文档库 最新最全的文档下载
当前位置:文档库 › 利用Eviews软件进行最小二乘法回归实例

利用Eviews软件进行最小二乘法回归实例

利用Eviews软件进行最小二乘法回归实例
利用Eviews软件进行最小二乘法回归实例

例题中国居民人均消费支出与人均GDP(1978-2000),数据(例题1-2),预测,2001年人均GDP为4033.1元,求点预测、区间预测。(李子奈,p50)解答:

一、打开Eviews软件,点击主界面File按钮,从下拉菜单中选择Workfile。

在弹出的对话框中,先在工作文件结构类型栏(Workfile structure type)选择固定频率标注日期(Dated – regular frequency),然后在日期标注说明栏中(Date specification)将频率(Frequency)选为年度(Annual),再依次填入起止日期,如果希望给文件命名(可选项),可以在命名栏(Names - optional)的WF项填入自己选择的名称,然后点击确定。

此时建立好的工作文件如下图所示:

在主界面点击快捷方式(Quick)按钮,从下拉菜单中选空白数据组(Empty Group)选项。

此时空白数据组出现,可以在其中通过键盘输入数据或者将数据粘贴过来。

在Excel文件(例题1-2)中选定要粘贴的数据,然后在主界面中点击编辑(Edit)按钮,从下拉菜单中选择粘贴(Paste),数据将被导入Eviews软件。

将右侧的滚动条拖至最上方,可以在最上方的单元格中给变量命名。

二、估计参数

在主界面中点击快捷方式(Quick)按钮,从下拉菜单中选择估计方程(Estimate Equation)

在弹出的对话框中设定回归方程的形式。

在方程表示式栏中(Equation specification),按照被解释变量(Consp)、常

数项(c )、解释变量(Gdpp )的顺序填入变量名,在估计设置(Estimation settings )栏中选择估计方法(Method )为最小二乘法(LS – Least Squares ),样本(Sample )栏中选择全部样本(本例中即为1978-2000),然后点击确定,即可得到回归结果。

以上得到的回归结果可以表示为:

201.1190.3862(13.51)(53.47)Consp GDPP

=+?

如果你试图关闭回归方程页面(或Eviews 主程序),这时将会弹出一个对话框,询问是否删除未命名的回归方程,如下图所示

此时如果同意删除,可以点击Yes ,如果想把回归结果保存下来,可以点击命名(Name ),这时就会弹出一个对话框,在其中填入为方程取的名字,点击

OK即可。本例中方程自动命名为方程-1(eq01)。

点击确定之后,方程页面关闭,同时在工作文件页面内可以发现多了一个表示回归方程的对象(图中的eq01)。如果以后需要用到回归结果时,就不需要象前面那样逐步地去做,而只需要双击eq01图标即可。

如果试图关闭工作文件或Eviews主程序,将会弹出警示框询问是否对该工作文件进行保存,此时如果不计划对工作文件进行保存,直接点击No即可,如果点击取消(Cancel),将回到关闭前的状态。如果计划保存工作文件以备将来使用,则可以点击Yes。

随后弹出的对话框询问按照怎样的精确度保存数据,此时选择高精确度即可。即选择Double precision。

注意!按照当前的设置,Eviews 默认的保存路径是“我的文档”。将来打开文件时可以从Eviews 主程序中按照文件(File )——打开(Open )——Eviews 工作文件(Eviews Workfile )的方式,也可以直接在“我的文档”中双击要打开的工作文件。

三、相关的检验

1. 拟合优度(可决系数)

从回归结果中可以看出,本例中20.9927R =,说明模型在整体上拟合得非常好。

2. 显著性检验

首先看截距项和斜率项的t 统计量取值情况。因为本例中使用的观察值个数为23,因此这些t 统计量应该服从自由度为(232)21-=的t 分布,查书后附录中给出的t 分布表,可以发现自由度为21、检验水平为0.1、0.05、0.01时相对应的临界值分别为1.721、2.080、2.831,而本例中的两个t 统计量的取值分别为13.51和53.47,说明在通常使用的检验水平下,本例中所选择的两个解释变量对被解释变量有很好的解释能力,或者说数据强烈支持将这两个解释变量纳入模型之中。

3. 置信区间

以下建立总体参数0β和1β置信度为95%的置信区间。

前面已经介绍过,当置信度为1α-时,置信区间为 2211??11??(2),(2)t t n s n s ααββββ??--?+-???

