文档库 最新最全的文档下载
当前位置:文档库 › 国产焊接机器人的应用与案例

国产焊接机器人的应用与案例

国产焊接机器人的应用与案例
国产焊接机器人的应用与案例

一、前景:

1.1 低成本竞争的加剧,环境法规的日趋严格,以及从业人员生产技能的降低,致使制造商承受着越来越大的压力。此外,制造商还面临提高生产力、产品质量及安全水平的挑战。在这种形式下,采取可持续的制造解决方案是一条成本效益显著的途径,可实现经济效益、环境效益乃至工厂总体绩效的全面改善。由于工业自动化的全面发展和科学技术的不断提高,对工作效率的提高迫在眉睫。单纯的手工劳作以满足不了工业自动化的要求,因此,必须利用先进设备生产自动化机械以取代人的劳动,满足工业自动化的需求。其中工业机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。在制造行业中,机械手越来越广泛的得到应用,它可用于零部件的组装,加工工件的焊接、搬运、装卸,尤其是在工作环境高温辐射恶劣焊接使用更为普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。把焊机设备和机械手共同构成一个柔性加工系统或柔性制造单元,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。

1.2焊接机械手应用及发展现状和趋势

目前,我国大多数工厂的生产线上工件的焊接成型仍由人工完成,其劳动强度大、生产效率低,而且具有一定的危

险性,已经满足不了生产自动化的发展趋势。为了提高工作效率,降低成本,并使生产线发展成为柔性制造系统,适应现代机械行业自动化生产的要求,针对具体生产工艺,结合加工工件的实际结构,利用机械手技术,设计用一台焊接机械手代替人工工作,以提高劳动生产率。本机械手主要与焊接辅机组合最终形成焊接生产工作站,实现加工过程的自动化和无人化。目前,国内外各种机械手和机械手的研究成为科研的热点,其研究的现状和大体趋势如下:

a.机械结构向模块化、可重构化发展。

b.工业机械手控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化、智能化;器件集成度提高,结构小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性,而且维修方便。

c.支持各种焊接工艺(氩弧焊接,CO2焊接等)。

1.支持示教编辑,编程更方便。

2.XYZU动作及其各气动部件逻辑关系清晰明了,轴及IO

可独立或并联控制(支持直线、圆弧插补功能)。

3:完善的工艺设置参数及指令集,系统运行更平滑顺畅。本系统支持直线,圆弧,螺旋, 三轴空间圆弧插补,四轴空间圆弧插补,支持三轴圆弧跟随U轴,摆焊。2路0-10V电压信号输出。8路0-10v电压输入。跟多电压输出要求.可以扩展。

4:控制系统经过严格多项可靠性测试,如EFT(电快速瞬变

/脉冲群)、EMC(电磁兼容性)、ESD(静电放电测试)、高低温、震动、跌落等。

二、成本及收益:

以现有客户实际应用为例:

a:目前焊接工人平均5000元/月计算,一人操作1台焊机,3班制:人工一年费用:5000元×9(人)×12(月)=540000元。

b:采用焊接机械手后一人台机械手工作效率相当于3-5名焊接熟手甚至更多,且普通人员一周即可熟悉使用焊接机械手了,不需专业人员。采用机械手节省费用:(5000*9*12)-(5000*3*12)=360000元

C:半年即可收回机械手的成本投入,又解决用工难,人员流动性大的问题。

三、广州沃玛四轴焊接机械手

主要技术参数:

前端为机械手焊接辅机:将待焊接的工件水平摆放在辅机上,通过尾座压紧工件,工件焊缝起点需要放置在机械手模拟示教的路径原点上(类似数控加工对原点一个原理)。此方案可以实现环缝、直缝、复杂空间路径氩弧、CO2焊接工艺。做复杂路径焊接时,只需要让机械手在工件的需焊接位置模拟行走一遍,就可以自动生成工件的加工路径文件,文件还可以用U盘进行导出。

1、采用进口伺服电机作驱动。传动丝杆导轨、夹具气动元

件均用进口产品,以保证机械手的低故障率。

2、焊接机械手辅助机械也是采用伺服定位控制,自动进行

工件翻转变位等。

3、采用落地式安装,大大提高了机器的灵活性。

3.2机械手核心控制系统:

用户操作系统屏(界面自主开发)

我司自主研发机械手核心运动控制系统

系统以高速高精度指标为要求,分析系统的传动链动态特征,对影响这些动态特性的参数进行相关性及敏感性分析,采用多目标优化算法优化结构及尺寸参数。用有限元思想建立交流伺服电机-机器人弹性部件系统的动态耦合模型,并根据该模型计算、分析系统的动态响应。采用有效的轨迹规划算法和振动抑制算法来合理的提高机器人的速度。采用IPC+控制卡开放式控制结构,基于windows的友好人机界面接口,方便易用的编程示教系统,使机器人的各项性能指标达到国际先进水平。

机器特点:

1、采用示教型编程方式,只要用手动按焊接轨迹走一次,系统自动记录焊接轨迹。大大节省编程时间,学习简单。

2、控制系统采用日本专用运动控制芯片技术可实现4-8轴联动,高速运行时稳定性高。

3、执行部分采用交流伺服电机或,实现高精度、高速运行、稳定性高等特点。

4、传动部分采用精密滚珠丝杆提高了重复定位精度和使用寿命。

5、导轨采用进口直线导轨,提高重复定位精度和使用寿命和降低机器噪音。

6、安装方式采用落地式安装,大大提高了机器的灵活性。

7、机器操作简单稳定性高,只需普通工人就能够操作,无需专业焊工。

8、该焊接机械手的价格只是进口机械手的30%大大降低的使用成本,是真正用的起的机械手。

二、系统基本参数

1、示教、手动编程;点动功能;支持步进驱动器或伺服驱动器

2、示教速度:高速、中速、低速、微动,24路输入端口,12路输出端口

3、系统默认128M加工文件内存;100个调用子函数,可根据自己的要求自行设定加工名,支持U盘导入\导出加工文件。

4、空移速度,加工速度,加速度,回原点速度,示教速度,回原点各轴顺序\方向均设定。

5、直线插补、圆弧插补、螺旋插补、空间圆弧、椭圆插补、椭圆螺旋插补、电子凸轮、电子齿轮、同步跟踪、运动叠加、虚拟轴、硬件位置锁存、位置比较输出、连续插补、速度前瞻、运动暂停、动态变速、动态修改目标位置、动态修改坐标等。

