞬间可以突变

七、临界状态中涉及到的弹簧问题

【典案7】如图19所示,A 、B 两木块叠放在竖直轻弹簧上,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N /m ,若在木块A 上作用一个竖直向上的力F ,

使A 由静止开始以0.5 m /s 2的加速度竖直向上做匀加速运动(g =10 m /s 2)

(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值

(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹

性势能减少了0.248 J ,求这一过程F 对木块做的功

〖解析〗此题难点和失分点在于能否通过对此物理过程的分析后,确定两物

体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.

当F =0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x ,有 A B A B m +m g kx=(m +m )g x k

()即 = ① 对A 施加F 力,分析A 、B 受力如右图所示 对A A A F+N-m g=m a

② 对B ''B B kx -N-m g=m a ③

可知,当N ≠0时,AB 有共同加速度a =a ′,由②式知欲使A 匀加速运动,随N 减小F 增大.当N =0时,F 取得了最大值F m ,

19 图18 图20

即m A F =m (g+a)=4.41 N

又当N =0时,A 、B 开始分离,由③式知, 此时,弹簧压缩量B B m (a+g)kx'=m (a+g) x'=

k ④ AB 共同速度 2 v =2a (x -x ')

⑤ 由题知,此过程弹性势能减少了W P =E P =0.248 J

设F 力功W F ,对这一过程应用功能原理

2F A B A B p 1W =( m +m )v +(m +m )g(x-x')-E 2

联立①④⑤⑥,且注意到E P =0.248 J 可知,W F =9.64×10-2 J

【体验7】一根劲度系数为k ,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图21所示。现让木板由静止开始以加速度a (a <g )匀加速向下移动。求经过多长时间木板开始与物体分离。

〖解析〗设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹

力F =kx 和平板的支持力N 作用。据牛顿第二定律有:

mg -kx -N =ma 得N =mg -kx -ma

当N =0时,物体与平板分离,所以此时k a g m x )(-=

因为221at x =,所以ka

a g m t )(2-= 【点评】相互接触的物体间可能存在弹力的相互作用,对于面接触的物体,在

接触面间弹力变为零时,它们将要分离。

八、简谐运动涉及到的弹簧问题

【典案8】两块质量分别为m 1和m 2的木块,用一根劲度系数为k 的轻弹簧连在一起,现在m 1上施加压力F ,如图22所示.为了使撤去F 后m 1跳起时能带起m 2,则所加压

力F 应多大?

〖解析〗m 2恰好离开地面的临界条件是弹簧比原长再伸长x 2,且kx 2=m 2g 和

m 1速度为零.

根据简谐振动的对称性求解:m 2不离开地面,m 1做简谐振动,

则振幅:0201x x x x A +=-= k

g m k g m x x x 1202122+=+= 加压力F 时 11kx g m F =+ 所以人 g m m g m kx F )(2111+=-= 【点评】物体与弹簧组成的系统做简谐运动时,具有明显的对称性,这类题一般用对称性求解,会简单的多。

【体验8】如图23所示,一升降机在箱底装有若干个弹簧,设在某次事故中,

升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的

一段运动过程中:( )

A . 升降机的速度不断减小

B. 升降机的加速度不断变大

C. 先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功

21 图22

图23

D. 到最低点时,升降机加速度的值一定大于重力加速度的值

〖解析〗升降机从弹簧下端触地后直到最低点的一段运动可以转化为熟悉的弹簧振子,其平衡位置是重力与弹力相平衡的时刻。升降机的弹簧从触地到平衡位置之前,加速度是在不断减小,速度不断增大,故选项A 、B 不正确。

弹簧下端触地后,升降机先加速后减速,加速度先减小后增大。

达到平衡位置之前,重力大于弹力,所以重力做正功大于弹力做的负功;

过了平衡位置,弹力大于重力,所以重力做正功小于弹力做的负功。

选项C 正确。

对于选项D ,可以设想有一轻弹簧竖直在水平地面上,将一小球无初速度放于弹簧上,可以证明小球的运动为简谐运动。由简谐运动的对称性知小球在最低点加速度的值等于在最高点的值。若小球以一定速度落在弹簧上,在最低点加速度的值必大于重力加速度的值。

故选项D 正确。

答案:CD

〖点评〗简谐运动的对称性在弹簧问题的运动上有广泛的应用,因此在解决有关于位移、速度、加速度及力的变化时,经常用到。

九、弹簧做功与动量、能量的综合问题

【典案9】如图24中,轻弹簧的一端固定,另一端与

滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。另

一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B

滑行,当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰

后A 、B 紧贴在一起运动,但互不粘连。已知最后A 恰好返回出发点P 并停止。滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L 2,求A 从P 出发时的