而0.025(21) 2.080t =,从回归结果中还可以查到1?0.007222s β=,因此1β的置信度为95%的置信区间为0.3862 2.0800.0072220.38620.0150±?=±。

或者表示为

[0.3712,0.4012]

同样的道理,0β的置信度为95%的置信区间为201.118930.9587±。

或者表示为

[170.1602,232.0776]

四、预测

以上是根据中国1978-2000年人均消费与人均GDP (按1990年价格表示)

得到的回归结果,现在据此对2001年人均消费的情况进行预测。

1. 点预测

2001年,以1990年不变价格表示的中国人均GDP 约为4033.1元,根据前面得出的样本回归函数,可以计算出

2001201.1190.38624033.11758.7Consp =+?=

2001年人均消费的实际值为1782.2元,与预测的结果进行比较,发现相对误差为 1.32%-。

2. 区间预测

首先对2001()E Consp 进行区间预测。如果选择置信度为1α-,则置信区间为

22????(2)(2)F F y t n y t n αασσ?--?+-???? 这里?1758.7F y

=,2(2) 2.080t n α-=,?33.2645σ=,23n =,4033.1F x =均为已知,下面介绍22()()/i F x x x x --∑的求法。

启动Eviews 程序,在主界面点击文件(File )按钮,在下拉菜单中选择打开(Open ),然后选择Eviews 工作文件(Eviews Workfile ),在上次保存文件的目录下找到Eviews 工作文件ex1-2,在工作文件页面中双击表示人均GDP 的变量gdpp ,即可打开这一数据序列。

此时在数据序列页面中点击查看(View )按钮,然后将光标移动到描述性统计量(Descriptive Statistics )上面,在右侧出现的选项中选择统计量表格(Stats Table ),这样关于数据序列人均GDP 的一些统计量就可以显示出来了。

表格中各项分别是平均值(Mean )、中位数(Median )、最大值(Maximum )、最小值(Minimum )、标准差(Std. Dev )、偏度(Skewness )、峰度(Kurtosis )、JB 正态性检验统计量(Jarque-Bera )、JB 统计量对应的概率值(Probability )、数组求和结果(Sum )、离差平方和(Sum Sq. Dev.)、观察值个数(Observations )。 我们进行区间预测时需要的x 就是表中的平均值,2()i x x -∑即为表中的离差平方和。将这些结果代入前面的表示式,就可以得到对2001()E Consp 的置信度为95%的区间估计了:1758.736.19±,也就是[1722.51,1794.89]。

另外我们还注意到2001年人均消费的实际数据是1782.2元,落在了这一区间内。

接下来对2001Consp 进行区间预测。前面已经得出,置信度为1α-的区间预测是

22????(2)(2)F F y t n y t n αασσ?--?+-???? 此时置信区间的上下限与前一种情况相比有少许变化,区间的宽度有所增加,这是因为2001Consp 比2001()E Consp 的方差要大一些。

将各种数据代入上面表示式,得到的结果是:1758.778.08±,或者表示为区间形式[1680.62,1836.78],很显然,对2001Consp 的区间估计不如对2001()E Consp 的区间估计精确。

五、经济学含义的分析

以下对回归结果的经济学含义做一个简单的分析,回归结果是

201.1190.3862Consp GDPP =+?

1. 凯恩斯的绝对收入假说认为,当收入增加时,消费支出也会相应地增加,

但是不如收入增加得多,这从回归结果中1

?β大于0且小于1可以得到验证;另外凯恩斯还认为,随着收入的增加,人们会将收入中更多的部分储蓄起来,这一点可以从截距项为正得到验证。

201.1190.6138GDPP Consp s GDPP GDPP

--=

=+ 其中的s 是储蓄率,显然随着收入的增加,s 将不断地变大。 2. 回归结果中解释变量收入前面的系数表示,1978-2000年间,中国的人均收入每增加1元钱,消费支出将会增加0.3862元钱,这就是一种典型的乘数分析。

3. 在经济学中,消费对收入求一阶偏导数,得到的结果被称作是边际消费倾向,本例中的边际消费倾向为0.3862,这一结果明显低于发达国家,例如美国,同时也低于世界平均水平,表明中国的消费需求比较低,启动内需即是针对这一问题而言。

eviews多元线性回归案例分析

中国税收增长的分析 一、研究的目的要求 改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。 影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。(2)公共财政的需求,税收收入是财政的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。(3)物价水平。我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。(4)税收政策因素。我国自1978年以来经历了两次大的税制改革,一次是1984—1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。税制改革对税收会产生影响,特别是1985年税收陡增215.42%。但是第二次税制改革对税收的增长速度的影响不是非常大。因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。 二、模型设定 为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收”(简称“税收收入”)作为被解释变量,以放映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数” 从《中国统计年鉴》收集到以下数据 财政收入(亿元) Y 国内生产总值(亿 元) X2 财政支出(亿 元) X3 商品零售价格指 数(%) X4 1978519.283624.11122.09100.7 1979537.824038.21281.79102 1980571.74517.81228.83106

