文档库 最新最全的文档下载
当前位置:文档库 › 运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析
运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析

蒙特卡罗模拟由著名的摩纳哥赌城而得名,他是一种非常强有力的方法学。对专业人员来说,这种模拟为方便的解决困难而复杂的实际问题开启了一扇大门。估计蒙特卡罗模拟最著名的早期使用是诺贝尔奖物理学家Enrico Fermi(有时也说是原子弹之父)在1930年的应用,那时他用一种随机方法来计算刚发现的中子的性质。蒙特卡罗模拟是曼哈顿计划所用到的模拟的核心部分,在20世纪50年代蒙特卡罗模拟就用在Los Alamos国家实验室发展氢弹的早期工作中,并流行于物理学和运筹学研究领域。兰德公司和美国空军是这个时期主要的两个负责资助和传播蒙特卡罗方法的组织,今天蒙特卡罗模拟也被广泛应用于不同的领域,包括工程,物理学,研发,商业和金融。

简而言之,蒙特卡罗模拟创造了一种假设的未来,它是通过产生数以千计甚至成千上万的样本结果并分析他们的共性实现的。在实践中,蒙特卡罗模拟法用于风险分析,风险鉴定,敏感度分析和预测。模拟的一个替代方法是极其复杂的随机闭合数学模型。对一个公司的分析,使用研究生层次的高等数学和统计学显然不合逻辑和实际。一个出色的分析家会使用所有他或她可得的工具以最简单和最实际的方式去得到相同的结果。任何情况下,建模正确时,蒙特卡罗模拟可以提供与更完美的数学方法相似的答案。此外,有许多实际生活应用中不存在闭合模型并且唯一的途径就是应用模拟法。那么,到底什么是蒙特卡罗模拟以及它是怎么工作的?

什么是蒙特卡罗模拟?

今天,高速计算机使许多过去看来棘手的复杂计算成为可能。对科学家,工程师,统计学家,管理者,商业分析家和其他人来说,计算机使创建一个模拟现实的模型成为可能,这有助于做出预测,其中一种方法应用于模拟真实系统,它通过调查数以百计甚至数以千计的可能情况来解释随机性和未来不确定性。结果通过编译后用于决策。这就是蒙特卡罗模拟的全部内容。

形式最简单的蒙特卡罗模拟是一个随机数字生成器,它对预测,估计和风险分析都很有用。一个模拟计算模型的许多情况,这通过反复地从预先定义的特定变量概率分布中采集数据并将之应用于模型来实现。因为所有的情况都产生相应的结果,每种情况都可以蕴含一种预测。预测的是你定义为重要模型结果的事项(通常含有公式或函数)。

将蒙特卡罗模拟法想象为从一个大篮子里可放回的反复拿出高尔夫球。拦在的大小和形

状取决于分布输入假定(例如,一个均值为100,标准方差为10的正态分布,均匀分布或者三角分布),这里有些篮子相对较深或者更对称,可使特定的球更顺利的被拿出。反复拿出的球数取决于模拟试验的次数。对一个具有多重相关假设的大模型,不妨将它想象为一个巨大的篮子,很多婴儿筐放在里面。每个婴儿筐都有自己的一套彩色高尔夫球在四周跳动。有时这些婴儿筐之间相互连接(如果变量之间相关),迫使高尔夫球协力跳动,而在其他不相关情况下,这些球则彼此独立的跳动。每次从模型内的相互作用中拿出的球都列出并记录下来,以提供一个该模拟的预测输出结果。

模拟为何重要

一个解释模拟重要性的例子在图4.1和图4.2的案例说明中可以看到,叫做平均值缺陷。这个例子非常值得深入研究。它说明了一个分析者在不进行模拟的情况下可能被误导而做出错误的决策。假设你是销售易腐商品商店的老板,你需要做出一个决定以确定当前的最优库存。你新雇用的分析者成功的下载了5年的月度历史销售数据,并且她估计出平均值为五个单位。然后你决定当前的最优库存就是五个单位。你已经犯了平均值缺陷的错误。如此例所示,这个错误发生的明显原因就是历史需求分布是高偏度的而成本结构确是对称的。例如,假设你在参加一个会议,你的老板问你去年每个人赚了多少钱。你做了一个快速调查,发现工资范围从$60,000到$150,000不等。快速计算之后你发现平均值是$100,000.然后你老板告诉你他去年赚了$20,000,000!整个组的平均值一下子就变成了$15,000,000。这个$15,000,000显然不可能代表你的同事去年赚了这么多钱。这种情况下,中位值可能更合适。这里你可以看到仅仅使用平均值会导致高度误导性的结果。