四.机械手的操作及作业流程说明: 指令说明:

五.总结实现焊接机械手自动化生产的理由:

1.机械手可以降低运营成本

2.机械手可以提升产品质量与一致性

3.机械手可以改善员工工作质量

4.机械手可以扩大产量

5.机械手可以增强生产柔性

6.机械手可以减少原料浪费,提高成品率

7.机械手对于满足安全法规,改善健康安全条件很重要

8.机械手可以减少人员流动,缓解加工压力

9.机械手可以降低投资成本(存货、在制品成本)

10.机械手可以节约宝贵的生产空间

点焊机器人技术标准

点焊机器人技术要求 1 范围 本标准规定了SRD165B点焊机器人的产品分类,要求,试验方法,检验规则,侧标志、使用说明书、包装、运输及贮存。 本标准适用于SRD165B点焊机器人(以下简称机器人)。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 191-2008 包装储运图示标志 GB/T 2423.1-2008 电工电子产品环境试验第2部分:试验方法 A:低温 GB/T 2423.2-2008 电工电子产品环境试验第2部分:试验方法 B:高温 GB/T 2423.3-2006 电工电子产品环境试验第2部分:试验方法试验Cab:恒定湿热试验 GB/T 2423.102-2008 电工电子产品环境试验第2部分:试验方法试验:温度(低温、高温)/低 气压/振动(正弦)综合 GB 2894 安全标志及其使用导则 GB 4208 外壳防护等级(IP代码) GB/T 4768-2008 防霉包装 GB/T 4879-1999 防锈包装 GB/T 5048-1999 防潮包装 GB 5226.1 机械安全机械电气设备第1部分:通用技术条件 GB/T 9969-2008 工业产品使用说明书总则 GB 11291 工业机器人安全规范 GB/T 12642-2001 工业机器人性能规范及其试验方法 GB/T 12644-2001 工业机器人特性表示 GB/T 13306-1991 标牌 GB/T 14048.1-2006 低压开关设备和控制设备第1部分:总则 GB/T 19397-2003 工业机器人电磁兼容性实验方法和性能评估准则指南 3 产品分类

工业机器人在汽车焊接中的应用

工业机器人在汽车焊接中的应用焊接技术作为制造业的传统基础工艺与技术,在工业中应用的历史并不长,但它的发展却是非常迅速的。焊接机器人是在工业机器人基础上发展起来的先进焊接设备,是从事焊接(包括切割与喷涂)的工业机器人,主要用于工业自动化领域,其广泛应用于汽车及其零部件制造、摩托车、工程机械等行业,在汽车生产的冲压、焊装、涂装、总装四大生产工艺过程都有广泛应用,其中应用最多的以弧焊、点焊为主。 典型的焊接机器人系统有如下几种形式:焊接机器人工作站、焊接机器人生产线、焊接专机。焊接机器人系统一般适合中、小批量生产,被焊工件的焊缝可以短而多,形状较复杂。柔性焊接线特别适合产品品种多,每批数量又很少的情况下采用。焊接专机适合批量大、改型慢的产品,对焊缝数量较少、较长,形状规矩的工件也较为适用,至于选用哪种自动化焊接生产形式,需根据企业的实际情况而定。 在汽车领域的典型应用 纵观整个汽车工业的焊接现状,不难分析出汽车工业的焊接发展趋势为:发展自动化柔性生产系统。而工业机器人,因集自动化生产和灵活性生产特点于一身,故轿车生产近年来大规模、迅速地使用了机器人。在焊接方面,主要使用的是点焊机器人和弧焊机器人。特别是近几年,国内的汽车生产企业非常重视焊接的自动化。如一汽引进的捷达车身焊装车间的13条生产线的自动化率达80%以上,各条线都由计算机(可编程控制器PLC-3)控制,自动完成工件的传送和焊接。焊接由R30型极坐标式机器人和G60肘节式机器人共61台进行,机器人驱动由微机控制,数字和文字显示,磁带记录仪输入和输出程序。机器人的动作采用点到点的序步轨迹,具有很高的焊接自动化水平,既改善了工作条件,提高了产品质量和生产率,又降低材料消耗。 类似的高水平的生产线,在上海、武汉等地都有引进。但这些毕竟还远不能适应我国民族汽车工业迅速发展的需要,我们必须坚持技术创新,大力加速发展高效节能的焊接新材料、新工艺和新设备,发展应用机器人技术,发展轻便灵巧的智能设备,建立高效经济的焊接自动化系统,必须用计算机及信息技术改造传统产业,提高档次。 新松机器人深度服务汽车行业大市场 作为国内唯一的“机器人国家工程研究中心”,新松机器人自动化股份有限公司从事机器人及自动化前沿技术的研制、开发与应用。其系列机器人应用主要涵盖点焊、弧焊、搬运、装配、涂胶、喷涂、浇铸、注塑、水切割等各种自动化作业,广泛应用于汽车及其零部件制造、摩托车、工程机械、冶金、电子装配、物流、烟草、五金交电、军事等行业。目前,机器人系列技术及应用、自动化成套技术装备、仓储物流自动化技术装备已形成新松公司三大主导产业领域,旨在为用户提供卓越的技术和服务。迄今已累计向市场推出了800多台机器人系统,是市场上极具竞争力的“机器人及自动化技术和服务”解决方案提供商,也是国内进行机器人研究开发与产业化应用的主导力量。 新松公司的机器人产业应用主要是承担各类汽车车身自动冲压线、白车身焊装线、汽车总装线、发动机装配线、工装夹具及输送系统的设计制造;焊装线钢结构、管网工程的设计制造;焊装线工艺设计、平面布置、机器人选型、机器人用自动焊钳设计与选型、非标机