偏最小二乘法回归建模案例

《人工智能》课程论文 论文题目:偏最小二乘算法(PLS)回归建模 学生姓名:张帅帅 学号: 172341392 专业:机械制造及其自动化 所在学院:机械工程学院 年月日

目录 偏最小二乘回归....................................... - 2 -摘要................................................. - 2 -§1偏最小二乘回归原理................................ - 2 -§2一种更简洁的计算方法.............................. - 6 -§3案例分析 ......................................... - 7 -致谢................................................ - 16 -附件:.............................................. - 17 -

偏最小二乘回归 摘要 在实际问题中,经常遇到需要研究两组多重相关变量间的相互依赖关系,并研究用一组变量(常称为自变量或预测变量)去预测另一组变量(常称为因变量或响应变量),除了最小二乘准则下的经典多元线性回归分析(MLR ),提取自变量组主成分的主成分回归分析(PCR )等方法外,还有近年发展起来的偏最小二乘(PLS )回归方法。 偏最小二乘回归提供一种多对多线性回归建模的方法,特别当两组变量的个数很多,且都存在多重相关性,而观测数据的数量(样本量)又较少时,用偏最小二乘回归建立的模型具有传统的经典回归分析等方法所没有的优点。 偏最小二乘回归分析在建模过程中集中了主成分分析,典型相关分析和线性回归分析方法的特点,因此在分析结果中,除了可以提供一个更为合理的回归模型外,还可以同时完成一些类似于主成分分析和典型相关分析的研究内容,提供更丰富、深入的一些信息。 本文介绍偏最小二乘回归分析的建模方法;通过例子从预测角度对所建立的回归模型进行比较。 关键词:主元分析、主元回归、回归建模 1 偏最小二乘回归原理 考虑p 个变量p y y y ,...,21与m 个自变量m x x x ,...,21 的建模问题。偏最小二乘回归的基本作法是首先在自变量集中提出第一成分t ?(t ?是 m x x x ,...,21 的线性组合,且尽可能多地提取原自变量集中的变异信息);同时在因变量集中也提取第一成分u ?,并要求t ?与u ?相关程度达到最大。然后建立因变量 p y y y , (21) t ?的回归,如果回归方程已达到满意的精度,则算法中止。否则 继续第二对成分的提取,直到能达到满意的精度为止。若最终对自变量集提取r 个成分r t t t ,...,21,偏最小二乘回归将通过建立 p y y y ,...,21与r t t t ,...,21的回归 式,然后再表示为p y y y ,...,21与原自变量的回归方程式,即偏最小二乘回归方程式。 为了方便起见,不妨假定p 个因变量p y y y ,...,21与m 个自变量m x x x ,...,21均为

基于最小二乘法的系统参数辨识

基于最小二乘法的系统参数辨识 吴令红,熊晓燕,张涛 太原理工大学机械电子研究所,太原 (030024) E-mail lhwu0818@https://www.wendangku.net/doc/d912630946.html, 摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其辨识理论不断发展和完善本。文重点介绍了系统参数辨识中最小二乘法的基本原理,并通过悬臂梁模型的辨识实例,具体说明了基于最小二乘法参数辨识在Matlab 中的实现方法。结果表明基于最小二乘法具有算法简单、精度较高等优点。 关键词:系统辨识;参数辨识;滑动平均模型(ARX);最小二乘法;Matlab 中图分类号:TH-9 1. 引言 所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已[1]。 最小二乘法是系统参数辨识中最基本最常用的方法。最小二乘法因其算法简单、理论成熟和通用性强而广泛应用于系统参数辨识中。本文基于悬臂梁的实测数据,介绍了最小二乘法的参数辨识在Matlab中的实现。 2. 系统辨识 一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。后者则是从实际系统运行和实验数据处理获得模型。如图1所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。更进一步的定义是L.A.Zadeh曾经与1962年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统”。另外,系统辨识还应该具有3个基本要素,即模型类、数据和准则[5]。被辨识系统模型根据模型形式可分为参数模型和非参数模型两大类。所谓参数模型是指微分方程、差分方程、状态方程等形式的数学模型;而非参数模型是指频率响应、脉冲响应、传递函数等隐含参数的数学模型。在辨识工程中,模型的确定主要根据经验对实际对象的特性进行一定程度上的假设,如对象的模型是线性的还是非线性的、是参数模型还是非参数模型等。在模型确定之后,就可以根据对象的输入输出数据,按照一定的辨识算法确定模型的参数[4]。 y 图1 被研究的动态系统

