文档库 最新最全的文档下载
当前位置:文档库 › 系统稳态误差分析

系统稳态误差分析

系统稳态误差分析
系统稳态误差分析

苏州市职业大学实训报告 院系 电子信息工程学院 班级 姓名 学号 实训名称 系统稳态误差分析 实训日期

一、实训目的

1、掌握终值定理求稳态误差的方法;

2、在不同输入信号作用下,观察稳态误差与系统结构参数、型别的关系;

3、比较干扰在不同的作用点所引起的稳态误差。

二、实训内容

1、给定信号输入作用下,系统的稳态误差分析。

已知控制系统的动态结构图如下所示,其中112()21G s K s =?+,24()0.41

G s s =+,反馈通道传递函数()1H s =。

(1)建立上述控制系统的仿真动态结构图;令开环增益为K1=1,分别对系统输入阶跃信号和斜坡信号,用示波器观察系统的响应曲线和误差响应曲线;并分别计算不同输入信号下的稳态误差值 ;

(2)改变系统增益K1(自行选取增益值,如K1=10),用示波器观察系统的稳态误差曲线,计算稳态值,分析开环增益变化对稳态误差的影响。 如果前向通道中再串联一个积分环节,(增益值K1值同第三步),用示波器观察系统的响应曲线和误差响应曲线,计算稳态值,分析开环增益变化对稳态误差的影响。

建立如下图1所示的仿真结构图,令开环增益K1=1,输入单位阶跃信号,运行得到单位阶跃响应曲线和单位阶跃误差响应曲线(图2):

图1 单位阶跃信号作用下,K1=1的系统结构图

第 1 页 共 8 页 指导教师签名

苏州市职业大学实训报告

院系电子信息工程学院班级姓名学号

实训名称系统稳态误差分析实训日期

图2 单位阶跃信号作用下,K1=1的仿真曲线

建立如下图3所示的仿真结构图,令开环增益K1=1,输入单位斜坡信号,运行得到单位斜坡响应曲线和单位斜坡误差响应曲线(图4):

图3 单位斜坡信号作用下,K1=1的系统结构图

图4 单位斜坡信号作用下,K1=1的仿真曲线

第2页共 8页指导教师签名

苏州市职业大学实训报告

院系电子信息工程学院班级姓名学号

实训名称系统稳态误差分析实训日期

通过计算,在阶跃信号作用下,K1=1的系统稳态误差值

e为0.11;在斜坡信号作用下,K1=1的系统稳

ss

态误差值

e无穷大,这也刚好验证了图2和图4。

ss

建立如下图5所示的仿真结构图,令开环增益K1=10,输入单位阶跃信号,运行得到单位阶跃响应曲线和单位阶跃误差响应曲线(图6):

图5 单位阶跃信号作用下,K1=10的系统结构图

图6单位阶跃信号作用下,K1=10的仿真曲线

建立如下图7所示的仿真结构图,令开环增益K1=10,输入单位斜坡信号,运行得到单位斜坡响应曲线

和单位斜坡误差响应曲线(图8):

图7 单位斜坡信号作用下,K1=10的系统结构图

第3页共 8页指导教师签名

苏州市职业大学实训报告

院系 电子信息工程学院 班级 姓名 学号 实训名称 系统稳态误差分析 实训日期

图8 单位斜坡信号作用下,K1=10的仿真曲线

通过计算,在阶跃信号作用下,K1=10的系统稳态误差值ss e 为0.0123;在斜坡信号作用下,K1=10的

系统稳态误差值ss e 无穷大,这也刚好验证了图6和图8。

通过对比图2和图6可知,开环增益K 对系统的稳态误差有影响,K 越大,稳态误差越小;K 越小,稳态误差越大。因此,适当提高开环增益K 可减小系统的稳态误差,但不利于提高系统的稳定性。

2、干扰信号输入作用下,系统的稳态误差分析。

已知控制系统的动态结构图如下所示,其中11()G s s =,25()0.51

G s s =+反馈通道传递函数()1H s =。

1) 建立上述控制系统的仿真动态结构图;