初速度υ0。

〖解析〗设A 、B 质量均为m ,A 刚接触B 时速度为1v (碰前),由功能关系,有

121202

121mgL mv mv μ=- ① A 、B 碰撞过程中动量守恒,设碰后A 、B 共同运动的速度为.2v 有

212mv mv = ②

碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为3v ,在这过程中,弹簧弹性势能始末两态都为零,利用功能关系,有

)2()2()2(2

1)2(2122322L g m v m v m μ=- ③ 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有

1232

1mgL mv μ= ④ 由以上各式,解得 )1610(210L L g v +=μ ⑤

?点评?弹力做功的过程中弹力是个变力,并与动量、能量联系。它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,能力要求较高,分析这类问题时,要耐心细致分析弹簧

L 2 L 1 图24

的动态过程,利用动能定理和功能关系等知识解题。

弹力做功是一个“变力”做功的问题,在中学物理中,“变力”做功应用动能定理来解答,弹性势能在中学物理中没有定义式,在求其值的时候,必须应用能量守恒的原理来求,对于较综合的题型,虽然先后涉及到几个较复杂的过程,但往往会出现先后二个状态弹簧的形变情况一样,这就意味着先后二个状态弹簧的弹性势能一样,对此必须引起足够的重视。

【体验9】如图25所示,质量为m 1的物体A 经一轻质弹簧与下方

地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于

静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连

一轻挂钩。开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。

现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。若将C 换成另一质量为(m 1+ m 3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的

大小是多少?已知重力加速度为g 。 〖解析〗先后两个状态都讲到B 刚要离开地面,即弹簧的弹力都等

于m 2g ,即先后讲到的B 要离开地面的两个状态对应的弹簧 弹性势能相等,由于初态的弹性势能一样,可见弹性势能的改变量

?E 相等。

初态:弹簧的压缩量x 1 = m 1 g / k

B 刚要离开地面时弹簧的伸长量x 2= m 2g /k 2

第一过程?E= m 3g (x 1 +x 2)-m 1 g (x 1 +x 2)

第二过程?E=(m 1+ m 3)g (x 1 +x 2)-m 1 g (x 1 +x 2)- (m 1+ m 3)v 2- m 1v 2

得: ()k

m m g m m m v 212

2112)(2++= 解?点评?弹簧弹力做功等于弹性势能的减少量。

弹簧的弹力做功是变力做功,求解一般可以用以下四种方法:

1、因该变力为线性变化,可以先求平均力,再用功的定义进行计算

2、利用F -x 图线所包围的面积大小求解

3、用微元法计算每一小段位移做功,再累加求和

4、据动能定理和能量转化和守恒定律求解

由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。特别是涉及到两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消,或替代求解。

十、电磁学中弹簧问题

【案例10】如图26所示,挡板P 固定在足够高的水平桌面上,小物块A 和B 大小可忽略,它们分别带为+Q A 和+Q B 的电荷量,质量分别为m A 和m B。两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩。整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力,A 、B 所带电荷量保持不变,B 不会碰到滑轮。

(1)若在小钩上挂质量为M 的物块C 并由静止

释放,可使物块A 对挡板P 的压力恰为零,但不会离

开P ,求物块C 下降的最大距离h

(2)若C 的质量为2M ,则当A 刚离开挡板P

图25

图26

时,B 的速度多大?

〖解析〗通过物理过程的分析可知:当A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹

簧伸长量一定,前后两次改变物块C质量,在第2问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解。

设开始时弹簧压缩量为x 1

由平衡条件:B EQ kx =1 可得1B EQ x k

= ① 设当A 刚离开档板时弹簧的伸长量为2x

由:A EQ kx =2 可得k

EQ x A =2 ② 故C 下降的最大距离为:21x x h += ③ 由①—③式可解得)(A B Q Q k

E h += ④ (2)由能量转化守恒定律可知:C 下落h 过程中,C 重力势能的减少量等于B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和

当C 的质量为M 时: 弹E h E Q mgh B ?+?= ⑤

当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v 2)2(212v m M E Eh Q Mgh B B ++?+=弹 ⑥

由④—⑥式可解得A 刚离开P 时B 的速度为: )

2()(2B B A m M k Q Q M g E v ++= ⑦ ?说明?研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用。

【体验10】一劲度系数为k 的轻质弹簧,下端挂有一匝数为N 的矩形

线框a bcd ,bc 边长为L 。线框的下半部处在匀强磁场中,磁感强度大小为

B ,方向与线框平面垂直,在图27中垂直于纸面向里。线框中通以电流I ,

方向如图所示。开始时线框处于平衡状态,令磁场反向,磁感强度的大小

仍为B ,线框达到新的平衡。在此过程中线框位移的大小Δx =________,方

向________。

〖解析〗令线框质量为m 。开始时,线框受向下的重力、向上的弹力

和安培力,三力平衡, 有mg =N BI L +kx 1 ①

磁场反向后,安培力由向上改为向下,其它力情况不变,有:

mg +N BI L =kx 2 ②

电流反向后,弹簧的伸长是x 2>x 1,

Δx =x 2-x 1 ③

由①②③解得:

方向向下

图27

〖点评〗本题为静力学与安培力综合,把安培力看成静力学中按性质来命名的一个力进行受力分析,是本题解答的基本思路。

【体验11】如图28,固定的水平金属导轨,间距为L ,左端接有阻值为R 的电阻,处在方向竖直、磁感应强度为B 的匀强磁场中,质量为m 的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略,初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v 0。在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。

(1)求初始时刻导体棒受到的安培力

(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为

E P ,则这一过程中安培力所做的功W 1和电阻上产生的焦耳热Q 1分别为

多少? (3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到

最终静止的过程中,电阻R 上产生的焦耳热Q 为多少?

〖解析〗导体棒以初速度v 0运动而产生感应电动势,回路中的感应电流使导体棒受到安培力的作用。安培力做功使系统的机械能减少,最终将机械能全部转化为电阻R 上的焦耳热。由平衡条件知,棒最终静止时,弹簧的弹力为零,即此时弹簧处于初始的原长状态。

(1)初始时刻棒中感应电动势:E=BLv 0 棒中感应电流:R

E I = 作用于棒上的安培力BIL

F = 联立得R

v L B F 022=,方向:水平向左 (2)导体棒从初始时刻到速度第一次为零过程中,棒最初的动能转化成了弹簧的弹性势能和焦耳热,即p E Q mv +=1202

1 所以电阻R 上产生的焦耳热p E mv Q -=2012

1 由功和能的关系知Q 1=-W 安,所以安培力做功2012

1mv E W p -= (3)当棒静止时,安培力为零,导轨光滑,所以棒会静止在弹簧原长处,即棒最终静止于初始位置。

此时弹性势能为零,根据能量守恒知在整个的运动过程中系统最初的动能最后全部转化成焦耳热。即202

1mv Q = 【点评】本题考查了单杆切割问题及功能关系,本题最大特点在于它突出了力电磁等主要知识的综合,考查了学生的综合分析能力。同学们要充分掌握高中物理的两大基本观点:力的观点和能量观点,这是解决此类问题的基本途径。

另外,有关弹簧的串、并联和弹性势能的公式,高考中不作定量要求,这里不再说明。

总之,轻弹簧类问题是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及动量守恒定律和能的转化与守恒定律,是每年高考的一个必考的知识点,因此,在高三复习过程中一定要加强这方面的练习,要能够举一反三,做到稳妥得分。

图28

动量守恒定律弹簧模型

动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s 的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N和

挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之 和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2

(word完整版)高中物理弹簧问题

弹簧问题 轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。 无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零。 弹簧读数始终等于任意一端的弹力大小。 弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。 其伸长量等于弹簧任意位置受到的力和劲度系数的比值。 性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性; 有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。 性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。 分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。 弹簧问题的题目类型 1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数) 2、求与弹簧相连接的物体的瞬时加速度 3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化) 4、有弹簧相关的临界问题和极值问题 除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题 1、弹簧问题受力分析 受力分析对象是弹簧连接的物体,而不是弹簧本身 找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法); 通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化 弹簧长度的改变,取决于初末状态改变。(压缩——拉伸变化) 参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。 抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零的特点求解。 注:如果a相同,先整体后隔离。 隔离法求内力,优先对受力少的物体进行隔离分析。 2、瞬时性问题 题型:改变外部条件(突然剪断绳子,撤去支撑物) 针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析 3、动态过程分析 三点分析法(接触点,平衡点,最大形变点) 竖直型: 水平型:明确有无推力,有无摩擦力。物体是否系在弹簧上。 小结:弹簧作用下的变加速运动, 速度增减不能只看弹力,而是看合外力。(比较合外力方向和速度方向判断) 加速度等于零常常是出现速度极值的临界点。速度等于零往往加速度达到最大值。

弹簧碰撞模型

模型分析 1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。 不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。 3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。 题型1.弹簧直接连接的两物体间的作用. 【例1】质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所 示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求: (1)质量为3m 的物体最终的速度; (2)弹簧的这个过程中做的总功. 【答案】(1)032v (2) 203 2mv 【解析】(1)设3m 的物体离开弹簧时的速度为v 1,由动量守恒定律得: ()100 323v m v m v m m ?+?=+ 所以 013 2v v = (2)由能量守恒定律得:()()202021321221321v m m v m v m E P +?-?+??= 所以弹性势能:2032mv E P =