利用Eviews软件进行最小二乘法回归实例

例题中国居民人均消费支出与人均GDP(1978-2000),数据(例题1-2),预测,2001年人均GDP为4033.1元,求点预测、区间预测。(李子奈,p50)解答: 一、打开Eviews软件,点击主界面File按钮,从下拉菜单中选择Workfile。 在弹出的对话框中,先在工作文件结构类型栏(Workfile structure type)选择固定频率标注日期(Dated – regular frequency),然后在日期标注说明栏中(Date specification)将频率(Frequency)选为年度(Annual),再依次填入起止日期,如果希望给文件命名(可选项),可以在命名栏(Names - optional)的WF项填入自己选择的名称,然后点击确定。 此时建立好的工作文件如下图所示:

在主界面点击快捷方式(Quick)按钮,从下拉菜单中选空白数据组(Empty Group)选项。 此时空白数据组出现,可以在其中通过键盘输入数据或者将数据粘贴过来。 在Excel文件(例题1-2)中选定要粘贴的数据,然后在主界面中点击编辑(Edit)按钮,从下拉菜单中选择粘贴(Paste),数据将被导入Eviews软件。

将右侧的滚动条拖至最上方,可以在最上方的单元格中给变量命名。 二、估计参数 在主界面中点击快捷方式(Quick)按钮,从下拉菜单中选择估计方程(Estimate Equation) 在弹出的对话框中设定回归方程的形式。

在方程表示式栏中(Equation specification ),按照被解释变量(Consp )、常数项(c )、解释变量(Gdpp )的顺序填入变量名,在估计设置(Estimation settings )栏中选择估计方法(Method )为最小二乘法(LS – Least Squares ),样本(Sample )栏中选择全部样本(本例中即为1978-2000),然后点击确定,即可得到回归结果。 以上得到的回归结果可以表示为: 201.1190.3862(13.51)(53.47)Consp GDPP =+? 如果你试图关闭回归方程页面(或Eviews 主程序),这时将会弹出一个对话框,询问是否删除未命名的回归方程,如下图所示

偏最小二乘法

偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。近年来 , 随着 PLS 方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。 由于 PLS 方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。 本文主要介绍PLS 方法在光谱定性分析方面的原理及应用 实例 。 偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。如美国Tripos 公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS 。在PLS 方法中用的是替潜变量,其数学基础是主成分分析。替潜变量的个数一般少于原自变量的个数,所以PLS 特别适用于自变量的个数多于试样个数的情况。在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。 §§ 6.3.1 基本原理 6.3 偏最小二乘(PLS ) 为了叙述上的方便,我们首先引进“因子”的概念。一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。 在主成分回归中,第一步,在矩阵X 的本征矢量或因子数测试中,所处理的仅为X 矩阵,而对于矩阵Y 中信息并未考虑。事实上,Y 中亦可能包含非有用的信息。所以很自然的一种想法是,在矩阵X 因子的测试中应同时考虑矩阵Y 的作用。偏最小二乘正是基于这种思想的一种回归方法。 偏最小二乘和主成分分析很相似,其差别在于用于描述变量Y 中因子的同时也用于描述变量X 。为了实现这一点,在数学上是以矩阵Y 的列去计算矩阵X 的因子,与此同时,矩阵Y 的因子则由矩阵X 的列去预测。其数学模型为: E P T X +'=F Q U Y +'=

基于最小二乘法的系统辨识的设计与开发(整理版)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于最小二乘法的系统辨识的设计与开发(整理版)课程(论文)题目: 基于最小二乘法的系统辨识摘要: 最小二乘法是一种经典的数据处理方法。 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。 在系统辨识领域中, 最小二乘法是一种得到广泛应用的估计方法, 可用于动态系统, 静态系统, 线性系统, 非线性系统。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 关键词: 最小二乘法;系统辨识;参数估计 1 引言最小二乘理论是有高斯( K.F.Gauss)在 1795 年提出: 未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。 这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。 递推最小二乘法是在最小二乘法得到的观测数据的基础上,用新引入的数据对上一次估计的结果进行修正递推出下一个参数估计值,直到估计值达到满意的精确度为止。 1 / 10

对工程实践中测得的数据进行理论分析,用恰当的函数去模拟数据原型是一类十分重要的问题,最常用的逼近原则是让实测数据和估计数据之间的距离平方和最小,这即是最小二乘法。 最小二乘法是一种经典的数据处理方法。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 2 最小二乘法的系统辨识设单输入单输出线性定常系统的差分方程为: 1),()()() 1()(01knkubkubnkxakxakxnn ( 1)上式中: )(ku为输入信号;)(kx为理论上的输出值。 )(kx只有通过观测才能得到,在观测过程中往往附加有随机干扰。 )(kx的观测值)(ky可表示为 ( 2)将式( 2)代入式( 1)得 1()()() 1()(101kubkubnkyakyakyn (3) 我们可能不知道)(kn的统计特性,在这种情况下,往往把)(kn看做均值为 0 的白噪声。 设 ( 4)则式( 3)可以写成 (5) 在测量)(ku时也有测量误差,系统内部也可能有噪声,应当