2) 干扰信号加在N1和N2的位置时,用示波器观察系统的稳态误差曲线;并分别计算干扰信号为阶

跃信号时系统稳态误差值1ssn e 、2ssn e ;

建立如下图9所示的仿真结构图,无输入,在N1处施加阶跃干扰信号,运行得到仿真曲线(图10):

第 4 页 共 8 页 指导教师签名

苏州市职业大学实训报告

院系电子信息工程学院班级姓名学号

实训名称系统稳态误差分析实训日期

图9 在N1处施加阶跃干扰信号的系统结构图

图10 在N1处施加阶跃干扰信号的仿真曲线

利用MATLAB编程命令计算得:

e=1.4877e-014≈0。

1

ssn

建立如下图11所示的仿真结构图,无输入,在N2处施加阶跃干扰信号,运行得到仿真曲线(图12):

图11 在N2处施加阶跃干扰信号的系统结构图

第5页共 8页指导教师签名

苏州市职业大学实训报告

院系电子信息工程学院班级姓名学号

实训名称系统稳态误差分析实训日期

图12 在N2处施加阶跃干扰信号的仿真曲线

利用MATLAB编程命令计算得:

e=1。

2

ssn

3、根据图2-2观察阶跃干扰作用于不同位置时系统的稳态误差大小。

阶跃干扰作用越靠前,系统的稳态误差小;阶跃干扰作用越靠后,系统的稳态误差大。但系统几乎同时到达稳态。

4、同时施加输入信号R和干扰信号N(均为阶跃信号)。

建立如下图13所示的仿真结构图,输入阶跃信号,在N1处施加阶跃干扰信号,运行得到仿真曲线(图14):

图13 阶跃输入,在N1处施加阶跃干扰信号的系统结构图

第6页共 8页指导教师签名

苏州市职业大学实训报告

院系电子信息工程学院班级姓名学号

实训名称系统稳态误差分析实训日期

图14 阶跃输入,在N1处施加阶跃干扰信号的仿真曲线

建立如下图15所示的仿真结构图,输入阶跃信号,在N1处施加阶跃干扰信号,运行得到仿真曲线(图16):

图15 阶跃输入,在N2处施加阶跃干扰信号的系统结构图

图16 阶跃输入,在N1处施加阶跃干扰信号的仿真曲线

第7页共 8页指导教师签名

苏州市职业大学实训报告

院系电子信息工程学院班级姓名学号

实训名称系统稳态误差分析实训日期

三、思考题

1、根据实验结果,分析稳态误差与系统开环增益和输入信号类型的关系;

开环增益越大,稳态误差越小;开环增益越小,稳态误差越大。因此,适当提高开环增益可以减小系统的稳态误差,但不利于提高系统的稳定性。

同一控制系统在不同形式的输入信号的作用下有不同的稳态误差,具体如下表所示:

2、根据实验数据,分析稳态误差与干扰作用点的关系。

在同一控制系统中,干扰信号也一样的情况下,干扰作用点越靠前,稳态误差越小;反之,越大。

自动控制系统的稳定性和稳态误差分析

实验三 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) ()(0.5)(0.7)(3) s G s s s s s += +++,用MATLAB 编写程序来判断闭环系统的稳定 性,并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z= p=[0,,,-3] k= Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下: Transfer function: s + --------------------------------------- s^4 + s^3 + s^2 + s +

s^4 + s^3 + s^2 + s + 是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,,,,] p=roots(den) 运行结果如下: p = + - p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z= p=[0,,,-3] k= Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = p = + -

计算机控制系统的稳态误差

计算机控制系统报告 --计算机控制系统的稳态误差 在计算机控制系统中存在稳态误差。怎样计算稳态误差呢? 在连续系统中,稳态误差的计算可以通过两种方法计算:一是建立在拉氏变换中值定理基础上的计算方法,可以求出系统的终值误差;另一种是从系统误差传递函数出发的动态误差系数法,可以求出系统动态误差的稳态分量。 在离散系统中,根据连续系统稳态误差的两种计算方法,在一定的条件下可以推广到离散系统。又由于离散系统没有唯一的典型结构形式,离散系统的稳态误差需要针对不同形式的离散系统来求取。 书上主要介绍了利用z 变换的终值定理方法,求取误差采样的离散系统在采样瞬时的终值误差。 设单位反馈误差采样系统如图4.12所示。 图4.12 单位反馈误差采样反馈系统 系统误差脉冲传递函数为 (4.1) 若离散系统是稳定的,则可用z 变换的终值定理求出采样瞬时的终值误差 (4.2) Φ==+e ()1()()1()E z z R z G z )](1[)()1(lim )()1(lim )(lim )(1111*z G z R z z E z t e e z z t +-=-==∞-→-→∞ →