焊接机器人应用现状及发展趋势

焊接机器人应用现状及发展趋势 据不完全统计,全世界在役的工业机器人中大约有将近一半的工业机器人用于各种形式的焊接加工领域,焊接机器人应用中最普遍的主要有两种方式,即点焊和电弧焊。图4所示是这两种焊接机器人在工业机器人中所占的大致比例。我们所说的焊接机器人其实就是在焊接生产领域代替焊工从事焊接任务的工业机器人。这些焊接机器人中有的是为某种焊接方式专门设计的,而大多数的焊接机器人其实就是通用的工业机器人装上某种焊接工具而构成的。在多任务环境中,一台机器人甚至可以完成包括焊接在内的抓物、搬运、安装、焊接、卸料等多种任务,机器人可以根据程序要求和任务性质,自动更换机器人手腕上的工具,完成相应的任务。因此,从某种意义上来说,工业机器人的发展历史就是焊接机器人的发展历史。 众所周知,焊接加工一方面要求焊工要有熟练的操作技能、丰富的实践经验、稳定的焊接水平;另一方面,焊接又是一种劳动条件差、烟尘多、热辐射大、危险性高的工作。工业机器人的出现使人们自然而然首先想到用它代替人的手工焊接,减轻焊工的劳动强度,同时也可以保证焊接质量和提高焊接效率。 然而,焊接又与其它工业加工过程不一样,比如,电弧焊过程中,被焊工件由于局部加热熔化和冷却产生变形,焊缝的轨迹会因此而发生变化。手工焊时有经验的焊工可以根据眼睛所观察到的实际焊缝位置适时地调整焊枪的位置、姿态和行走的速度,以适应焊缝轨迹的变化。然而机器人要适应这种变化,必须首先像人一样要“看”到这种变化,然后采取相应的措施调整焊枪的位置和状态,实现对焊缝的实时跟踪。由于电弧焊接过程中有强烈弧光、电弧噪音、烟尘、熔滴过渡不稳定引起的焊丝短路、大电流强磁场等复杂的环境因素的存在,机器人要检测和识别焊缝所需要的信号特征的提取并不像工业制造中其它加工过程的检测那么容易,因此,焊接机器人的应用并不是一开始就用于电弧焊过程的。 实际上,工业机器人在焊接领域的应用最早是从汽车装配生产线上的电阻点焊开始的。原因在于电阻点焊的过程相对比较简单,控制方便,且

焊接机器人的行业中广泛应用

焊接机器人的行业中广泛应用 焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它主要包括机器人和焊接设备两部分。其中,机器人由机器人本体和控制柜(硬件及软件)组成;而焊接装备,以弧焊及点焊为例,则由焊接电源(包括其控制系统)、送丝机(弧焊)、焊枪(钳)等部分组成。对于智能机器人,还应配有传感系统,如激光或摄像传感器及其控制装置等。 1、点焊机器人的特点 由于采用了一体化焊钳,焊接变压器装在焊钳后面,所以点焊机器人的变压器必须尽量小型化。对于容量较小的变压器可以用50Hz工频交流,而对于容量较大的变压器,工业上已经开始采用逆变技术把50Hz工频交流变为600~700Hz交流,使变压器的体积减少、减轻。变压后可以直接用600~700Hz交流电焊接,也可以再进行二次整流,用直流电焊接,焊接参数由定时器调节。目前,新型定时器已经微机化,因此机器人控制柜可以直接控制定时器,无需另配接口。点焊机器人的焊钳,用电伺服点焊钳,焊钳的张开和闭合由伺服电机驱动,码盘反馈,使焊钳的张开度可以根据实际需要任意选定并预置,而且电极间的压紧力也可以无级调节。 电伺服点焊钳具有如下优点: (1)每个焊点的焊接周期可大幅度降低,因为焊钳的张开程度是由机器人精确控制的,机器人在点与点之间的移动过程,焊钳就可以开始闭合;而焊完一点后,焊钳一边张开,机器人就可以一边位移,不必等机器人到位后,焊钳才闭合或焊钳完全张开后机器人再移动。 (2)焊钳张开度可以根据工件的情况任意调整,只要不发生碰撞或干涉,可尽可能减少张开度,以节省焊钳开度,节省焊钳开合所占的时间。 (3)焊钳闭合加压时,不仅压力大小可以调节,而且在闭合时两电极是轻轻闭合,可减少撞击变形和噪声。 2、弧焊机器人的特点 弧焊机器人多采用气体保护焊方法(MAG、MIG、TIG),通常的晶闸管式、逆变式、波形控制式、脉冲或非脉冲式等的焊接电源都可以装到机器人上作电弧焊。由于机器人控制柜采用数字控制,而焊接电源多为模拟控制,所以需要在焊接电源与控制柜之间加一个接口。 近年来,国外机器人生产厂都有自己特定的配套焊接设备,在这些焊接设备内已经插入相应的接口板,所以弧焊机器人系统中并没有附加接口箱。应该指出的是,在弧焊

焊接机器人基本操作及应用教材指南

一、开设该课程的必要性 焊接机器人在我国以每年以35%以上的增速不断扩展,已经进入了高速发展期。但机器人编程操作方面的应用人才十分缺乏,制约了我国机器人应用技术更大程度的发展,特别是具有焊接专业知识的机器人编程人员更是少又少。此前,机器人操作培训工作属于售后服务范畴,均由企业自行承担,参照操作说明书学习,难以满足企业对高技能人才的需求。因此,在职业技术院校开设机器人技能学习课程非常必要,编制一套适合职业技术教育的焊接机器人教材,使更多的学生有机会学习焊接机器人操作技能,为企业输送高技能的焊接机器人编程人员,以适应机器人应用领域日益的发展需要。 二、课程的性质与任务 1、本课程是职业技术院校焊接专业的一门专业技能课程。它的目标是使学生具备从事相关专业的高素质劳动者和中高级专门人才所必需的基本知识和基本技能;并为提高学生的全面素质、增强适应职业变化的能力和继续学习的能力打下良好的基础。 2、教学目的:通过学习,要求掌握两种技能: A、机器人操作技能。 B、机器人焊接技能。 掌握焊接机器人应知、应会的理论和技能学习内容,为企业培养合格的焊接机器人编程操作人员。 3、教学难点:从理论到实际,要经过一个由眼到脑再到手的学习适应过程。另外,由于设备贵重,一般的教学点都存在机器人数量不足情况。此时应合理组织调配,保证每个学生的上机操作时间。机器人焊接工艺的掌握需要进行一定时间的焊接实践才能积累一些经验。 三、教材编写思路 1.以介绍机器人基础知识入手,由浅入深、层层展开。以机器人的基本原理、基本概念切入,消除学生对机器人的神秘感,再进入机器人操作的内容学习。 2.以图文结合的形式,将模拟图、系统图和现场照片相结合,方便学习和领悟。 3.针对焊接机器人操作及应用这一课题方向,选取在市场中占有率较大的松下机器人为范本,以机器人操作技能为主要学习目的,明确教学方向。 4.借鉴焊接机器人最新资料和具有代表性实际案例(附现场照片),使资料更加详实、具体,便于学习过程中开阔视野。举一反三,有助于其他品牌机器人学习, 5.融入基础知识比重,注重突出技能训练,方便学生进一步学习机器人技术。 6.拓展自动化焊接的领域和空间,适应焊接技术的不断发展。 四、编写原则 参照焊接机器人的国际标准,参考焊接机器人的最新资讯。根据我国的机器人应用领域发展需要,结合职业技术类学校的特点和培养方向编撰而成。 教材编排力求简明扼要、通俗易懂,围绕着从认识到熟练操作机器人,能够完成机器人的基本操作为目的,结合弧焊焊机器人操作和应用这两个主题,根据机器人技术的学习特点,配以操作界面图片,图文并茂,易于掌握。教材编写过程中,征询多位行业的权威人士对本教材的意见,几经审稿、数次修改,旨在推进机器人课程在职业技术教育领域的普及,填补专业空白,满足企业和社会发展需要。