继续这个例子,图4.2说明了怎么使用模拟法计算正确的存货水平。这里使用的方法是非参数拔靴模拟。之所以是非参数是因为在这种模拟法中没有制定分布参数。不同于蒙特卡罗参数模拟中需要假设特定的预设分布(正态,三角,对数正态一类的)及其所要求的参数(均值,标准方差,等等),非参数模拟利用数据本身来说明一件事情。

假设你搜集了5年来的历史需求水平并把每个月的需求量写在一个高尔夫球上。把所有60个高尔夫球扔进一个大篮子并随机混合。随机拿出一个高尔夫球并在纸上写下它的值,然后将球放回篮子并再次混合。这样做60次并计算平均值。这一过程是单独的一个分组试验。可放回地完成整个过程数千次。这几千个平均值的分布就代表模拟预测的结果。所期待的模拟结果就是这几千个平均值的平均值。图4.2显示了从非参数模拟得到的一个分布。如你所见,经营成本最小是的最优存货率是9单位,远远不同于之前图4.1中计算出来的五单位。

很明显,每种方法都有它的有点和缺陷。非参数模拟可以方便的通过风险模拟?的常用分布来实现,它使用历史数据来描述事实并预测未来。然而,参数分布迫使模拟出来的结果服从规则分布,这是大多数情况下人们所期待的。不像非参数模拟要求的必须考虑剔除杂乱数据(例如,离群值和谬值),参数模拟每次都是重新开始。

蒙特卡罗模拟是一种参数模拟,模拟开始之前要求有特定的分布参数。替代方法是非参数模拟,它用原始历史数据来描述事实并且模拟的运行不需要分布参数。

模拟与传统分析比较

图4.3介绍了一些用来处理不确定性和风险的传统方法。这些方法包括执行敏感度分析,情境分析和概率情境。下一步是易用蒙特卡罗模拟,它可以被看作是不确定性和风险的一种扩展。图4.4说明了一种应用更高级的蒙特卡罗模拟作预测的方法。图4.4中的例子显示了蒙特卡罗模拟到底可以多复杂,而这取决于其用途。从以下网站

https://www.wendangku.net/doc/db13800389.html, 下载的软件有一个随机过程模块,它运用了这些更复杂的随机预测模型,包括布朗运动,均值回归和随机漫步模型。

应用和EXCEL进行模拟

可以通过Excel实现模拟。然而,更高级的模拟软件比如执行这种人物效率更高并且有预先设置在模拟中的附加特性。现在我们介绍使用Excel和进行蒙特卡罗参数模拟和非参数资助模拟。

图4.5和图4.6中的例子显示了在一系列概率假设基础上运用Excel执行有限次数模拟。我们假设已经完成了一系列的情景分析,并得到了九个结果值,其各自的发生概率也已计算出来。运用Excel对这样一个情境分析建立模拟的第一步是理解Excel函数“RAND()”。这个函数就是一个简单的随机数字生成器,Excel用它来从0到1的均匀分布中随机生成数字。然后用假设中指定的概率把数字0到1转换成范围或区间。例如,如果$362,995的发生概率是55%,我们就可以生成一个从0.00到0.55的区间。类似地,对下一个值$363,522我们可以生成0.56到0.65的区间,这个的发生概率是10%,等等。在这些区间的基础上就可以建立非参数模拟。

图4.5说明了一个5000套试验的例子。每组试验需要模拟100次;也就是说,在每组模拟试验中,Excel用函数VLOOKUP(RAND(),$D$16:$F$24,3)可放回的随机抽取原始数字,这个函数先将RAND()函数产生的值与D16到F24区域的第一列数据相匹配,然后抽取第三列中相应的数据。然后计算每组试验中采样数据的平均值。这5000组试验的平均值的分布就可以得到,频率分布图显示在图4.5底部。根据中心极限定理,这些样本均值的平均值将在极限意义上逼近真正的总体均值。此外,当进行足够多组试验时,分布将非常逼近正态分布。显然,在Excel中人工运行这种非参数模拟是相当乏味的。一个替代方案是使用中的常用分布,它做的是同样的事情但是速度更快且效率更高。第六章,潘多拉的工具箱,更详细的展示了一些模拟工具。

非参数模拟是一个强有力的工具但是只有当数据可得时才适用。显然,越多的数据存在,模拟结果的精度和置信度就更高。然而,当数据不存在或一个有效的系统过程支持着数据集(例如,物理学,工程学,经济关系)时,参数模拟可能更合适,它使用精确的概率分布。

Excel函数RAND()用来从0到1的均匀分布中随机生成数字。RAND()*(B-A)用来从A 到B的均匀分布中随机生成数字。NORMSINV(RAND())从均值为1,方差为0的标准正态分布中随机生成数字。