(4.2)式表明,线性定常离散系统的稳态误差,不但与系统本身的结构和参数有关,而且与输入序列的形式及幅值有关。除此之外,离散系统的稳态误差与采样系统的周期的选取也有关。上式只是计算单位反馈误差采样离散系统的基本公式,当开环脉冲传递函数G(z)比较复杂时,计算e(∞)仍然有一定的计算量,因此希望把线性定常连续系统中系统型别及静态误差系数的概念推广到线性定常离散系统,以简化稳态误差的计算过程。 在离散系统中,把开环脉冲传递函数G(z)具有z=1的极点数v 作为划分离散系统型别的标准,与连续系统类似地把G(z)中 v=0,1,2,…的系统,称为0型,Ⅰ型和Ⅱ型离散系统等。下面讨论不同类别的离散系统在三种典型输入信号作用下的稳态误差,并建立离散系统静态误差系数的概念。 1.单位阶跃输入时的稳态误差 对于单位阶跃输入r(t)=1(t),其z 变换函数为 (4.3) 得单位阶跃输入响应的稳态误差 (4.4) 上式代表离散系统在采样瞬时的终值位置误差。式中 (4.5) 称为静态位置误差系数。若G(z)没有z=1的极点,则Kp ≠∞,从而e(∞)≠0;若G(z)有一个或一个以上z=1的极点,则Kp= ∞,从1 11)(--=z z R →∞==+1p 11()lim 1()z e G z K →=+p 1lim[1()]z K G z

实验四 线性定常系统的稳态误差

实验四 线性定常系统的稳态误差 一、实验目的 1.通过本实验,理解系统的跟踪误差与其结构、参数与输入信号的形式、幅值大小之间的关系; 2.研究系统的开环增益K 对稳态误差的影响。 二、实验原理 控制系统的方框图如图4-1所示。其中G(S)为系统前向通道的传递函数,H(S)为其反馈通道的传递函数。 图4-1 控制系统的方框图 由图4-1求得 )() ()(11 )(S R S H S G S E += (4-1) 由上式可知,系统的误差E(S)不仅与其结构和参数有关,而且也与输入信号R(S)的形式和大小有关。如果系统稳定,且误差的终值存在,则可用下列的终值定理求取系统的稳态误差: )(lim 0 S SE e s ss →= (4-2) 本实验就是研究系统的稳态误差与上述因素间的关系。下面叙述0型、I 型、II 型系统对三种不同输入信号所产生的稳态误差ss e 。 1.0型二阶系统 设0型二阶系统的方框图如图4-2所示。根据式(4-2),可以计算出该系统对阶跃和斜坡输入时的稳态误差: 图4-2 0型二阶系统的方框图 ● 单位阶跃输入(s S R 1 )(= ) 3 1 12)1.01)(2.01()1.01)(2.01(lim 0=?+++++? =→S S S S S S e S ss (4-3) 输入输出响应曲线如图4-1所示,仿真图如图4-2所示。

图4-3 0型系统阶跃响应稳态误差响应曲线 图4-4 Matlab 仿真曲线 由 Matlab 仿真结果来看,输入为单位阶跃信号时,输出稳态误差近似为,符合 4-3式计算的理论值。 ● 单位斜坡输入(2 1)(s S R = ) ∞=?+++++?=→201 2)1.01)(2.01()1.01)(2.01(lim S S S S S S e S ss (4-4) 输入输出响应曲线如图4-3所示,仿真图如图4-4所示。 图4-5 0型系统斜坡响应稳态误差响应曲线 图4-6 Matlab 仿真曲线 由 Matlab 仿真结果来看,输入为单位阶跃信号时,输出稳态误差趋于无穷大,符合4-5式理论计算值。 上述结果表明0型系统只能跟踪阶跃信号, 0型系统跟踪阶跃输入有稳态误差,计算公式为: P ss K R e += 10 (4-5) 其中)()(lim 0 S S H S G K p →?,R 0为阶跃信号的幅值。 2.I 型二阶系统 设图4-4为I 型二阶系统的方框图。