Eviews处理多元回归分析操作步骤

Eviews处理多元回归分析操作步骤操作步骤 1. 建立工作文件 (1) 建立数据的exel电子表格 (2)将电子表格数据导入eviews File-open-foreign data as workfile,得到数据的Eviews工作文件和数据序列表。

2. 计算变量间的相关系数 在窗口中输入命令:cor coilfuture dow shindex nagas opec ueurope urmb,点击回车键,得到各序列之间的相关系数。结果表明Coilfuture数列与其他数列存在较好的相关关系。

3.时间序列的平稳性检验 (1)观察coilfuture序列趋势图 在eviews中得到时间序列趋势图,在quick菜单中单击graph,在series list对话框中输入序列名称coilfuture,其他选择默认操作。图形表明序列随时间变化存在上升趋势。 (2)对原序列进行ADF平稳性检验 quick-series statistics-unit root test,在弹出的series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择level,得到原数据序列的ADF检验结果,其他保持默认设置。

得到序列的ADF平稳性检验结果,检测值0.97大于所有临界值,则表明序列不平稳。以此方法,对各时间序列依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均大于临界值,表明各原序列都是非平稳的。 (3)时间序列数据的一阶差分的ADF检验

quick-series statistics-unit root test,在series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择1nd difference,对其一阶差分进行平稳性检验,其他保持默认设置。 得到序列的ADF平稳性检验结果,检测值-7.8远小于所有临界值,则表明序列一阶差分平稳。以此方法,对各时间序列的一阶差分依次进行ADF检验,将检验值

基于matlab的最小二乘法实现

基于matlab 的最小二乘法实现 程序流程图 : matlab 的程序源代码: A=[2,4,6,8;2,11,28,40]; pa=input('请输入你要的拟合多项式的次数:'); W=size(A); H=W(2); X=zeros(pa+1,1); Y=zeros(pa+1,pa+1); for i=1:pa+1 输入Xi,yi 及要拟合的最高次数n 生成法方程矩阵的左端系数矩阵 生成法方程矩阵的右端矩阵 解法方程矩阵 输出各个项的系数,即求得拟合函数 求取所求结果的均方误差 求取所求结果的最大偏差 结束程序

for j=1:pa+1 x=0; for k=1:H s=1; for b=1:i+j-2 s=s*A(1,k); end x=x+s; end Y(i,j)=x; end end a=zeros(pa+1,1); for i=1:pa+1 x=0; for k=1:H s=A(2,k); for b=1:i-1 s=s*A(1,k); end x=x+s; end a(i,1)=x; end X=inv(Y)*a; disp('从0次到你要的阶数的系数依次为:') X Z1=zeros(H,1); for i=1:H w=0; for k=1:pa+1 s=X(k,1); for j=1:k-1 s=s*A(1,i); end w=w+s; end Z1(i,1)=w; end Z1; Z2=A(2,:)'; d=Z1-Z2; s=0; for i=1:H

s=s+d(i,1)*d(i,1); end disp('均方误差为:') a=sqrtm(s) b=d(1,1); for i=1:H if d(i,1)>b b=d(i,1); else ; end end disp('最大偏差为:') b

偏最小二乘法(PLS)简介

偏最小二乘法(PLS)简介 偏最小二乘法(PLS )简介 偏最小二乘法(PLS )简介 简介 偏最小二乘法是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中 的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用 普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X 中的相关信息,然后用于预测变量Y 的值。 这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分 进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X 和Y 都进行分解的方法,从变量X 和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了 基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模 型来描述独立变量Y 与预测变量组X 之间的关系: 偏最小二乘法(PLS) 简介

基于最小二乘算法的RBF

基于正交最小二乘算法的RBF神经网络 一、实验环境 硬件平台Win10 64位操作系统,1.5GHZ,4G内存,软件版本MA TLAB2015b 二、实验数据 训练数据集: T F W M Y Q 1000.00130010000 20.00740.03350.00150.00320.010610000 30.00430.022300.00470.005310000 40.5520.30170.25810.30940.231601000 50.54520.27930.26110.29880.203601000 60.55020.24580.27170.31150.234701000 70.24620.15080.09470.09640.099900100 80.25350.10610.09680.09710.08100100 90.26650.08940.09370.09940.090800100 100.66150.52510.51950.471100010 110.67380.44130.52250.47320.966700010 120.66650.47490.52550.47690.975800010 13110.981210.820600001 140.97970.977710.9960.775900001 150.98460.97270.98470.98570.7600001 测试数据集: T F W M Y Q 10.00310.02350.00050.0030.004510000 20.54930.26260.26590.30880.222101000 30.25720.10060.09580.09810.08900100 40.67040.49720.52350.47410.979100010 50.9920.98990.99790.99370.797900001 三、算法介绍 RBF函数网络从结构上看是一个3层前馈网络,包括一个输入层、一个输出层和一个隐含层。输入层节点的作用是将输入数据传递到隐含层节点。隐含层节点称为RBF节点,其激活函数为辐射状函数的神经元构成,通常采用高斯型函数:Array 图1 RBF结构 RBF网络中所用的非线性函数的形式对网络性能的影响并不是至关重要的,关键因素是基函数中心的选取,中心选取不当构造出来的RBF网络的性能一般不能令人满意。例如,如果某些中心靠的太近,会产生近似线形相关,从而带来数值上的病变条件。基本的RBF 神经网络采用随机抽取固定中心的方法,在输入样本数据的分布具有某种特性的情况下,采用这种方法解决给定问题就显得简单可行了。而针对其缺陷,已经有许多改进的方法,其中 之一就是利用最小二乘法选取中心,训练网络权重。