结构件的机器人焊接工艺分析2013.08.29..

结构件的机器人焊接工艺分析 张正王生龙 (中安重工自动化装备公司) [摘要]:本文以高倍聚光光伏发电自动跟踪系统的主要部件模组支撑架及主传动轴(扭管组合)为例,了解机器人焊接工作站系统,焊接工艺特点及各 工序时序图(Time Chart),利用反变形的统计分析法,以保证产品的精 度要求。 [关键词]:钢结构焊接变形机器人时序图 钢结构普遍采用焊接,金属焊接时在局部加热、熔化过程中,加热区的金属与周边的母材温度相差很大,产生焊接过程中的瞬时应力。冷却至原始温度后,整个接头区焊缝及近缝区的拉应力区与母材在压应力区数值达到平衡,这就产生了结构本身的焊接残余应力。此时,在焊接应力的作用下钢结构件发生变形,使焊后工件与原设计不符,需进行施力或加热校正方可达设计要求。为提高生产效率,就要从实际中寻找规律,找到防止和纠正变形的方法。 一、产品结构及特点 1.1模组支架: 如图1所示,模组支撑架由长度分别为1250mm和2070mm的10#轻型槽钢及40mm×80mm×3mm的矩形管组合焊接而成,材质均为Q253A。其特点为焊后两槽钢侧面须在同一平面上,且两槽钢必须平行,以保证1052.1±0.5mm安装尺寸。但是,焊接完成后2070槽钢易发生焊接应力变形,导致安装装尺寸变小,需火焰加热校正或锤击校正至要求尺寸方可。

1052.1±0.5 1052.1±0.5 图1. 模组支撑架 1.2主传动轴(扭管组合): B D A E C 图2. 主传动轴(扭管组合) (A--法兰板组合件I,B--法兰板组合件II,C--M20×55法兰螺栓,D--扭矩管,E--轴管组合见) 如图2所示为主传动轴组合焊接件,其材质全部为Q235A。主要由两端法兰板组合件、轴管组合件和Φ168×3mm圆管等焊接而成。其特点为组焊零件多,易发生变形,对两法兰板与扭管之间的垂直度要求高;为整个光伏发电光线追踪系统提供各方向的旋转支持,因此对于主传动轴焊接完成后的直线度及轴管与扭

机器人焊接论文

摘要 随着科技的发展和工业需求的增加,焊接技术在工业生产中所占据的分量越来越大,而且焊接技术的优良程度直接影响着零件或产品的质量。国焊接机器人应用虽已具有一定规模,但与我国焊接生产总体需求相差甚远。因此,大力研究并推广焊接机器人技术势在必行。 本设计的重点是运用机械原理和机械制造装备设计方法设计焊接机器人的 实践和方法。本次设计,是在了解焊接机器人在国外现状的基础上,进而掌握焊接机器人部结构和工作原理,并对手臂和腕部进行结构设计。合理布置了液压缸。同时了解机器人机械系统运动学及运动控制学。为工业上焊接机器人的设计提供理论参考、设计参考和数据参考,为工业设计者提供设计理论和设计实践的参考。该机器人具有刚性好,位置精度高、运行平稳的特点。 关键字:焊接机器人液压系统机械机构设计

Abstract With the development of technology and the increase in industrial demand, welding in industrial production occupied more and more weight, and excellent welding technology directly affects the degree of the quality of parts or products.Although the domestic application of welding robot with a certain scale, but falls far short of the overall demand for welding.Therefore, great efforts to study and promote the welding robot technology is imperative. The focus of this design is the use of mechanical theory and design of machinery and equipment design and methods of practice welding robot.The design of the welding robot in understanding the basis of the status quo at home and abroad, and then grasp the welding robot and working principle of the internal structure, and structural design of the arm and wrist.Rational arrangement of the hydraulic cylinder.At the same time understand the robot mechanical system kinematics and motion control study.For the design of industrial welding robots to provide a theoretical reference, reference and data reference design for industrial designers and design practice, design theory reference.The robot has a good rigidity, high precision location, stable characteristics. Keyword:Welding robot;hydraulic system;mechanical structure design

焊接机器人的应用

焊接机器人的应用 焊接机器人技术的发展 我国开发工业机器人晚于美国和日本,起于20世纪70年代,早期是大学和科研院所的自发性的研究。到80年代中期,全国没有一台工业机器人问世。而在国外,工业机器人已经是个非常成熟的工业产品,在汽车行业得到了广泛的应用。鉴于当时的国内外形势,国家“七五”攻关计划将工业机器人的开发列入了计划,对工业机器人进行了攻关,特别是把应用作为考核的重要内容,这样就把机器人技术和用户紧密结合起来,使中国机器人在起步阶段就瞄准了实用化的方向。与此同时于1986年将发展机器人列入国家"863"高科技计划。在国家"863"计划实施五周年之际,邓小平同志提出了"发展高科技,实现产业化"的目标。在国内市场发展的推动下,以及对机器人技术研究的技术储备的基础上,863主题专家组及时对主攻方向进行了调整和延伸,将工业机器人及应用工程作为研究开发重点之一,提出了以应用带动关键技术和基础研究的发展方针,以后又列入国家"八五"和"九五"中。经过十几年的持续努力,在国家的组织和支持下,我国焊接机器人的研究在基础技术、控制技术、关键元器件等方面取得了重大进展,并已进入使用化阶段,形成了点焊、弧焊机器人系列产品,能够实现小批量生产。 焊接机器人的应用状况 我国焊接机器人的应用主要集中在汽车、摩托车、工程机械、铁路机车等几个主要行业。汽车是焊接机器人的最大用户,也是最早用户。早在70年代末,上海电焊机厂与上海电动工具研究所,合作研制的直角坐标机械手,成功地应用于上海牌轿车底盘的焊接。一汽是我国最早引进焊接机器人的企业,1984年起先后从KUKA公司引进了3台点焊机器人,用于当时“红旗牌”轿车的车身焊接和“解放牌”车身顶盖的焊接。1986年成功将焊接机器人应用于前围总成的焊接,并于1988年开发了机器人车身总焊线。80年代末和90年代初,德国大众公司分别与上海和一汽成立合资汽车厂生产轿车,虽然是国外的二手设备,但其焊接自