基于Simulink控制系统的稳态误差分析

基于Simulink 控制系统的稳态误差分析 一、实验目的 1.掌握使用Simulink 仿真环境进行控制系统稳态误差分析的方法。 2.了解稳态误差分析的前提条件是系统处于稳定状态。 3.研究系统在不同典型输入信号作用下,稳态误差的变化。 4.分析系统在扰动输入作用下的稳态误差。 5.分析系统型次及开环增益对稳态误差的影响。 二、实验设备和仪器 1.计算机 2. MATLAB 软件 三、实验原理 1.误差的意义: a) 给定信号作用下的稳 态误差表征系统输出跟随输入信号的能力。 b) 系统经常处于各种扰动作用下。如:负载力矩的变化,电源电压和频率的波动,环境温度的变化等。因此系统在扰动作用下的稳态误差数值,反映了系统的抗干扰能力。 注意:系统只有在稳定的前提下,才能对稳态误差进行分析。 定义式法求稳态误差: 2. 给定信号作用下的误差 E 扰动信号作用下的误差()d E s R(s)是给定输入信号(简称给定信号) ;D(s)是扰动输入信号(简称扰动信号);()()G s H s 是开环传递函数。 3. 静态误差系数法(只能用于求给定信号作用下误差) 这种简便的求解给定信号稳态误差 ssr e 的方法叫做静态误差系数法,首先给出系统在不同输入信号下的误差系数的定义: 当()0R R s s =时,定义静态位置误差 系数为:0 lim ()()p s K G s H s →= 当()0 2v R s s = 时,定义静态速度误差系数为:0lim ()()v s K s G s H s →=g 当()0 3a R s s =时,定义静态加速度误差系数为:20lim ( )()a s K s G s H s →=g 表5-1 给定信号作用下系统稳态误差e R

稳态误差的总结分析和例解

稳态误差的总结分析和例解 控制系统稳态误差是系统控制准确度的一种度量,通常称为稳态性能。只有当系统稳定时,研究稳态误差才有意义,对不能稳定的系统,根本不存在研究稳态误差的可能性。 一、 误差与稳态误差 1、输入端的定义: 对图一,比较输出得到: E(s)=R(s)-H(s)*Y(s) 称E(s)为误差信号,简称误差 图一 2、输出端的定义: 将图一转换为图二,便可定义输出端的稳态误差,并且与输入端的稳态误差有如下关系: E ’(s)=E(s)/H(s) 输入端定义法可测量实现,输出端定义法常无法测量,因此只有数学意义,以后在不做特别说明时,系统误差总是指输入端定义误差。 图二 再有误差的时域表达式: 也有: e(t)= [E(S)]= [Φe (s)*R(S)] 其中Φe (s)是误差传递函数,定义为: Φe (s)= = 根据拉氏变换终值定理,由上式求出稳态误差:(T j s+1) e ss (∞)= = 二、 系统类型 一般的,定义一个分子为m 阶次,分母为n 阶次的开环传递函数为: []1()()()() ts ss e t L E s e t e t -==+

G(S)H(S)= K为开环增益,ν表示系统类型数,ν=0,表示0型系统;ν=1表示Ⅰ型系统;当ν大于等于2时,除了符合系统外,想使得系统稳定相当困难。 四、阶跃输入下的e ss (∞)与静态位置误差系数Kp r(t)=R*1(t),则有:e ss (∞)= ν ν 用Kp表示静态位置误差系数:e ss (∞)==其中: Kp= 且有一般式子:Kp= ν∞ν 五、斜坡输入下的e ss (∞)与静态速度误差系数Kv r(t)=Rt,则有:e ss (∞)= ν 用Kv表示静态速度误差系数:e ss (∞)==其中: Kv= 六、加速度输入下的e ss (∞)与静态加速度误差系数Ka r(t)=Rt2/2,则有: e ss (∞)= ν、 用Kv表示静态速度误差系数: e ss (∞)== 其中: Kv= 且有: Ka= 、 七、扰动状况下的稳态误差 系统的模型如图三所示对扰动状况下的稳态误差仍然有输入端与输出端的两种定义: 图三