基于最小二乘法的系统参数辨识

基于最小二乘法的系统参数辨识 研究生二队李英杰 082068 摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其辨识理论不断发展和完善本。文重点介绍了系统参数辨识中最小二乘法的基本原理,并通过热敏电阻阻值温度关系模型的辨识实例,具体说明了基于最小二乘法参数辨识在Matlab中的实现方法。结果表明基于最小二乘法具有算法简单、精度较高等优点。 1. 引言 所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已[1]。最小二乘法是系统参数辨识中最基本最常用的方法。最小二乘法因其算法简单、理论成熟和通用性强而广泛应用于系统参数辨识中。本文基于热敏电阻阻值与温度关系数据,介绍了最小二乘法的参数辨识在Matlab中的实现。 2. 系统辨识 一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。后者则是从实际系统运行和实验数据处理获得模型。如图1 所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。更进一步的定义是L.A.Zadeh 曾经与1962 年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统”。另外,系统辨识还应该具有3 个基本要素,即模型类、数据和准则[5]。被辨识系统模型根据模型形式可分为参数模型和非参数模型两大类。所谓参数模型是指微分方程、差分方程、状态方程等形式的数学模型;而非参数模型是指频率响应、脉冲响应、传递函数等隐含参数的数学模型。在辨识工程中,模型的确定主要根据经验对实际对象的特性进行一定程度上的假设,如对象的模型是线性的还是非线性的、是参数模型还是非参数模型等。在模型确定之后,就可以根据对象的输入输出数据,按照一定的辨识算法确定模型的参数[4]。 图1 被研究的动态系统 3. 最小二乘法(LS)参数估计方法 对于参数模型辨识结构,系统辨识的任务是参数估计,即利用输入输出数据估计这些参数,建立系统的数学模型。在参数估计中最常用的是最小二乘法(LS)、

用eviews进行一元线性回归分析实施报告

天津外国语大学国际商学院本科生课程论文(设计) 题目:一元回归分析居民收入和支出的关系姓名: 学号: 专业: 年级: 班级: 任课教师: 2014 年 4 月

内容摘要 随着本文中的收集数据参考了中国统计年鉴以及书本《计量经济学》中的相关统计结果,对我国各地区城镇居民家庭人均全年可支配收入与人均全年消费性支出进行分析。利用EVIEWS软件对计量模型进行参数评估和检验,最终得出相关结论。 关键词:居民消费;居民收入;EVIEWS;一元回归分析

目录 一、引言 (1) (一)研究背景 (1) (二)研究意义 (1) 二、研究综述 (2) (一)模型设定 (2) 1.定义变量 (2) 2.数据来源 (2) (二)作散点图 (3) 三、估计参数 (4) (一)操作步骤 (4) (二)回归结果 (4) 四、模型检验 (5) (一)经济意义检验 (5) (二)拟合优度和统计检验 (5) (三)回归预测 (5) 五、结论 (5) 参考文献: (6)

一元回归分析居民收入与支出的关系 一、引言 (一)研究背景 随着近年来我国成为世界第二大经济体,居民的高生活水平也日益显著。我国人口正在高速城镇化,2011年中国大陆城镇人口为69079万人,城镇人口占总人口比重达到51.27%。因此城镇居民作为消费主体,研究城镇居民人均可支配收入以及人均可支配消费性支出之间的关系,可以有效的了解到我国各地区的人民生活水平以及经济状况,因此能更好的的带动我国GDP的飙升,改善居民的生活水平。 (二)研究意义 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这要是人民生活水平的具体体现。改革开饭以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2007年的城市居民家庭平均每人每年消费支出,最高的是上海市达人均20667.91元,最低的则是新疆,人均只有8871.27元,上海是新疆的2.33倍。为了研究全国居民消费水平及其变动的原因,需要做具体的