焊接机器人安全操作规程完整版

焊接机器人安全操作规 程完整版 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

焊接机器人安全操作规程 1 范围: 本规程规定了本公司焊接机器人在实施焊接操作过程中避免人身伤害及财产损失所必须遵循的基本原则。本规程为安全地实施焊接操作提供了依据。本规程均适用于MAG焊接机器人。 2 引用标准: 本规程引用GB9448-1999标准中有关焊接安全方面的相关条文和参照本公司MAG 焊接机器人的使用说明书中的内容。 3 责任: 焊接监督、焊接组长和操作者对焊接的安全实施负有各自的责任。 焊接监督 焊接监督必须对实施焊接的操作工及焊接组长进行必要的安全培训。培训内容包括:设备的安全操作、工艺的安全执行及应急措施等。 焊接监督有责任将焊接可能引起的危害及后果以适当的方式(如:安全培训教育、口头或书面说明、警告标识等)通告给实施焊接的操作工和焊接组长。 焊接监督必须标明允许进行焊接的区域,并建立必要的安全措施。 焊接监督必须明确在每个区域内单独的焊接操作规则。并确保每个有关人员对所涉及的危害有清醒的认识并且了解相应的预防措施。 焊接监督必须保证只使用经过认可合格并能满足产品焊接工艺要求的设备(如机器人本体、控制装置、焊机、送丝机、电源电压、气瓶气压及调节器、仪表和人员的防护装置等)。 焊接组长 必须对设备的安全管理及工艺的安全执行负责,并担负现场管理、技术指导、安全监督和操作协作等。 必须保证: ——各类防护用品得到合理使用; ——在现场适当地配置防火及灭火器材; ——指派火灾、故障排除时的警戒人员; ——所要求的安全作业规程得到遵循。 在不需要火灾警戒人员的场合,焊接组长必须要在焊接工作业完成后做最终检查并组织消除可能存在的火灾隐患。 焊接操作工 焊接操作工必须具备对机器人焊接所要求的基本条件,并懂得将要实施焊接操作时可能产生的危害以及适用于控制危害条件的程序。焊接操作工必须安全地使用涵盖机器人及其辅助的设备,使之不会对生命及财产构成危害。 焊接操作工只有在规定的安全条件得到满足;并得到焊接监督或焊接组长准许的前提下,才可实施焊接操作。在获得准许的条件没有变化时,焊接操作工可以连续地实施焊接操作。 4 安全规范: 人员及工作区域的防护 工作区域的防护 设备:机器人本体、控制装置、焊接电源、焊机、送丝机、气瓶、工作台、防护屏板、工装治具、工具用具、电缆及其他器具必须安放稳妥并保持良好的秩序,使之不会对附近的作业或过往人员构成妨碍。 警告标志:焊接区域和可能出现危险的机器部位必须予以明确标明,并且应有必要的警告标志。

点焊机器人

关于点焊机器人的初步研究 机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,当前对机器人技术的研究十分活跃。工业机器人是面向工业领域的多关节机械手或多自由度的机器人,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。焊接机器人是应用最广泛的一类工业机器人,在各国机器人应用比例中大约占总数的40%~60%。 1.焊接机器人的发展 随着科技水平的进步,人们对焊接质量的要求也越来越高。而人工焊接时,由于受到技术水平、疲劳程度、责任心、生理极限等客观和主观因素的应影响,难以较长时间保持焊接工作的稳定性和一致性。而且,由于焊接恶劣的工作条件,愿意从事手工焊接的人在减少,熟练的技术工人更有短缺的趋势。另一方面,电子技术、计算机技术、数控及机器人技术的发展为焊接过程的自动化提供了有利的条件,并已渗透到焊接的各个领域。 采用机器人焊接是焊接自动化的革命性进步,它突破了传统的焊接刚性自动化方式,开拓了一种柔性自动化新方式。焊接机器人的主要优点如下:(1)易于实现焊接产品质量的稳定和提高,保证其均一性; (2)提高生产率,一天可 24h 连续生产; (3)改善工人劳动条件,可在有害环境下长期工作; (4)降低对工人操作技术难度的要求; (5)缩短产品改型换代的准备周期,减少相应的设备投资; (6)可实现小批量产品焊接自动化; (7)为焊接柔性生产线提供技术基础。 因此,焊接机器人也愈来愈受青睐,点焊机器人便是广泛应用的焊接机器人之一。 2.点焊机器人 2.1点焊机器人概述 点焊机器人【spot welding robot】是用于点焊自动作业的工业机器人。点焊机器人由机器人本体、计算机控制系统、示教盒和点焊焊接系统几部分组成,由于为了适应灵活动作的工作要求,通常电焊机器人选用关节式工业机器人的基本设计,一般具有六个自由度:腰转、大臂转、小臂转、腕转、腕摆及腕捻。其驱动方式有液压驱动和电气驱动两种。其中电气驱动具有保养维修简便、能耗低、速度高、精度高、安全性好等优点,因此应用较为广泛。点焊机器人按照示教程序规定的动作、顺序和参数进行点焊作业,其过程是完全自动化的,并且具有与外部设备通信的接口,可以通过这一接口接受上一级主控与管理计算机的控制命

焊接机器人安全操作规程(完整版)