【点评】本题考查动量守恒定律和能量守恒定律的应用,解答的关键是正确确定初末状态及弹簧弹开过程的能量转化。 【例2】【2015届石家庄市高中毕业班第二次模拟考试试卷理科综合能力测试】如图所示,一辆质量M=3kg 的小车A 静止在水平面上,小车上有一质量m=lkg 的小物块B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为p E =6J ,小物块与小车右壁距离为l =0.4m ,解除锁定,小物块脱离弹簧后与小车右壁发生碰撞,碰撞过程无机械能损失,不计一切摩擦。求: ①从解除锁定到小物块与小车右壁发生第一次碰撞,小车移动的距离; ②小物块与小车右壁发生碰撞后,小物块和小车各自的速度大小和方向。 【答案】①0.1m ②小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 22211122P E mv Mv = + 解得s /m 3s /m 121-==v v 或s /m 3s /m 1-' 2'1==v v 碰后小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 【点评】本题考查动量守恒定律、能量守恒定律的结合应用,明确研究的系统和初末状态是正确解答的关键。 4.滑块a 、b 沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:

物理建模轻杆轻绳轻弹簧模型

物理建模轻杆轻绳轻弹簧 模型 Revised by BLUE on the afternoon of December 12,2020.

物理建模 1.轻杆、轻绳、轻弹簧模型 模型阐述 轻杆、轻绳、轻弹簧都是忽略质量的理想模型,与这三个模型相关的问题在高中物理中有相当重要的地位,且涉及的情景综合性较强,物理过程复杂,能很好地考查学生的综合分析能力,是高考的常考问题. 为结点) 图2-1-8 【典例2】 一轻弹簧两端分别连接物体a 、b ,在水平力作用下共同向右做匀加速运动,如图2-1-9所示,在水平面上时,力为F 1,弹簧长为L 1,在斜面上时,力为F 2,弹簧长为L 2,已知a 、b 两物体与接触面间的动摩擦因数相同,则轻弹簧的原长为( ). 图2-1-9 A.L 1+L 2 2 B. F 1L 1-F 2L 2 F 2-F 1 C. F 2L 1-F 1L 2F 2-F 1 D.F 2L 1+F 1L 2 F 2+F 1 即学即练 (2013·石家庄质检,18)如图2-1-10所示,一个“Y”形弹弓顶部跨度为L ,两根相同的橡皮条自由长度均为L ,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片.若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k ,发射弹丸时每根橡皮条的最大长度为2L (弹性限度内),则发射过程中裹片对弹丸的最大作用力为( ). 图2-1-10 A .kL B .2kL C. 32kL D.15 2 kL 附:对应高考题组(PPT 课件文本,见教师用书) 1.(2010·新课标全国卷,15)一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( ). A. F 2-F 1l 2-l 1 B.F 2+F 1 l 2+l 1

常见弹簧类问题分析

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再 用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-2 1 kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p = 2 1kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2, 两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m 1g/k 1 B.m 2g/k 2 C.m 1g/k 2 D.m 2g/k 2 此题若求m l 移动的距离又当如何求解? 参考答案:C

有弹簧的碰撞模型

高三物理有弹簧的碰撞模型 1.如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物 体B 以速度v 向A 静运动并与弹簧发生碰撞,A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是 A .A 开始运动时 B .A 的速度等于v 时 C .B 的速度等于零时 D .A 和B 的速度相等时 2.如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等。Q 与轻弹簧相连。设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞。 在整个碰撞过程中,弹簧具有的最大弹性势能等于( ) A .P 的初动能 B .P 的初动能的12 C .P 的初动能的13 D .P 的初动能的14 3.一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如下页左图所示.在A 点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回.下列说法中正确的是 (A)物体从A 下降到B 的过程中,动能不断变小 (B)物体从B 上升到A 的过程中,动能不断变大 (C)物体从A 下降到B,以及从B 上升到A 的过程中,速率都是先增大,后减小 (D)物体在B 点时,所受合力为零 4、(2013新课标)(10分)如图,光滑水平直轨道上有三个质量均为m 的物块A、 B 、 C 。 B 的左 侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v0朝B 运动,压缩弹簧; 当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动。假设B 和C 碰撞过 程时间极短。求从A开始压缩弹簧直至与弹簧分离的过程中, (i) 整个系统损失的机械能; (ii) 弹簧被压缩到最短时的弹性势能。 5、(2011安徽)(9分)如图,A 、B 、C 三个木块的质量均为m 。置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触可不固连。将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体。现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起。以后细线突然断开, 弹簧伸展,从而使C 与A 、B 分离。已知C 离开弹簧后的速度恰为 v 0。求弹簧释放的势能。 6.(2009重庆)(18 分)探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,