用Excel模拟简单问题简单而且高效。然而,当产生更复杂的问题时,比如下面将要介绍的这个,就需要使用更专业的模拟软件。就是这样一个软件。在图4.7的例子中,单元格“Revenue”,“Opex”,“FCF/EBITDA Multiple”和“Revenue Growth Rate”(深灰色)是假定单元格,我们在里面填上分布的输入假定,比如变量遵循的分布类型和有哪些参数。例如,在分析该公司历史收入数据的基础上,我们可以说收入服从一个均值为$1010,标准方差为$100的正态分布。净现值(NPV)单元格是预测结果单元格,就是说,这些单元格的结果就是我们想要的最终分析结果。参见第五章,试用,以得到更多安装和启动软件的细节。

风险分析是我们制定的每个决策的一部分。我们一直面对着不确定,不明确和变异。甚至我们无法获得信息,我们不能准确的预测未来。蒙特卡洛模拟( Monte Carlo simulation)让您看到了您决策的所有可能的输出,并评估风险,允许在不确定的情况下制定更好的决策。

什么是蒙特卡洛模拟( Monte Carlo simulation)

蒙特卡洛模拟( Monte Carlo simulation)是一种计算机数学技术,允许人们在定量分析和决策制定过程中量化风险。这项技术被专家们用于各种不同的领域,比如财经,项目管理,能源,生产,工程,研究和开发,保险,石油&天然气,物流和环境。

蒙特卡洛模拟( Monte Carlo simulation)提供给了决策制定者大范围的可能输出和任意行动选择将会发生的概率。它显示了极端的可能性-最的输出,最保守的输出-以及对于中间路线决策的最可能的结果。

这项技术首先被从事原子弹工作的科学家使用;它被命名为蒙特卡洛,摩纳哥有名的娱乐旅游胜地。它是在二战的时候被传入的,蒙特卡洛模拟( Monte Carlo simulation)现在已经被用于建模各种物理和概念系统。

蒙特卡洛模拟( Monte Carlo simulation)是如何工作的

蒙特卡洛模拟( Monte Carlo simulation)通过构建可能结果的模型-通过替换任意存在固有不确定性的因子的一定范围的值(概率分布)-来执行风险分析。它一次又一次的计算结果,每次使用一个从概率分布获得的不同随机数集。根据不确定数和为他们制定的范围,蒙特卡洛模拟( Monte Carlo simulation)能够在它完成计算前调用成千上万次的重复计算。蒙特卡洛模拟( Monte Carlo simulation)产生可能结果输出值的分布。

通过使用概率分布,变量能够拥有不同结果发生的不同概率。概率分布是一种用来描述风险分析的变量中的不确定性的更加可行的方法。常用的概率分布包括:

正态分布(Normal)-或"钟型曲线".用户简单的定义均值或期望值和标准差来描述关于均值的变异。在中部靠近均值的值是最有可能发生的值。它是对称的,可以用来描述多种自然现象,比如人的身高。可以通过正态分布描述的变量示例包括通货膨胀率和能源价格。

对数正态分布(Lognormal)-值是正偏的,不像正态分布那样是对称的。它被用来代表不会小于零但可能有无限大正值的结果。可以通过对数正态分布描述的变量示例包括房地产价值,股票价格和石油储量。

均匀分布(Uniform)-所有的值发生的机会相等,用户只需制定最小和最大值。可以通过均匀分布描述的变量示例包括一个新产品的制造费用或未来销售收入。

三角分布(Triangular)-用户指定最小,最可能和最大值。在最可能附近的值最可能发生。可以通过三角分布描述的变量示例包括每时间单位内的过去销售历史和库存水平。

PERT分布-用户指定最小,最可能和最大值,类似三角分布。在最可能附近的值最可能发生。然而在最可能和极值之间的值比三角分布更有可能发生;那就是说,the extremes are not as emphasized. 可以通过三角分布描述的变量示例包括在项目管理模型中的一项任务的持续时间。

离散分布(Discrete)-用户指定最可能发生的值和每个值的可能性。比如关于诉讼结果的示例,20%的机会陪审团判决无罪,30%的机会陪审团判决有罪,40%的机会审批有效,10%的机会审批无效。

在蒙特卡洛模拟( Monte Carlo simulation)过程中,值被从输入概率分布中随机抽取。每个样本集被称为一次迭代,从样本获得的结果被记录。蒙特卡洛模拟( Monte Carlo simulation)执行这样的操作成百上千次,可能结果形成一个概率分布。用这种方法,蒙特卡洛模拟( Monte Carlo simulation)生成了一个更加全面关于将会发生的结果的视图。它不仅仅告诉什么结果会发生,而且还有结果发生的可能性。

蒙特卡洛模拟( Monte Carlo simulation)提供了许多超越确定性或"单点估计"分析的优势:

概率结果,结果不仅显示会发生什么,而且还有每个结果发生的可能性

图形化报告,因为蒙特卡洛模拟( Monte Carlo simulation)生成的数据,它很容易创建不同结果和他们发生机会的图形。这对于和其他投资者沟通结果是很重要的。

敏感性分析,如果只有很少的一些案例,确定性分许就很难发现哪个变量对结果影响最大。在蒙特卡洛模拟( Monte Carlo simulation)中,很容易发现哪个输入对底线结果有最大的影响。

情境分析,在确定性模型中,对于为不同输入值的不同组合建模来真实的查看不同情境的效果是很困难的。使用蒙特卡洛模拟( Monte Carlo simulation),分析员能够正确的查看当确定的输出发生时某个输入对应的值。这对于进一步的分析来说是无价的。

相关性输入,在蒙特卡洛模拟( Monte Carlo simulation)中,可能要建模输入变量之间的相关关系。它对于准确的描绘在某些因子增长时,其它的因子是如何增长或下降的情况时是重要的。

对蒙特卡洛模拟( Monte Carlo simulation)的增强是使用拉丁超立方(Latin Hypercub)抽样,它对于从整个分布范围内抽样更准确。

Palisade对蒙特卡洛模拟产品

用于个人计算机的电子表格应用的出现给日常工作中使用对蒙特卡洛模拟的专业人士提供了一个机会。Microsoft Excel是占有主导地位的电子表格分析工具,Palisade’s @RISK是适用Excel的处于领导地位的蒙特卡洛模拟插件。早在1987年,Palisade就为DOS平台下的Lotus 1-2-3引入了蒙特卡洛模拟,长期以来@RISK因为其计算准确,建模灵活和容易使用而享有盛誉。导入到Microsoft Project中产生了蒙特卡洛模拟的其它逻辑应用-分析在大型项目管理中的不确定性和风险。@RISK for Project是Palisade 用于 Microsoft Project的蒙特卡洛模拟插件。

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

一、蒙特卡洛随机模拟

系列一 蒙特卡洛随机模拟 实验目的:学会用计算机随机模拟方法来解决随机性问题 蒙特卡洛模拟法简介 蒙特卡洛(Monte Carlo)方法是一种应用随机数来进行计算机摸你的方法。此方法对研究对象进行随机抽样,通过对样本值的观察统计,求得所研究系统的某些参数。作为随机模拟方法,起源可追溯到18世纪下半叶蒲峰实验。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 蒙特卡洛模拟法求解步骤 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。 3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。 4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。 5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。 在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。 一. 预备知识: 随机数的产生 提示:均匀分布(0, 1)U 的随机数可由C 语言或Matlab 自动产生,在此基础上可产生其他分布的随机数. 1.逆变换法: 设随机变量U 服从(0,1)上的均匀分布,则)(1U F X -=的分布函数为)(x F . 步骤:(1) 产生)1,0(U 的随机数U ;(2) 计算)(1 U F X -=, 则X 服从)(x F 分布. 问题:练习用此方法产生常见分布随机数.例如“指数分布,均匀分布),(b a U ”.还有其它哪种常见分布的随机数可用此方法方便产生?

蒙特卡洛方法

蒙特卡洛方法 1、蒙特卡洛方法的由来 蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。 第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。 蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。如今MC方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。 2、蒙特卡洛方法的核心—随机数 蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。

在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。由该分布抽取的简单子样ξ1,ξ2ξ3……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。 实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。真随机数只是一种数学的理想化概念,实际中我们所接触到的和使用的都是伪随机数。要把伪随机数当成真随机数来使用, 必须要通过随机数的一系列的统计检验。 无论伪随机数用什么方法产生,它的局限性都在于这些随机数总是一个有限长的循环集合, 而且序列偏差的上确界达到最大值。所以若能产生低偏差的确定性序列是很有用的,产生的序列应该具有这样的性质, 即任意长的子序列都能均匀地填充函数空间。 人们已经产生了若干种满足这个要求的序列,如Halton序列、Faure序列、Sobol序列和Niederreiter序列等。称这些序列为拟随机数序列。伪随机序列是为了模拟随机性, 而拟随机序列更致力于均匀性。 3、蒙特卡洛方法的原理 当问题可以抽象为某个确定的数学问题时,应当首先建立一个恰当的概率模型,即确定某个随机事件A或随机变量X,使得待求的解等