控制系统的稳态误差

3.5 控制系统的稳态误差 3.5 控制系统的稳态误差 描述控制系统的微分方程 (3.73 ) 式(3.73)是一个高阶微分方程,方程的解可以表示为 (3.74) 式中,前两项是方程的通解,而是方程的一个特解。随时间的增大,方程 的通解逐渐减小,方程的解y(t)越来越接近特解。当时,方程的通 解趋于零 这时系统进入了稳定状态。特解是由输入量确定的,反映了控制的目标和要 求。系统进入稳态后,能否达到预期的控制目的,能否满足必要的控制精度,要解决这个问题,就必须对系统的稳态特性进行分析。稳态特性的性能指标就是稳态误差。 3.5.1 稳态误差 控制系统的误差可以表示为 (3.75) 式中是被控制变量的期望值,y(t)是被控制变量的实际值,即控制系统的 输出。 稳定的控制系统,在输入变量的作用下,动态过程结束后,进入稳定状态的误差,称为稳态误差

图3.23 单位反馈和非单位反馈系统 (a)单位反馈系统;(b)非单位反馈系统 在控制工程中,常用控制系统的偏差信号来表示误差。对图 3.23(a)所示的单位反馈系统,误差与偏差的含义是相同的,即 (3.76) 式中r(t)为系统的给定值,也就是输出y(t)的期望值。单位反馈系统的稳态误差为: (3.77) 对图3.23(b)所示的非单位反馈系统,因为反馈变量f(t)并不与输出变量y(t)完全相同,所以给定值与反馈变量之差,即偏差并不是(3.75)式意义上的误差。但如果反馈环节H(s)不含有积分环节,在时,由于暂态项的消失,反馈 量与输出量之间就只差一个比例系数我们认为反馈量可以代表输出 量,于是,定义非单位反馈系统的误差为 (3.78) 式中r(t)是非单位反馈系统的给定值,f(t)是反馈信号。根据图3.23(b)非单位反馈系统各环节间信号的关系,可得 (3.79)

稳态误差分析

3-7 稳态误差分析 控制系统在输入信号作用下,其输出信号中将含有两个分量。其中一个分量是暂态分量。它反映控制系统的动态性能,是控制系统的重要特性之一。对于稳定的系统,暂态分量随着时间的增长而逐渐消失,最终将趋于零。另一个分量称为稳态分量。它反映控制系统跟踪输入信号或抑制扰动信号的能力和准确度,它是控制系统的另一个重要特性。对于稳定的系统来说,稳态性能的优劣一般是根据系统反应某些典型输入信号的稳态误差来评价的。因此,本节着重建立有关稳态误差的概念。 一、误差和稳态误差 设)(s C r 是控制系统输出(被控量)的希望值,)(s C 是控制系统的实际输出值。我们定义系统输出的希望值与输出的实际值之差为控制系统的误差,记作)(s E ,即 )()()(s C s C s E r -= (3-40) 对于如图3-36(a)所示单位反馈系统,输出的希望值就是系统的输入信号。因此,系统的误差为 )()()(s C s R s E -= (3-40a ) 可见, 单位反馈系统的误差就是偏差)(s ε。 但对于如 图 3-36(b)所示的非单位反馈系统,输出的希望值与输入信号之间存在一个给定的函数关系。这是因为,系统反馈传递函数)(s H ,通常是系统输出量反馈到输入端的测量变换关系。因此,在一般情况下,系统输出的希望值与输入之间的关 系为) ()()(s H s R s C r =,所以系统误差为 )()( )(1)(s C s R s H s E -= (3-40b) 显然,在非单位反馈系统中,误差与偏差是有差别的。由图 3-36(b)和式(3-40b)不难看出,它们之间存在如下简单关系 )() (1)(s s H s E ε= (3-40c) 所谓稳态误差,是指系统在趋于稳态后的输出希望值 )(∞r c 和实际输出的稳态值)(∞c 之差,即 )()(∞-∞=c c e r ss 下面举二个例子说明稳态误差究竟是如何产生的?它与 哪些因素有关? 1.随动系统如图1-7所示随动系统,要求输出角c θ以一定精度跟踪输入角r θ,显然这时输出的希望值就是系统的输入角度。故这个随动系统的偏差就是系统的误差。 若系统在平衡状态下,c r θθ=,即0=-=c r e θθθ,0=e u ,电机不转。假定在0=t 时,输