弹簧10大模型

弹簧”模型 10 大问题 太原市第十二中学 姚维明 模型建构 : 在我们的日常生活中,弹簧虽然形态各异 , 大小不同 , 但是从弹簧秤 , 机动车的减震装置 , 各种复 位按钮和机械钟表内的动力装置等 , 弹簧处处在为我们服务 .因为弹簧本身的特性,如弹簧弹力的方 向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及 的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类 试题多年来深受物理命题专家的青睐。 【模型】弹簧 【特点】:( 1)一般问题中的轻弹簧是一种理想模型,不计质量。( 2) 弹簧弹力不能突变,弹 力变化需要形变量变化,需要时间的积累。 (3)弹力变化: F = kx 或△ F =k △x ,其中 F 为弹力(△ F 为弹力变化), k 为劲度系数, x 为形变量(△ x 为形变变化量)。( 4 )弹簧可以贮存能量,弹 力做功和弹性势 能的关系为: W =-△ E P 其中 W 为弹簧弹力做功, △ E P 为弹性势能变化。另外, 弹性势能计算公式暂不做要求。 、轻弹簧的弹力与弹簧秤的读数问题 【典案 1】如图 1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力 F 作用,而左端的情况则各不相同: ⑴ 弹簧的左端固定在墙上 ⑵ 弹簧的左端受到大小也为 F 的拉力作用 以 l 1、l 2、 l 3、 l 4 依次表示四条弹簧的伸长量,则有 A 、 l 1 l 2 B 、 l 4 l 3 C 、 l 1 l 3 D 、 l 2 =l 4 〖解析〗因轻弹簧自身质量不计,则轻弹簧的伸长量与轻弹簧上的弹力大小成正 比,因为四种 状态中轻弹簧的弹力均为 F ,故四种状态轻弹簧的伸长量相同;选 D 【体验 1】如图 2,四个完全相同的弹簧秤都处于水平位置,它们的右端受到大小相等的拉力 F 作用,而左端的情况则各不相同: ⑴弹簧秤的左端固定在墙上 ⑵ 弹簧秤的左端受到大小也为 F 作用 ⑶ 弹簧秤的左端拴一小物块 块在光滑的水平面上滑动 ⑷ 弹簧秤的左端拴一个小物块 m 1,物块在粗糙的水平面上滑动 ⑶ 弹簧的左端拴一小物块 m ,物块在光滑的 水平面上滑动 图1 ⑷ 弹簧的左端拴一个小物块 m ,物块在粗糙的水平面上滑动 的拉力 m 1,物 图2

动量-含弹簧的碰撞模型祥解

A B C 水平弹簧 1、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? (1)当弹簧恢复原长时,B 与C 分离,0=m A v A -(m B +m c )v C ①,E P =221A A v m +2)(2 1C C B v m m +②,对C 由动能定理得W = 2 2 1C C v m -0③,由①②③得W =18J ,v A =v C =6m/s . (2)取A 、B 为研究系统,m A v A -m B v C = m A v A ’ +m B v C ’, 221A A v m +2 21C B v m = 2 1 m A v A ’ 2 + 2 1 m B v C ’2 , 当弹簧恢复到原长时A 、B 的速度分别为:,v A =v B =6m/s 或v A =-2m/s , v B =10m/s . 2、(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。开始时 A 、 B 以共同速度v 0运动, C 静止。某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同。求B 与C 碰撞前B 的速度。 解析:(2)设共同速度为v ,球A 和B 分开后,B 的速度为B v ,由动量 守恒定律有0()A B A B B m m v m v m v +=+,()B B B C m v m m v =+,联立这两式得B 和C 碰撞前B 的速度为09 5 B v v = 。考点:动量守恒定律 3、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。B 与C 碰撞后二者会粘在一起运动。求在以后的运动中: (1)当弹簧的弹性势能最大时,物块A 的速度为多大? (2)系统中弹性势能的最大值是多少? 解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大. 由A 、B 、C 三者组成的系统动量守恒,()()A B A B C ABC m m v m m m v +=++ (2分) 解得 (22)6 /3/224 ABC v m s m s +?= =++ (2分) (2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为BC v ,则 m B v =(m B +m C ) BC v BC v = 4 262+? (2分) v