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

蒙特卡洛模拟原理及步骤

二、蒙特卡洛模拟原理及步骤 (一)蒙特卡洛模拟原理:经济生活中存在大量的不确定与风险问题,很多确定性问题实际上是不确定与风险型问题的特例与简化,财务管理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确定与风险型问题的统计规律,还原一个真实的经济与管理客观面貌。 与常用确定性的数值计算方法不同,蒙特卡洛模拟是用来解决工程和经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一定概率下的不同数据和频度分布,通过对大量样本值的统计分析,得到满足一定精度的结果,因此蒙特卡洛模拟是进行不确定与风险型问题的有力武器。 1、由于蒙特卡洛模拟是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”,获得大量有关财务风险等方面的信息,弥补确定型分析手段的不足,避免对不确定与风险决策问题的误导; 2、财务管理、管理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对其进行有效分析,解决常用决策方法所无法解决的难题,更加全面深入地分析不确定与风险型问题。 (二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下: 1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固定成本等,并根据历史资料或专家意见,确定随机变量的某些统计参数; 2、按照一定的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数,模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数; 3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量×(产品单位销售价格-单位变动成本)-固定成本,这里需要说明的是以上分析参数不是确定型的,是依据某些概率分布存在的; 4、通过足够数量的计算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性; 5、根据计算机仿真的参数样本值,利用函数MAX、MIN、A VERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。三、概率型量本利分析与比较 (一)期望值分析方法假设某企业为生产与销售单一产品的企业,经过全面分析与研究,预计未来年度的单位销售价格、销售数量、单位变动成本和固定成本的估计值及相应的概率如表1,其中销售数量单位为件,其余反映价值的指标单位为元,试计算该企业的生产利润。表1概率型量本利分析参数 项目概率数值 单位销售价格0.3 40 0.4 43 0.3 45 单位变动成本0.4 16 0.2 18 0.4 20 固定成本0.6 28000 0.4 30000

蒙特卡洛模拟方法作业及答案(附程序)

蒙特卡洛习题 1.利用蒙特卡洛计算数值积分 () ()() 1280ln 1tan x x x xe dx +++? clear all ;clc;close all ; n=1000; count=0; x=0:0.01:1; y=log((1+x).^2+(tan(x).^8)+x.*exp(x)); plot(x,y,'linewidth',2) hold on for i=1:n x1=rand; y1=rand*y(end); plot(x1,y1,'g*') pause(0.01) if y1

2.分别用理论计算和计算机模拟计算,求连续掷两颗骰子,点数之和大于6且第一次掷出的点数大于第二次掷出点数的概率。 clear all;clc;close all; count=0; n=100000; for i=1:n x=floor(rand*6+1); y=ceil(rand*6); if x+y>6&&x>y count=count+1; end end P=count/n 3.

clear all;clc;close all; count=0; n=2000; ezplot('x^2/9+y^2/36=1'); hold on ezplot('x^2/36+y^2=1'); hold on ezplot('(x-2)^2+(y+1)^2=9') for i=1:n x=rand*12-6; y=rand*12-6; plot(x,y,'gh','linewidth',2) pause(0.01) if x^2/9+y^2/36<1&&x^2/36+y^2<1&&(x-2)^2+(y+1)^2<9

R软件 蒙特卡罗模拟

R使用指南 打开R 下图是R软件的主窗口,R软件的界面与Windows的其他编程软件类似,由一些菜单和快捷按钮组成。快捷按钮下面的窗口便是命令输入窗口,它也是部分运算结果的输出窗口,有些运算结果则会在新建的窗口中输出。 当一个R 程序需要你输入命令时,它会显示命令提示符。默认的提示符是>。技术上来说,R 是一种语法非常简单的表达式语言(expression language)。它大小写敏感,因此A 和a 是不同的符号且指向不同的变量。可以在R 环境下使用的命名字符集依赖于R 所运行的系统和国家(就是系统的locale 设置)。通常,数字,字母,. 和都是允许的(在一些国家还包括重音字母)。不过,一个命名必须以. 或者字母开头,并且以. 开头时第二个字符不允许是数字。基本命令要么是表达式(expressions)要么就是赋值(assignments)。如果一条命令是表达式,那么它将会被解析(evaluate),并将结果显示在屏幕上,同时清空该命令所占内存。赋值同样会解析表达式并且把值传给变量但结果不会自动显示在屏幕上。命令可以被(;)隔开,或者另起一行。基本命令可以通过大括弧(f和g) 放在一起构成一个复合表达式(compound expression)。注释几乎可以放在任何地方7。一行中,从井号(#)开始到句子收尾之间的语句就是注释。如果一条命令在一行结束的时候在语法上还不完整,R 会给出一个不同的提示符,默认是+。该提示符会出现在第二行和随后的行中,它持续等待输入直到一条命令在语法上是完整的。该提示符可以被用户修改。在后面的文档中,我们常常省略延续提示符(continuation prompt),以简单的缩进表示这种延续。 R的帮助