焊接机器人安全操作规程 1 范围: 本规程规定了本公司焊接机器人在实施焊接操作过程中避免人身伤害及财产损失所必须遵循的基本原则。本规程为安全地实施焊接操作提供了依据。本规程均适用于MAG焊接机器人。 2 引用标准: 本规程引用GB9448-1999标准中有关焊接安全方面的相关条文和参照本公司MAG焊接机器人的使用说明书中的内容。 3 责任: 焊接监督、焊接组长和操作者对焊接的安全实施负有各自的责任。 3.1 焊接监督 3.1.1 焊接监督必须对实施焊接的操作工及焊接组长进行必要的安全培训。培训内容包括:设备的安全操作、工艺的安全执行及应急措施等。 3.1.2 焊接监督有责任将焊接可能引起的危害及后果以适当的方式(如:安全培训教育、口头或书面说明、警告标识等)通告给实施焊接的操作工和焊接组长。 3.1.3 焊接监督必须标明允许进行焊接的区域,并建立必要的安全措施。 3.1.4 焊接监督必须明确在每个区域内单独的焊接操作规则。并确保每个有关人员对所涉及的危害有清醒的认识并且了解相应的预防措施。 3.1.5 焊接监督必须保证只使用经过认可合格并能满足产品焊接工艺要求的设备(如机器人本体、控制装置、焊机、送丝机、电源电压、气瓶气压及调节器、仪表和人员的防护装置等)。 3.2 焊接组长 3.2.1 必须对设备的安全管理及工艺的安全执行负责,并担负现场管理、技术指导、安全监督和操作协作等。 3.2.2 必须保证: ——各类防护用品得到合理使用; ——在现场适当地配置防火及灭火器材; ——指派火灾、故障排除时的警戒人员; ——所要求的安全作业规程得到遵循。 3.2.3 在不需要火灾警戒人员的场合,焊接组长必须要在焊接工作业完成后做最终检查并组织消除可能存在的火灾隐患。 3.3 焊接操作工 3.3.1 焊接操作工必须具备对机器人焊接所要求的基本条件,并懂得将要实施焊接操作时可能产生的危害以及适用于控制危害条件的程序。焊接操作工必须安全地使用涵盖机器人及其辅助的设备,使之不会对生命及财产构成危害。 3.3.2 焊接操作工只有在规定的安全条件得到满足;并得到焊接监督或焊接组长准许的前提下,才可实施焊接操作。在获得准许的条件没有变化时,焊接操作工可以连续地实施焊接操作。 4 安全规范: 4.1 人员及工作区域的防护 4.1.1工作区域的防护 4.1.1.1 设备:机器人本体、控制装置、焊接电源、焊机、送丝机、气瓶、工作台、防护屏板、工装治具、工具用具、电缆及其他器具必须安放稳妥并保持良好的秩序,使之不会对附近的作业或过往人员构成妨碍。 4.1.1.2 警告标志:焊接区域和可能出现危险的机器部位必须予以明确标明,并且应有必要的警告标志。 4.1.1.3 防护屏板:为了防止作业人员或邻近区域的其他人员受到焊接电弧的辐射及焊渣飞溅的伤害,应用不可燃或耐火屏板(或屏罩)加以隔离保护。 4.1.1.4 焊接隔间:在准许操作的地方、焊接场所,必要时可用不可燃屏板或屏罩隔开形成焊接隔间。 4.1.2 人身防护: 4.1.2.1 眼睛及面部防护 4.1.2.1.1 作业人员在观察电弧时,必须使用带有滤光镜的头罩或手持面罩,或佩戴安全镜、护目镜或其他合适的眼镜。如需辅助人员亦应配戴类似的眼保护装置。 4.1.2.1.2 对于大面积观察(诸如培训、展示、演示的焊接操作),视情况可以配备大面积的滤光窗、幕而不必使用单个的面罩、手提罩或护目镜。窗或幕材料必须对观察者提供安全的保护效果、使其

焊接机器人的现状及发展趋势

焊接机器人的现状及发展趋势 2009-03-11 11:03:46| 分类:机器人系统集成相| 标签:|字号大中小订阅 焊接机器人的现状及发展趋势 众所周知,焊接加工一方面要求焊工要有熟练的操作技能、丰富的实践经验、稳定的焊 接水平;另一方面,焊接又是一种劳动条件差、烟尘多、热辐射大、危险性高的工作。工业机 器人的出现使人们自然而然首先想到用它代 替人的手工焊接,减轻焊工的劳动强度,同时 也可以保证焊接质量和提高焊接效率。 然而,焊接又与其它工业加工过程不一样,比如,电弧焊过程中,被焊工件由于局 部加热熔化和冷却产生变形,焊缝的轨迹会因 此而发生变化。手工焊时有经验的焊工可以根 据眼睛所观察到的实际焊缝位置适时地调整 焊枪的位置、姿态和行走的速度,以适应焊缝 轨迹的变化。然而机器人要适应这种变化,必 须首先像人一样要“看”到这种变化,然后采取

相应的措施调整焊枪的位置和状态,实现对焊缝的实时跟踪。由于电弧焊接过程中有强烈弧光、电弧噪音、烟尘、熔滴过渡不稳定引起的焊丝短路、大电流强磁场等复杂的环境因素的存在,机器人要检测和识别焊缝所需要的信号特征的提取并不像工业制造中其它加工过程的检测那么容易,因此,焊接机器人的应用并不是一开始就用于电弧焊过程的。 实际上,工业机器人在焊接领域的应用最早是从汽车装配生产线上的电阻点焊开始的。原因在于电阻点焊的过程相对比较简单,控制方便,且不需要焊缝轨迹跟踪,对机器人的精度和重复精度的控制要求比较低。图5所示为不同形式的机器人点焊钳。点焊机器人在汽车装配生产线上的大量应用大大提高了汽车装配焊接的生产率和焊接质量,同时又具有柔性焊接的特点,即只要改变程序,就可在同一条生产线上对不同的车型进行装配焊接。