使用eviews做线性回归分析

使用eviews做线性回归分析 关键字: linear regression Glossary: ls(least squares)最小二乘法 R-sequared样本决定系数(R2):值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整 Adjust R-seqaured() S.E of regression回归标准误差 Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确Durbin-Watson stat:DW统计量,0-4之间 Mean dependent var因变量的均值 S.D. dependent var因变量的标准差 Akaike info criterion赤池信息量(AIC)(越小说明模型越精确) Schwarz ctiterion:施瓦兹信息量(SC)(越小说明模型越精确) Prob(F-statistic)相伴概率 fitted(拟合值) 线性回归的基本假设: 1.自变量之间不相关 2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布 3.样本个数多于参数个数 建模方法: ls y c x1 x2 x3 ... x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。模型的实际业务含义也有指导意义,比如 m1同gdp肯定是相关的。 模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。 模型检验: 1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度 F大于临界值则说明拒绝0假设。 Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。 2)回归系数显著性检验(t检验):检验每一个自变量的合理性 |t|大于临界值表示可拒绝系数为0的假设,即系数合理。t分布的自由度为 n-p-1,n为样本数,p为系数位置

基于最小二乘法的数据处理问题研究综述

基于最小二乘法的数据处理问题研究综述 摘要:对基于最小二乘法的数据处理方法进行了介绍。首先对传统最小二乘法基本原理进行了介绍,然后根据例子来说明怎样运用传统最小二乘法来解决实际辨识问题。而且本文针对传统最小二乘存在的缺陷进一步阐述了一些改进型最小二乘法,综述了最小二乘法的研究现状,最后对最小二乘的发展趋势做了预测。 关键字:最小二乘法数据处理改进型最小二乘法发展趋势 1引言 在科学实验中经常要把离散的测量数据转化为直观的便于研究的曲线方程,即曲线拟合[1]。由于在实验室或实际应用中,误差是不可避免的,所以为了不把原有离散数据中的误差引入,人们经常用拟合来确定模拟函数。拟合方法不要求模拟函数通过已知离散的点,而追求的是所有点到模拟函数达到某种误差指标的最小化,是一种整体上的逼近性质。最小二乘法是解决这类曲线拟合中一种较为常用的方法,根据最小二乘法的定义[2]:“最小二乘法是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。”最小二乘法是从误差拟合角度对回归模型进行参数估计或系统辨识,因此最小二乘在参数估计、系统辨识以及预测、预报等众多领域中得到极为广泛的应用。 本文在阐述最小二乘法理论的基础上对于其在实际问题中的辨识应用做了简单介绍,并指出实际应用中存在的不足,列举了几种改

进型的最小二乘算法来进行优化比较,最后给出了最小二乘法的发展趋势。 2 最小二乘法的理论基础及应用 2.1最小二乘法的理论基础 最小二乘法作为一种传统的参数估计方法,早已经被大家所了 解。 然而大多同学对最小二乘法的认识都比较模糊,仅仅把最小二乘法理解为简单的线性参数估计。 事实上,最小二乘法在参数估计、系统辨识以及预测、预报等众多领域都有着广泛的应用[3]。特别是针对动态系统辨识的方法有很多[4],但其中应用最广泛,辨识效果良好的就是最小二乘辨识方法,研究最小二乘法的应用在就要对其基本原理有较为深刻的理解。 下面是一般的最小二乘法问题:求实系数线性方程组 11112211211222221122 .........00......0n n n n m m mn n m b b b a x a x a x a x a x a x a x a x a x ++-++-++-?+=?+=????+=? (1) 方程组可能无解。即很可能不存在一组实数x 1,x 2,……,x n 使 2112120()i i in n i m i a x a x a x b =++?+-=∑ (2) 恒成立。因此我们转而求其次,设法找到实数组 x 1,x 2,…,x n 使误差的平方和最小,这样的 x 1,x 2,…,x n 称为方程组的最小二乘解,这样问题就叫最小二乘法问题[5]。

(整理)(真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析.

偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德和阿巴诺等人首次提出。近十年来,它在理论、方法和应用方面都得到了迅速的发展。密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。 偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面:(1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。 (2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。在普通多元线形回归的应用中,我们常受到许多限制。最典型的问题就是自变量之间的多重相关性。如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。变量多重相关问题十分复杂,长期以来在理论和方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解和筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。 (3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。在一次偏最小二乘回归分析计算后,不但可以得到多因变量对多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。 一、偏最小二乘回归的建模策略\原理\方法

Eviews处理多元回归分析操作步骤

操作步骤 1.建立工作文件 (1)建立数据的exel电子表格 (2)将电子表格数据导入eviews File-open-foreign data as workfile,得到数据的Eviews工作文件和数据序列表。