蒙特卡洛风险分析

港口投资项目评估中的蒙特卡洛风险分析 1 港口投资项目评估中的蒙特卡洛风险分析 关键词:蒙特卡洛方法;风险分析;港口投资 摘 要:港口投资项目的经济性风险分析是项目方案优选与科学决策的重要基础,它从经济角度分析计算所需投入的费用和预期的效益,以评价投资项目的经济合理性。港口投资项目的经济收益往往受许多随机因素的影响,这在经济性风险分析时应予以考虑。本文应用蒙特卡洛方法(Monte Carlo analysis )对港口投资项目进行经济性风险分析,结合我国港口投资的实际情况,以实际案例说明了蒙特卡洛方法在我国港口投资项目经济性风险分析中的应用。 一.引言 目前,我国对港口投资项目的经济评价一般采用确定性方法,即根据一些预测或估算得到的数据,推算出唯一确定的经济评价指标值,并由此作出港口投资的决策。对于那些对经济效果具有影响而又容易发生变化的因素,则将其作为敏感性变量,对其作敏感性分析。敏感性分析只能反映某影响因素变化某一幅度时,对经济效果产生相应的变化值,却不能反映出这一变化的可能性有多大。要全面了解港口投资项目经济效果的变化规律,详细考察项目可能遇到的风险以及各种经济指标的可靠程度,只进行敏感性分析是不全面的,还须对项目作经济性风险分析。 在风险分析领域,概率统计理论一个最直接的应用就是蒙特卡洛方法。这种方法广泛应用在项目管理以及金融计算等领域,在重大项目的经济效益分析中,也经常使用这种方法作为项目评价的辅助手段。蒙特卡洛方法按照变量的分布随机选取数值, 模拟项目的投资过程, 通过大量的独立的重复计算, 得到多个模拟结果, 再根据统计原理计算各种统计量, 如均值、方差等, 从而对项目投资收益与风险有一个比较清晰的估计。 二.蒙特卡洛方法的基本原理 蒙特卡洛方法的基本思想是:将符合一定概率分布的大量随机数作为参数带入数学模型,求出所关注变量的概率分布,从而了解不同参数对目标变量的综合影响以及目标变量最终结果的统计特性。蒙特卡洛方法的基本原理简单描述如下: 假定函数),...,,(21n x x x f y =,蒙特卡洛方法利用一个随机数发生器通过抽样取出每一组随机变量 (ni i i x x x ,...,, 21),然后按),...,,(21n x x x f y =的关系式确定函数的值),...,,(21ni i i i x x x f y =。反复独立抽样(模拟)多次(i=1,2,…),便可得 到函数的一组抽样数据(n y y y ,...,,21),当模拟次数足够多时,便可给出与实际情况相 近的函数y 的概率分布与其数字特征。 应用蒙特卡洛方法的前提就是要确定目标变量的数学模型以及模型中各个变量的概率

蒙特卡罗也称统计模拟方法

蒙特卡罗也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·罗方法正是以概率为基础的方法。与它对应的是确定性算法。 蒙特卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。有一个例子可以使你比较直观地了解蒙特卡罗方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡罗方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。当你的豆子越小,撒的越多的时候,结果就越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。 工作过程 在解决实际问题的时候应用蒙特卡罗方法主要有两部分工作: 用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。 用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。 计算步骤 使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的: ① 使用随机数发生器产生一个随机的分子构型。 ②对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。 ③计算新的分子构型的能量。 ④比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。 若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。 若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼常数,同时产生一个随机数。