我国焊接机器人的应用状况及趋势

我国焊接机器人的应用状况 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 我国开发工业焊接机器人晚于美国和日本,起于20世纪70年代,早期是大学和科研院所的自发性的研究。到80年代中期,全国没有一台工业焊接机器人问世。而在国外,工业焊接机器人已经是个非常成熟的工业产品,在汽车行业得到了广泛的应用。鉴于当时的国内外形势,国家“七五”攻关计划将工业焊接机器人的开发列入了计划,对工业焊接机器人进行了攻关,特别是把应用作为考核的重要内容,这样就把焊接机器人技术和用户紧密结合起来,使中国焊接机器人在起步阶段就瞄准了实用化的方向。 与此同时于1986年将发展焊接机器人列入国家“863”高科技计划。在国家“863”计划实施五周年之际,邓小平同志提出了“发展高科技,实现产业化”的目标。在国内市场发展的推动下,以及对焊接机器人技术研究的技术储备的基础上,863主题专家组及时对主攻方向进行了调整和延伸,将工业焊接机器人及应用工程作为研究开发重点之一,提出了以应用带动关键技术和基础研究的发展方针,以后又列入国家“八五”和“九五”中。经过十几年的持续努力,在国家的组织和支持下,我国焊接机器人的研究在基础技术、控制技术、关键元器件等方面取得了重大进展,并已进入使用化阶段,形成了点焊、弧焊机器人系列产品,能够实现小批量生产。我国焊接机器人的应用主要集中在汽车、摩托车、工程机械、铁路机车等几个主要行业。汽车是焊接机器人的最大用户,也是最早用户。早在70年代末,上海电焊机厂与上海电动工具研究所,合作研制的直角坐标机械手,成功地应用于上海牌轿车底盘的焊接。“一汽”是我国最早引进焊接机器人的企业,1984起先后从KUKA公司引进了3台点焊机器人,用于当时“红旗牌”轿车的车身焊接和“解放牌”车身顶盖的焊接。1986年成功将焊接机器人应用于前围总成的焊接,并于1988年开发了焊接机器人车身总焊线。 80年代末和90年代初,德国大众公司分别与上海和一汽成立合资汽车厂生产轿车,虽然是国外的二手设备,但其焊接自动化程度与装备水平,让我们认识到了与国外的巨大差

FANUC机器人焊接操作中高级操作指令

机器人焊接操作中级培训内容草稿 1.Insert, delete, copy, paste指令在机器人培训教材(中文)P20-23。 2.Replace指令培训教材见本文档后面。 3.INST中包含的指令(例:Arc start/end, wait, Branch instructions( IF/select, JMP/Label等) , timer,registers, weaving, program control 指令(pause, abort),welding I/O, Offset)Wait 等待指令(厚黄皮手册P220) 等待指令用来在一段指定的时间内停止程序的执行,或者在某个条件满足之前阻止程序的执行。当执行该指令时,机器人不执行任何操作。有两种有效的等待指令: ?指定时间的等待指令:在一指定的时间段内停止程序的执行。 ?条件等待指令:直到满足一特定的条件或者一特定的时间段后再开始执行程序。 指定时间的等待指令 Wait (时间) 指定时间的等待指令在一指定的时间段后(几秒钟后)再恢复程序的执行。 例:1. WAIT 2. WAIT 10.5sec 3. WAIT R [1] 条件等待指令 WAIT(条件)(处理办法) 条件等待指令能阻止程序的执行,直到所指定的条件被满足,或者指定的时间已经过去。有如下两种情况: ?若没有指定任何处理操作,则程序一直停止到所指定的条件被满足为止。 ?“Timeout,LBL[i]”语句能使程序在系统配置显示屏的14.WAIT timeout项所指定的时间内停止程序的执行。如果在这段时间内等待后的条件被满足,则程序等待结束,继续执行下一步程序;如果Wait后所指定的条件不能在这段等待时间内被满足,程序控制就转换到一个指定的标记上(即 LBL[1]分支程序上),并开始执行该标号所指定的程序。(参照下面的短例) WAIT timeout 的时间数值设置是在System configuration 屏幕中进行设定的,路径如下:MENUS——SYSTEM——F1,TYPE——Config。 寄存器条件等待指令 寄存器条件等待指令是将一个寄存器的值与另一个值进行比较,并一直等待到比较条件被满足。 例如:3:WAIT R [2] <>1, TIMEOUT LBL [1] 4:WAIT R[R [1]] >=200

KUKA点焊机器人学习资料

K U K A点焊机器人

XK-JQR-K203工业机器人点焊应用实训系统 1、主要功能 根据对机器人焊接技术要求,实现对工件固定,组拼、维修、调试等技术的训练,从而使学员具备机器人焊接技术必备的的理论知识和实际操作水平。 2、主要设备 本工作站主要包括机器人本体、控制器、焊接电源、焊钳。 3、主要特色 工业机器人焊接应用实训系统是将机器人操作与焊接技术相融合的一个技能训练平台。同时配有详细的教学实验指导书,让学生通过编程和操作来学习巩固知识,达到真正的学以致用。 4、产品组成 (1)机器人本体(KR 180 R3100 prime K) KR 180 R3100 prime K最大负载能力达180kg,作用半径长达约3101 mm。作为新一代及其紧凑加工机器人中的代言人,该机器人特别适合用于点焊并能提供最佳的工艺结果。可无限旋转的轴 3 允许的工作范围非常大,因此在狭小的空间也可自如作业。这对于比如电极修磨来说是及其有益的。

手腕持重180kg 最大工作范围3101mm 轴数6轴 重复定位精度0.06mm(多台机器人测试综合平均值) 机器人版本标准版 防护等级IP65 轴动作范围最大速度 A1 +185°至 -185°105°/S A2 +70°至 -140°107°/S A3 +155°至 -120°114°/S A4 +350°至 -350°179°/S A5 +125°至 -122.5°172°/S A6 +350°至 -350°219°/S 电源3相四线 380V,50Hz 机器人重量1168 kg (2)机器人控制柜(KR C4)

焊接机器人发展现状及发展趋势!