三、扰动稳态误差终值的计算

3.6.7、扰动稳态误差终值的计算 根据终值定理及式(3-81)、式(3-82),式(3-84)、式(3-86), 扰动稳态误差的终值e sn 可由 下式计算: )()(lim )(lim )(lim 0 s s sN s sE t e e en s n s sn t sn φ-===→→∞ → ∏∏∏∏=--=++==→+++++-=m j j v n i i v m l j j q i i v s s K s s s s s K s sN 1 1 1 1 20 ) 1()1() 1()1() (lim τ ττ τμμ (3-105) 比较式(3-105)及(3-87)可见,)(s en φ的分母多项式与)(s ex φ一样,但)(s en φ的分子多项 式中只有v s 项,不象)(s ex φ的分子多项式中有μ +v s 项。它说明只是控制环节传递函数) (1s G 中串联积分环节的数目v 对系统扰动稳态误差有决定性影响。 一 阶跃扰动作用下的稳态误差 在单位阶跃扰动作用下 n t N s s (),()== 11 这时扰动稳态误差终值为 )(lim 0 s e en s sn φ→= (3-106) 二 斜坡扰动作用下的稳态误差 在单位斜坡扰动作用下 n t t N s s (),()==12 这时扰动稳态误差终值为 e s s sn s n =→lim ()01φ (3-107) 三 加速度扰动作用下的稳态误差 在单位加速度扰动作用下 n t t ()=122 N s s ()=13 这时扰动稳态误差终值为 e s s sn s n =→lim ()0 2 1 φ (3-108) 按式(3-105)、(3-106)、(3-107)及(3-108)计算求得的各型系统在不同扰动作用下的稳态误差终值汇总列于表3-2中。

系统稳态误差分析

苏州市职业大学实训报告 院系 电子信息工程学院 班级 姓名 学号 实训名称 系统稳态误差分析 实训日期 一、实训目的 1、掌握终值定理求稳态误差的方法; 2、在不同输入信号作用下,观察稳态误差与系统结构参数、型别的关系; 3、比较干扰在不同的作用点所引起的稳态误差。 二、实训内容 1、给定信号输入作用下,系统的稳态误差分析。 已知控制系统的动态结构图如下所示,其中112()21G s K s =?+,24()0.41 G s s =+,反馈通道传递函数()1H s =。 (1)建立上述控制系统的仿真动态结构图;令开环增益为K1=1,分别对系统输入阶跃信号和斜坡信号,用示波器观察系统的响应曲线和误差响应曲线;并分别计算不同输入信号下的稳态误差值 ; (2)改变系统增益K1(自行选取增益值,如K1=10),用示波器观察系统的稳态误差曲线,计算稳态值,分析开环增益变化对稳态误差的影响。 如果前向通道中再串联一个积分环节,(增益值K1值同第三步),用示波器观察系统的响应曲线和误差响应曲线,计算稳态值,分析开环增益变化对稳态误差的影响。 建立如下图1所示的仿真结构图,令开环增益K1=1,输入单位阶跃信号,运行得到单位阶跃响应曲线和单位阶跃误差响应曲线(图2): 图1 单位阶跃信号作用下,K1=1的系统结构图 第 1 页 共 8 页 指导教师签名

苏州市职业大学实训报告 院系电子信息工程学院班级姓名学号 实训名称系统稳态误差分析实训日期 图2 单位阶跃信号作用下,K1=1的仿真曲线 建立如下图3所示的仿真结构图,令开环增益K1=1,输入单位斜坡信号,运行得到单位斜坡响应曲线和单位斜坡误差响应曲线(图4): 图3 单位斜坡信号作用下,K1=1的系统结构图 图4 单位斜坡信号作用下,K1=1的仿真曲线