运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析 蒙特卡罗模拟由著名的摩纳哥赌城而得名,他是一种非常强有力的方法学。对专业人员来说,这种模拟为方便的解决困难而复杂的实际问题开启了一扇大门。估计蒙特卡罗模拟最著名的早期使用是诺贝尔奖物理学家Enrico Fermi(有时也说是原子弹之父)在1930年的应用,那时他用一种随机方法来计算刚发现的中子的性质。蒙特卡罗模拟是曼哈顿计划所用到的模拟的核心部分,在20世纪50年代蒙特卡罗模拟就用在Los Alamos国家实验室发展氢弹的早期工作中,并流行于物理学和运筹学研究领域。兰德公司和美国空军是这个时期主要的两个负责资助和传播蒙特卡罗方法的组织,今天蒙特卡罗模拟也被广泛应用于不同的领域,包括工程,物理学,研发,商业和金融。 简而言之,蒙特卡罗模拟创造了一种假设的未来,它是通过产生数以千计甚至成千上万的样本结果并分析他们的共性实现的。在实践中,蒙特卡罗模拟法用于风险分析,风险鉴定,敏感度分析和预测。模拟的一个替代方法是极其复杂的随机闭合数学模型。对一个公司的分析,使用研究生层次的高等数学和统计学显然不合逻辑和实际。一个出色的分析家会使用所有他或她可得的工具以最简单和最实际的方式去得到相同的结果。任何情况下,建模正确时,蒙特卡罗模拟可以提供与更完美的数学方法相似的答案。此外,有许多实际生活应用中不存在闭合模型并且唯一的途径就是应用模拟法。那么,到底什么是蒙特卡罗模拟以及它是怎么工作的? 什么是蒙特卡罗模拟? 今天,高速计算机使许多过去看来棘手的复杂计算成为可能。对科学家,工程师,统计学家,管理者,商业分析家和其他人来说,计算机使创建一个模拟现实的模型成为可能,这有助于做出预测,其中一种方法应用于模拟真实系统,它通过调查数以百计甚至数以千计的可能情况来解释随机性和未来不确定性。结果通过编译后用于决策。这就是蒙特卡罗模拟的全部内容。 形式最简单的蒙特卡罗模拟是一个随机数字生成器,它对预测,估计和风险分析都很有用。一个模拟计算模型的许多情况,这通过反复地从预先定义的特定变量概率分布中采集数据并将之应用于模型来实现。因为所有的情况都产生相应的结果,每种情况都可以蕴含一种预测。预测的是你定义为重要模型结果的事项(通常含有公式或函数)。 将蒙特卡罗模拟法想象为从一个大篮子里可放回的反复拿出高尔夫球。拦在的大小和形

蒙特卡罗方法及应用实验讲义2016资料

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

蒙特卡洛风险分析 (1)

蒙特卡洛风险分析 -------港口投资项目评估中的应用 关键词:蒙特卡洛方法;风险分析;港口投资 摘要:港口投资项目的经济性风险分析是项目方案优选与科学决策的重要基础,它从经济角度分析计算所需投入的费用和预期的效益,以评价投资项目的经济合理性。港口投资项目的经济收益往往受许多随机因素的影响,这在经济性风险分析时应予以考虑。本文应用蒙特卡洛方法(Monte Carlo analysis)对港口投资项目进行经济性风险分析,结合我国港口投资的实际情况,以实际案例说明了蒙特卡洛方法在我国港口投资项目经济性风险分析中的应用。 一.引言 目前,我国对港口投资项目的经济评价一般采用确定性方法,即根据一些预测或估算得到的数据,推算出唯一确定的经济评价指标值,并由此作出港口投资的决策。对于那些对经济效果具有影响而又容易发生变化的因素,则将其作为敏感性变量,对其作敏感性分析。敏感性分析只能反映某影响因素变化某一幅度时,对经济效果产生相应的变化值,却不能反映出这一变化的可能性有多大。要全面了解港口投资项目经济效果的变化规律,详细考察项目可能遇到的风险以及各种经济指标的可靠程度,只进行敏感性分析是不全面的,还须对项目作经济性风险分析。 在风险分析领域,概率统计理论一个最直接的应用就是蒙特卡洛方法。这种方法广泛应用在项目管理以及金融计算等领域,在重大项目的经济效益分析中,也经常使用这种方法作为项目评价的辅助手段。蒙特卡洛方法按照变量的分布随机选取数值, 模拟项目的投资过程, 通过大量的独立的重复计算, 得到多个模拟结果, 再根据统计原理计算各种统计量, 如均值、方差等, 从而对项目投资收益与风险有一个比较清晰的估计。 二.蒙特卡洛方法的基本原理 蒙特卡洛方法的基本思想是:将符合一定概率分布的大量随机数作为参数带入数学模型,求出所关注变量的概率分布,从而了解不同参数对目标变量的综合影响以及目标变量最终结果的统计特性。蒙特卡洛方法的基本原理简单描述如下:

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介 蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。 一起源 这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。 Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。 蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特?罗方法正是以概率为基础的方法。与它对应的是确定性算法。 二解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特

蒙特卡洛方法及其在风险评估中的应用

蒙特卡洛方法及其应用 1风险评估及蒙特卡洛方法概述 1.1蒙特卡洛方法。 蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值解。 蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。 蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测值的区间围及分布规律。 1.2风险评估概述。 风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。正是因为未来的不确定性使得每一个项目都存在风险。对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。因此,对于风险的测量以及控制是非常重要的一个环节。 风险评估就是量化测评某一事件或事物带来的影响的可能程度。根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失,以实现预期最佳是投资的目标。 当评价风险大小时,常有两种评价方式:定性分析与定量分析法。定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。而定量分析法则是将一些风险指标量化得到一系列的量化指标。通过这些简单易懂的指标,才能使公司的经营者、投资者对于项目分风险有正确的评估与判断,