2.计算变量间的相关系数 在窗口中输入命令:cor coilfuture dow shindex nagas opec ueurope urmb,点击回车键,得到各序列之间的相关系数。结果表明Coilfuture数列与其他数列存在较好的相关关系。 3.时间序列的平稳性检验 (1)观察coilfuture序列趋势图 在eviews中得到时间序列趋势图,在quick菜单中单击graph,在series list对话框中输入序列名称coilfuture,其他选择默认操作。图形表明序列随时间变化存在上升趋势。

(2)对原序列进行ADF平稳性检验 quick-series statistics-unit root test,在弹出的series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择level,得到原数据序列的ADF检验结果,其他保持默认设置。

得到序列的ADF平稳性检验结果,检测值0.97大于所有临界值,则表明序列不平稳。以此方法,对各时间序列依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均大于临界值,表明各原序列都是非平稳的。 (3)时间序列数据的一阶差分的ADF检验 quick-series statistics-unit root test,在series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择1nd difference,对其一阶差分进行平稳性检验,其他保持默认设置。

偏最小二乘法基本知识

偏最小二乘法(PLS)简介-数理统计 偏最小二乘法partial least square method是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X和Y都进行分解的方法,从变量X和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了

基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系: Y= b0 + b1X1 + b2X2 + ... + bpXp 在方程中,b0是截距,bi的值是数据点1到p的回归系数。 例如,我们可以认为人的体重是他的身高、性别的函数,并且从各自的样本点中估计出回归系数,之后,我们从测得的身高及性别中可以预测出某人的大致体重。对许多的数据分析方法来说,最大的问题莫过于准确的描述观测数据并且对新的观测数据作出合理的预测。 多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。这些多元统计方法有两点重要特点,即对数据的约束性: 1.变量X和变量Y的因子都必须分别从X'X和Y'Y矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。 2.预测方程的数量永远不能多于变量Y跟变量X的数量。 偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X与Y的最大数。 简而言之,偏最小二乘回归可能是所有多元校正方法里对变量约束最少的方法,这种灵活性让它适用于传统的多元校正方法所不适用的许多场合,例如一些观测数据少于预测变量数时。并且,偏最小二乘回归可以作为一种探索性的分析工具,在使用传统的线性回归模型之前,先对所需的合适的变量数进行预测并去除噪音干扰。

基于matlab的最小二乘法应用

基于matlab 非线性曲线最小二乘拟 摘要:在工程计算与科学研究中,常常需要从一组测量数据出发,寻找变量x 与y 的函数 关系式,有时很难找出他们之间精确地函数表达式)(x f y =,这时就要观察所给数据值,利用最小二乘曲线拟合来构造一个近似的解析式)()(x x f y ?≈=。利用这种方法拟合出的曲线虽然不能保证通过所有的数据点,但是很好的逼近它们,从而充分反映已知数据间内在的数量关系。因此这种方法在科学实验和生产实践中具有广泛的应用前景。一般构造 )(x y ?≈的方法有很多,本文先介绍了最小二乘法的原理,并通过实例用matlab 实现了曲 线的拟合以得到函数关系的方法和步骤。通过不同的经验公式得到不同的的拟合结果,并 分析其结果。 关键字:最小二乘法 matlab 曲线拟合 1 前言 在现代科学研究中, 物理量之间的相互关系通常是用函数来描述的。有些函数关系是由经典理论分析推导得出的, 这些函数关系不仅为我们进一步的分析研究工作提供了物理的理论基础,也使我们可以十分方便的运用丰富的数学知识来解决物理问题。在现实的物理研究过程中, 有一些问题很难由经典物理理论推导出物理量的函数表达式, 或者推导出的表达式十分复杂, 不利于进一步的分析。但由于研究需要, 又很希望能得到这些量之间的函数关系, 这时就可以利用曲线拟合的方法,用实验数据结合数学方法得到物理量之间的近似函数表达式。 2 最小二乘法原理 在函数的最佳平方逼近中),()(b a x f ∈,如果)(x f 只在一组离散数据点集{i x ,m i ,.....,1,0=}上给出,这就是科学实验中经常见到的实验数据{(i i y x ,), m i ,.....,1,0=}的曲线拟合,这里)(i i x f y =(m i ,.....,1,0=),要求一个函数() x y s * =与所给数据{(i i y x ,),m i ,.....,1,0=}拟合,若误差()i i y x s -=* δ(m i ,.....,1,0=), ()T m δδδδ,.....,,10=,设()()()[]b a C x x x n ,,......,10是???上线性无关函数族,在()()(){}()x x x x span s n * =中找一函数????,.....,,10,使得误差平方和 ()[] ()()[],min 2 2 2 22∑∑∑=∈=* =-=-==m i i i x S m i i i m i i y x S y x s ? δδ (2-1) 这里

相关文档
相关文档 最新文档