自动控制系统的稳定性和稳态误差分析

实验三 自动控制系统的稳定性与稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构与稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5)()(0.5)(0.7)(3) s G s s s s s +=+++,用MATLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2、5 p=[0,-0、5,-0、7,-3] k=0、2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下: Transfer function: 0、2 s + 0、5 --------------------------------------- s^4 + 4、2 s^3 + 3、95 s^2 + 1、25 s + 0、5 s^4 + 4、2 s^3 + 3、95 s^2 + 1、25 s + 0、5就是系统的特征多项式,接着输入如下

MATLAB程序代码: den=[1,4、2,3、95,1、25,0、5] p=roots(den) 运行结果如下: p = -3、0058 -1、0000 -0、0971 + 0、3961i -0、0971 - 0、3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都就是负的实部,因此闭环系统就是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2、5 p=[0,-0、5,-0、7,-3] k=0、2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2、5000 p = -3、0058 -1、0000 -0、0971 + 0、3961i -0、0971 - 0、3961i k =

控制系统的稳态误差

控制系统的稳态误差 控制系统的稳态误差 描述控制系统的微分方程 式()是一个高阶微分方程,方程的解可以表示为 式中,前两项是方程的通解,而是方程的一个特解。随时间的增大,方程的通解逐渐减小,方程的解y(t)越来越接近特解。当时,方程的通解 趋于零 这时系统进入了稳定状态。特解是由输入量确定的,反映了控制的目标和要 求。系统进入稳态后,能否达到预期的控制目的,能否满足必要的控制精度,要解决这个问题,就必须对系统的稳态特性进行分析。稳态特性的性能指标就是稳态误差。 3.5.1 稳态误差 控制系统的误差可以表示为 式中是被控制变量的期望值,y(t)是被控制变量的实际值,即控制系统的输出。 稳定的控制系统,在输入变量的作用下,动态过程结束后,进入稳定状态的误差,称为稳态误差

图单位反馈和非单位反馈系统 (a)单位反馈系统;(b)非单位反馈系统 在控制工程中,常用控制系统的偏差信号来表示误差。对图(a)所示的单位反馈系统,误差与偏差的含义是相同的,即 式中r(t)为系统的给定值,也就是输出y(t)的期望值。单位反馈系统的稳态误差为: 对图(b)所示的非单位反馈系统,因为反馈变量f(t)并不与输出变量y(t)完全相同,所以给定值与反馈变量之差,即偏差并不是()式意义上的误差。但如果反馈环 节H(s)不含有积分环节,在时,由于暂态项的消失,反馈量与输出量之间就只差一个比例系数我们认为反馈量可以代表输出量,于是,定义非单位反馈系统的误差为 式中r(t)是非单位反馈系统的给定值,f(t)是反馈信号。根据图(b)非单位反馈系统各环节间信号的关系,可得

如果把单位反馈系统看成是一般反馈系统的特殊情况,则()式就被定义为控制系统误差的拉普拉斯变换表达式。根据拉普拉斯变换的终值定理得 即 式()表明,控制系统的稳态误差不仅仅是由系统本身的特性决定的,还与输入函数有关。同一个系统在输入信号不同时,可能有不同的稳态误差。也就是说控制系统对不同的输入信号,控制精度是不同的。 3.5.2 积分环节对稳态误差的影响 式()中的开环传递函数可以表示为 式中K表示系统的开环放大系数。N表示开环传递函数所包含的积分环节数。在分析控制系统的稳态误差时,我们根据系统开环传递函数所含的积分环节数来对系统进行分类。若N=0,即控制系统开环传递函数不含积分环节,称为0型系统。若N=I,则称为I型系统。N= Ⅱ,称为Ⅱ型系统。现在,我们来讨论不同类型的控制系统在典型输入信号作用下的稳态误差。 1. 单位阶跃函数输入下的稳态误差 单位阶跃函数输入下系统的稳态误差为

相关文档
相关文档 最新文档