焊接机器人发展现状 我国的工业机器人从80年代“七五”科技攻关开始起步,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;弧焊机器人已应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;应用规模小,没有形成机器人产业。 当前我国的机器人生产都是应用户的要求,单户单次重新设计,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程。 焊接机器人的编程方法目前还是以在线示教方式为主,但编程器的界面比过去有了不少改进,尤其是液晶图形显示屏的采用使新的焊接机器人的编程界面更趋友好、操作更容易。然而,机器人编程时焊缝轨迹上的关键点坐标位置仍必须通过示教方式获取,然后存入程序的运动指令中。这对于一些复杂形状的焊缝轨迹来说,必须花费大量的时间示教,从而降低了机器人的使用效率,也增加了编程人员的劳动强度。目前解决的方法有两种:一是示教编程时只是粗略获取几个焊缝轨迹上的几个关键点,然后通过焊接机器人的视觉传感器通常是电弧传感器或激光视觉传感器自动跟踪实际的焊缝轨迹。这种方式虽然仍离不开示教编程但在一定程度上可以减轻示教编程的强度,提高编程效率。由于电弧焊本身的特点,机器人的视觉传感器并不是对所有焊缝形式都适用。二是采取完全离线编程的办法,使机器人焊接程序的编制、焊缝轨迹坐标位置的获取、以及程序的调试均在一台计算机上独立完成,不需要机器人本身的参与。机器人离线编程早在多年以前就有,只是由于当时受计算机性能的限制,离线编程软件以文本方式为主,编程员需要熟悉机器人的所有指令系统和语法,还要知道如何确定焊缝轨迹的空间位置坐标,因此,编程工作并不轻松省时。随着计算机性能的提高和计算机三维图形技术的发展,机器人离线编程系统多数可在三维图形环境下运行,编程界面友好、方便,获取焊缝轨迹的坐标位置通常可以采用“虚拟示教”的办法,用鼠标轻松点击三维虚拟环境中工件的焊接部位即可获得该点的空间坐标;在有些系统中,可通过图形文件中事先定义的焊缝位置直接生成焊缝轨迹,然后自动生成机器人程序并下载到机器人控制系统。从而大大提高了机器人的编程效率,也减轻了编程员的劳动强度。目前,国际市场上已有基于普通机的商用机器人离线编程软件,通过虚拟示教获得,并在三维图形环境中可让机器人按程序中的轨迹作模拟运动,以此检验其准确性和合理性。所编程序可通过网络直接下载给机器人控制器。 焊接机器人发展趋势 目前国际机器人界都在加大科研力度,进行机器人共性技术的研究。从机器人技术发展趋势看,焊接机器人和其它工业机器人一样,不断向智能化和多样化方向发展。具体而言,表现在如下几个方面: 1).机器人操作机结构: 通过有限元分析、模态分析及仿真设计等现代设计方法的运用,实现机器人操作机构的优化设计。 探索新的高强度轻质材料,进一步提高负载/自重比。例如,以德国KUKA公司为代表的机器人公司,已将机器人并联平行四边形结构改为开链结构,拓展了机器人的工作范围,加之轻质铝合金材料的应用,大大提高了机器人的性能。此外采用先进的RV减速器及交流伺服电机,使机器人操作机几乎成为免维护系统。

我国焊接机器人的发展现状

随着配置不断升级,焊接机器人已经具备了接触传感、电弧跟踪等多种功能,机器人焊接逐步取代手工焊已成为制造业发展的必然趋势。 焊接作为工业“裁缝”,是汽车工业生产中非常重要的加工手段,焊接质量的好坏对产品质量起着决定性的影响,同时由于焊接烟尘、弧光、金属飞溅的存在,焊接的工作环境又非常恶劣。随着先进制造技术的发展,实现焊接产品制造的自动化、柔性化与智能化已经成为必然趋势,采用机器人焊接已经成为焊接技术自动化的主要标志。 焊接机器人应用的意义 (1)稳定和提高焊接质量焊接过程中焊缝焊接参数都是恒定的,同时减少焊枪抖动等不利因素,保证焊缝的均匀稳定性,提高焊接质量。 (2)提高生产效率焊接机器人可以24h不间断工作,同时随着机械制造技术及自动化技术的发展,机器人焊接效率的提高将更加明显。 (3)降低工人劳动强度?采用机器人焊接,工人只需要装卸工件,远离了焊接弧光、烟雾和飞溅等。对于点焊来说,工人无需搬运笨重的手工焊钳,使工人从高强度的体力劳动中解脱出来。 (4)降低工人操作技术要求焊接机器人的应用,降低了对工人焊接技术的要求,工人只需要对焊接参数进行调整,机器人便可按照指示要求进行工作。 (5)柔性化程度高缩短了产品改型换代的准备周期,减少相应的设备投资;可实现小批量产品的焊接自动化;机器人与专机的最大区别就是可以通过修改程序以适应不同工件的生产。 点焊机器人 在我国,点焊机器人约占焊接机器人总数的46%,主要应用在汽车、农机、摩托车等行业。通常,装配一台轿车的白车身要焊接4000~6000个焊点,只有以机器人为核心组成柔性焊装生产线,才能完成大批量的生产纲领和适应未来新产品开发与多品种生产的发展要求,增强企业应变能力。图1为哈尔滨工业大学和奇瑞汽车有限股份公司联合开发的“QH-165点焊机器人”。 1.点焊机器人的基本组成 点焊机器人分为三部分,即机器人本体、控制系统及点焊焊接系统。 点焊机器人本体主要由机体、臂、手(手指)组成。通用点焊机器人具有六个自由度,即机体腰的回转、肩(臂和机体连接处)的仰俯、肘(各段臂连接处)的屈伸和腕(臂与手连接处)三个方向的转动。前三个自由度使手(手指)抓持的工具如焊钳达到一定位置,后三个自由度再由手腕运动使焊接工具以一定角度(姿势)对准焊件。 点焊机器人的控制系统由本体控制部分及焊接控制部分组成。本体控制部分主要实现示教再现、焊点位置及精度控制。位置控制有两种方式:一种为PTP控制,又称为点位控制或点到点控制,只注意原始点和目标点的位置,经由何种途径到达目标点并无要求;另一种为CP控制,即连续路径控制或轮廓控制。这时不仅要求目标点的位置,而且所经由的轨迹也要符合要求。 焊接控制部分除了控制电极电压、通电焊接、维持等各程序段的时间及程序转换以外,还通过改变主电路晶闸管的导通角而实现焊接电流的控制。焊接系统主要由焊接控制器、焊钳及水、电、气等辅助部分组成。 弧焊机器人 弧焊机器人的研究已经历了三个阶段:示教再现、离线编程和自主编程的智能机器人,当前的应用水平处于第二阶段。我国也从20世纪70年代初开始注重机器人技术的研究,但在机器人产业应用方面仍远远落后于工业发达国家。国内主要有两个机器人制造公司,即首钢莫托曼机器人有限公司和新松机器自动化股份有限公司,图2为首钢莫托曼弧焊机器人。

相关文档
相关文档 最新文档