《弹簧振子》模型

“弹簧振子”模型 太原市第十二中学 姚维明 模型建构: 【模型】常见弹簧振子及其类型问题 在简谐运动中,我们对弹簧振子(如图1,简称模型甲)比较熟悉。在学习过程中,我们经常会遇到与此相类似的一个模型(如图2,简称模型乙)。认真比较两种模型的区别和联系,对于培养我们的思维品质,提高我们的解题能力有一定的意义。 【特点】①弹簧振子做简谐运动时,回复力F=-kx ,“回复力”为振子运动方向上的合力。加速度为m kx a -= ②简谐运动具有对称性,即以平衡位置(a=0)为圆心,两侧对称点回复力、加速度、位移都是对称的。这是解题的关键。 模型典案: 【典案1】把一个小球挂在一个竖直的弹簧上,如图2。当它平衡后再用力向下拉伸一小段距离后轻轻放手,使小球上下振动。试证明小球的振动是简谐振动。 〖证明〗设弹簧劲度系数为k ,不受拉力时的长度为l 0,小球质量为m ,当挂上小球平衡时,弹簧的伸长量为x 0。由题意得mg=kx 0 容易判断,由重力和弹力的合力作为振动的回复力 假设在振动过程中的某一瞬间,小球在平衡位置下方,离开平衡位置O 的距离为x,取向下的方向为正方向 则回复力F=mg+[-k(x 0+x)]=mg-kx 0-kx= -kx 根据简谐运动定义,得证 比较: (1)两种模型中,弹簧振子都是作简谐运动。这是它们的相同之处。 (2)模型甲中,由弹簧的弹力提供回复力。因此,位移(x),回复力(F),速度(v),加速度(a),各量大小是关于平衡位置O 点对称的。 (3)模型乙中,由弹簧的弹力和重力两者的合力提供回复力。弹簧的弹力大小关于平衡位置是不对称...的,这点要特别注意。但是,回复力(加速度)大小关于平衡位置是对称..的。在解题时我们经常用到这点。 【典案2】如图3所示,质量为m 的物块放在弹簧上, 弹簧在竖直方向上做简谐运动,当振幅为A 时,物体对弹 簧的最大压力是物重的1.8倍,则物体对弹簧的最小压力是 物重的多少倍?欲使物体在弹簧振动中不离开弹簧,其振幅 最大为多少? 〖解析〗1)选物体为研究对象,画出其振动过程的几个 特殊点,如图4所示, O 为平衡位置,P 为最高点,Q 为最低点。 图2 m 图3 P 点

弹簧与弹簧测力计练习题精选附答案讲解学习

弹簧与弹簧测力计练习题精选附答案

2017年12月05日弹簧与弹簧测力计练习题精选 一.选择题(共14小题) 1.甲体重大、乙手臂粗、丙手臂长,三位同学用同一个拉力器比试臂力,结果每个人都能把手臂撑直,则下列说法中正确的是() A.甲所用拉力大B.乙所用拉力大 C.丙所用拉力大D.甲乙丙所用拉力一样大 2.在图中,A、B两球相互间一定有弹力作用的图是() A.B.C.D. 3.小明使用弹簧测力计前发现指针指在0.4N处,没有调节就测一物体的重力,且读数为2.5N,则物体重力的准确值应为() A.2.1N B.2.5N C.2.7N D.2.9N 4.如图所示的四个力中,不属于弹力的是() A. 跳板对运动员的支持力B. 弦对箭的推力 C.

熊猫对竹子的拉力D. 地球对月球的吸引力 5.使用弹簧测力计时,下面几种说法中错误的是() A.弹簧测力计必须竖直放置,不得倾斜 B.使用中,弹簧、指针、挂钩不能与外壳摩擦 C.使用前必须检查指针是否指在零点上 D.使用时,必须注意所测的力不能超过弹簧测力计的测量范围 6.如图所示,一根弹簧,一端固定在竖直墙上,在弹性限度内用手水平向右拉伸弹簧的另一端,下列有关“弹簧形变产生的力”描述正确的是() A.弹簧对手的拉力 B.手对弹簧的拉力 C.墙对弹簧的拉力 D.以上说法都正确 7.如图所示,一个铁块放在一块薄木板上,下列关关于铁块和木板受力情况的叙述正确的是() ①木板受到向下的弹力是因为铁块发生了弹性形变;②木板受到向下的弹力是因为木板发生了弹性形变;③铁块受到向上的弹力是因为木板发生了弹性形变;④铁块受到向上的弹力是因为铁块发生了弹性形变. A.①③B.①④C.②③D.②④

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 专题辅导

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 车晓红 [模型概述] 在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出 mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1 0)(v m m mv +=

弹簧的强度计算 1、弹簧的受力 图示的压缩弹簧,当弹簧受轴向压力

弹簧的强度计算 1、弹簧的受力 图示的压缩弹簧,当弹簧受轴向压力F时,在弹簧丝的任何横剖面上将作用着:扭矩 T= FRcosα ,弯矩 M= FRsinα,切向力F Q = Fcosα和法向力 N F = Fsinα (式中R为弹簧的平均半径)。由于弹簧螺旋角α的值不大(对于压缩弹簧为6~90 ),所以弯矩M和法向力N 可以忽略不计。因此,在弹簧丝中起主要作用的外力将是扭矩T和切向力Q。α的值较小时,cosα≈ 1,可取T = FR 和 Q = F。这种简化对于计算的准确性影响不大。 当拉伸弹簧受轴向拉力F时,弹簧丝横剖面上的受力情况和压缩弹簧相同,只是扭矩T 和切向力Q均为相反的方向。所以上述两种弹簧的计算方法可以一并讲述。 2、弹簧的强度 从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝

系数K s可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得到扭应力 式中K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径 3、弹簧的刚度 圆柱弹簧受载后的轴向变形量 式中n为弹簧的有效圈数;G为弹簧的切变模量。 这样弹簧的圈数及刚度分别为 对于拉伸弹簧,n>20时,一般圆整为整圈数,n<20时,可圆整为1/2圈;对于压缩弹簧总圈数n的尾数宜取1/4、1/2或整圈数,常用1/2圈。为了保证弹簧具有稳定的性能,通常弹簧的有效圈数最少为2圈。C值大小对弹簧刚度影响很大。若其它条件相同时,C值愈小的弹簧,刚度愈大,弹簧也就愈硬;反之则愈软。不过,C值愈小的弹簧卷制愈困难,且在工作时会引起较大的切应力。此外,k值还和G、d、n有关,在调整弹簧刚度时,应综合考虑这些因素的影响。

高中物理模型-水平方向上的碰撞弹簧模型

模型组合讲解——水平方向上的碰撞+弹簧模型 [模型概述] 在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出 mv mv 20=,由能量守恒定律得220 )2(21 21v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例 2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这 类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1 0)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由

弹簧10大模型

图 1 图2 “弹簧”模型10大问题 太原市第十二中学 姚维明 模型建构: 在我们的日常生活中,弹簧虽然形态各异,大小不同,但是从弹簧秤,机动车的减震装置,各种复位按钮和机械钟表内的动力装置等,弹簧处处在为我们服务.因为弹簧本身的特性,如弹簧弹力的方向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类试题多年来深受物理命题专家的青睐。 【模型】弹簧 【特点】:(1)一般问题中的轻弹簧是一种理想模型,不计质量。(2) 弹簧弹力不能突变,弹力变化需要形变量变化,需要时间的积累。(3)弹力变化:F = kx 或△F =k △x ,其中F 为弹力(△F 为弹力变化),k 为劲度系数,x 为形变量(△x 为形变变化量)。(4)弹簧可以贮存能量,弹力做功和弹性势能的关系为:W =-△E P 其中W 为弹簧弹力做功, △E P 为弹性势能变化。另外, 弹性势能计算公式暂不做要求。 一、轻弹簧的弹力与弹簧秤的读数问题 【典案1】如图1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同: ⑴弹簧的左端固定在墙上 ⑵弹簧的左端受到大小也为F 的拉力作用 ⑶弹簧的左端拴一小物块m ,物块在光滑的 水平面上滑动 ⑷弹簧的左端拴一个小物块m ,物块在粗糙的水平面上滑动 以1l 、2l 、3l 、4l 依次表示四条弹簧的伸长量,则有 A 、1l 2l B 、4l >3l C 、1l >3l D 、2l =4l 〖解析〗因轻弹簧自身质量不计,则轻弹簧的伸长量与轻弹簧上的弹力大小成正比,因为四种状态中轻弹簧的弹力均为F ,故四种状态轻弹簧的伸长量相同;选D 【体验1】如图2,四个完全相同的弹簧秤都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同: ⑴弹簧秤的左端固定在墙上 ⑵弹簧秤的左端受到大小也为F 的拉力 作用 ⑶弹簧秤的左端拴一小物块m 1,物 块在光滑的水平面上滑动 ⑷弹簧秤的左端拴一个小物块m 1,物块在粗糙的水平面上滑动

弹簧碰撞模型

模型分析 1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。 不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。 3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。 题型1.弹簧直接连接的两物体间的作用. 【例1】质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所 示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求: (1)质量为3m 的物体最终的速度; (2)弹簧的这个过程中做的总功. 【答案】(1)032v (2) 203 2mv 【解析】(1)设3m 的物体离开弹簧时的速度为v 1,由动量守恒定律得: ()100 323v m v m v m m ?+?=+ 所以 013 2v v = (2)由能量守恒定律得:()()202021321221321v m m v m v m E P +?-?+??= 所以弹性势能:203 2mv E P = 【点评】本题考查动量守恒定律和能量守恒定律的应用,解答的关键是正确确定初末状

态及弹簧弹开过程的能量转化。

【例2】【2015届石家庄市高中毕业班第二次模拟考试试卷理科综合能力测试】如图所示,一辆质量M =3kg 的小车A 静止在水平面上,小车上有一质量m =lkg 的小物块B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为p E =6J ,小物块与小车右壁距离为l =0.4m ,解除锁定,小物块脱离弹簧后与小车右壁发生碰撞,碰撞过程无机械能损失,不计一切摩擦。求: ①从解除锁定到小物块与小车右壁发生第一次碰撞,小车移动的距离; ②小物块与小车右壁发生碰撞后,小物块和小车各自的速度大小和方向。 【答案】①0.1m ②小车速度方向向右为1m/s ,小物块速度方向向左为 3m/s 22211122P E mv Mv = + 解得s /m 3s /m 121-==v v 或s /m 3s /m 1-' 2'1==v v 碰后小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 【点评】本题考查动量守恒定律、能量守恒定律的结合应用,明确研究的系统和初末状态是正确解答的关键。 4.滑块a 、b 沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求: ①滑块a 、b 的质量之比;

(完整版)动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2 D.在t2时刻两木块动能之比为E K1:E K2=1:4 5.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()

弹簧压轴题(非常实用)

弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要法。 在有关弹簧类问题中,要特别注意使用如下特点和规律: 1.弹簧的弹力是一种由形变而决定大小和向的力。当题目中出现弹簧时,要注意弹力的大小与向时刻要与当时的形变相对应。在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几关系,分析形变所对应的弹力大小、向,以此来分析计算物体运动状态的可能变化。 2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。在瞬间形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。如果弹簧被作为系统的

一个物体时,弹簧的弹力对系统物体做不做功都不影响系统的机械能。 4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的期性、对称性及特殊点的应用。如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度向发生改变的时刻。若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。若关联物同时处在电磁场中,要注重过程分析。 5、两端均有关联物的弹簧,弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相同,弹簧具有最大的弹性势能;当弹簧恢复原长时,相关联物体的速度相差最大,弹簧对关联物体的作用力为零。若物体再受阻力时,弹力与阻力相等时,物体速度最大。针对此类问题,要立足运动和受力分析,在解题法上以动量定理、动量守恒定律和动能定理等为首选。 下面我们结合例题来分析一下弹簧类问题的研究法。 1.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地面上.平衡时,弹簧的压缩量为x。,如图4所示.一物块从钢板正上距离为3x。处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点.若物块质量为2m,仍从A

动量-含弹簧的碰撞模型

水平弹簧 1、如图所示,光滑的水平面上有 m A=2kg , m B= m c=1kg 的三个物体,用轻弹簧将 A 与 B 连接?在A 、 C 两边用力使三个物体靠近, A 、 B 间的弹簧被压缩,此过程外力做功 72 J , 然后从静止开始释放,求: (1 )当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时, A 、 B 的速度各是多大? ②,对C 由动能定理得 W =l m C v C — 0③,由①②③得 W =18J , V A =v c =6m/s . 2 1 2 1 2 1 ' 2 1 —m A v A + — m B v c = — m A v A + — 2 2 2 2 '2 m B v c 当弹簧恢复到原长时 A 、B 的速度分别为:,V A = v B =6m/s 或v A =-2m/s , v B =10m/s 2、(2)如图所示,光滑水平面轨道上有三个木块, A 、B 、C ,质量分 别为m B = m c=2 m ,m A= m, A 、B 用细绳连接,中间有一压缩的弹簧 (弹 簧与滑块不栓接)。开始时A 、B 以共同速度v o 运动,C 静止。某时刻 细绳突然断开, A 、 B 被弹开,然后B 又与 C 发生碰撞并粘在一起,最终三滑块速度恰好相 同。求B 与C 碰撞前B 的 速度。 解析:(2)设共同速度为V ,球A 和B 分开后,B 的速度为V B ,由动量守恒定律有 (m A m B )v 0 m A v m B v B ,m B v B (m B m c )v ,联立这两式得 B 和C 碰撞前B 的速度为 9 一 一 v B v 0。考点:动量守恒定律 5 3、两物块A 、B 用轻弹簧相连,质量均为 2 kg ,初始时弹簧处于原长, A 、 B 两物块都以 v = 6 m / s 的速度在光滑的水平地面上运动,质量 4 kg 的 (1)当弹簧恢复原长时, B 与C 分离,O=m A V A —( m B +m c ) v c ①, 1 E P = _m A v 2 m c )v C (2)取 A 、B 为研究系统,m A v A — m B V C = m A v A ' +m B v c

高中物理弹簧模型经典题型汇总

弹簧专题 1、弹簧弹力的双向性 弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解. 例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0 120,已知弹簧a b 、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为 ( ) A、0 B、F mg +C、F mg -D、mg F - 2、轻弹簧 高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别. 例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有() 3、质量不可忽略的弹簧 例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 答案解析F x =F L x 图3-7-15

4、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。 例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题: (1)现将线L2剪断,求剪断L2的瞬间物体的加速度. (2)若将图甲中的细线L1换成长度相同,质量不计的轻 弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体 的加速度. 例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小 球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。两绳与 弹簧轴线构成正三角形,三个小球处于静止状态,此时弹簧处在伸长状态,且F 弹=mg,小球A与小球B间轻绳拉力为F1,剪断小球与小球C间细绳的瞬间,小 球A与小球B间细绳拉力为的大小为F2,则F1与F2的比值为() A.1:1B.2:1C.2?√3 3D.1+√3 2 5、弹簧串、并联组合 弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;完全相同的两根弹簧并联时,每根弹簧的形变量相等. 串联:F=K 1?x 1 =K 2 ?x 2 则有:?x=?x 1 +?x 2 =F(1 K 1 +1 K 2 ) 等效思想,设等效劲度系数为K’则有K 等效=(1 K 1 +1 K 2 )

相关文档
相关文档 最新文档