蒙特卡洛方法模拟小例子

例在我方某前沿防守地域,敌人以一个炮排(含两门火炮)为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地进行了伪装并经常变换射击地点. 经过长期观察发现,我方指挥所对敌方目标的指示有50%是准确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮. 现在希望能用某种方式把我方将要对敌人实施的20次打击结果显现出来,确定有效射击的比率及毁伤敌方火炮的平均值。 使用蒙特卡洛方法模拟50次打击结果: function [out1 out2 out3 out4]=Msc(N) % N开炮次数 % out1射中概率 % out2平均每次击中次数 % out3击中敌人一门火炮的射击总数 % out4击中敌人2门火炮的射击总数 k1=0; k2=0; k3=0; for i=1:N x0=randperm(2)-1; y0=x0(1); if y0==1 fprintf('第%d次:指示正确||',i); x1=randperm(6); y1=x1(1); if y1==1|y1==2|y1==3 fprintf('第%d次:击中0炮||',i); k1=k1+1; elseif y1==4|y1==5 fprintf('第%d次:击中1炮||',i); k2=k2+1; else

fprintf('第%d次:击中2炮||',i); k3=k3+1; end else fprintf('第%d次:指示错误,击中0炮||',i); k1+1; end fprintf('\n'); end out1=(k2+k3)/N; out2=(0*k1+k2+2*k3)/20; out3=k2/N; out4=k3/N; 运行: 1.[out1 out2 out3 out4]=Msc(50) 结果: 1.第1次:指示正确||第1次:击中2炮|| 2.第2次:指示错误,击中0炮|| 3.第3次:指示错误,击中0炮|| 4.第4次:指示正确||第4次:击中0炮|| 5.第5次:指示错误,击中0炮|| 6.第6次:指示正确||第6次:击中1炮|| 7.第7次:指示正确||第7次:击中0炮|| 8.第8次:指示错误,击中0炮|| 9.第9次:指示正确||第9次:击中2炮|| 10.第10次:指示正确||第10次:击中1炮|| 11.第11次:指示正确||第11次:击中1炮|| 12.第12次:指示正确||第12次:击中2炮|| 13.第13次:指示错误,击中0炮|| 14.第14次:指示正确||第14次:击中1炮|| 15.第15次:指示错误,击中0炮|| 16.第16次:指示错误,击中0炮|| 17.第17次:指示正确||第17次:击中0炮|| 18.第18次:指示错误,击中0炮||

蒙特卡罗仿真的原理及应用

产业与科技论坛2012年第11卷第17期 2012.(11).17 Industrial &Science Tribune 蒙特卡罗仿真的原理及应用 □戚苇苇 【内容摘要】蒙特卡罗法又称随机抽样技巧法或统计试验法,在目前结构可靠度计算中,它被认为是一种相对精确法,具有在计 算机上实现蒙特卡罗计算时程序结构清晰简单,便于编制和调试的特点。【关键词】通信技术;蒙特卡罗法;仿真;误码率 【作者单位】戚苇苇,江苏省扬州技师学院 一、通信仿真概述 (一)通信的基本概念以及分类。通信是通过某种媒体进行的信息传递。古代,人们通过驿站、飞鸽传书、烽火报警 等方式进行信息传递。今天, 随着科学水平的飞速发展,相继出现了无线电,固话,手机,互联网甚至可视电话等各种通 信方式。对于点到点之间的通信, 按消息传送的方向与时间的关系,通信方式可分为:单工通信、半双工通信、全双工通 信。数字通信中,按照数字信号码元排列方法不同,通信方式可分为:串行传输和并行传输。 (二)通信系统的组成。 1.信息源。信源是发出信息的源,其作用是把各种可能消息转换成原始电信号。信源可分为模拟信源和数字信源。模拟信源(如电话机、电视摄像机)输出连续幅度的模拟信号;数字信源(如电传机、计算机等各种数字终端设备)输出 离散的数字信号。 2.变换器。因语声、图像等原始的消息不能以电磁波来传送,所以需要通过变换器将原始的非电消息变换成电信号,并再对这种电信号进一步转换,使其变换成适合某种具体信道传输的电信号。这种电信号同样载有原有的信息。例如电话机的送话器,就是将语声变换成幅度连续变化的电话信号,再进一步转换后送到信道上去。 3.信道。信道是指传输信号的通道,可以是有线的,也可以是无线的,有线和无线均有多种传输媒质。信道既给信号以通路,也对信号产生各种干扰和噪声。传输媒质的固有特性和干扰直接关系到通信的质量。 4.反变换器。反变换器的基本功能是完成变换器的反继续提升水头,管涌便不断向上游发展直至达到临界坡降,此时管涌通道便不能趋于稳定,不断有砂粒起动运移一直到与上游连通,连通的管涌水流强力冲刷堤基并最终导致堤基整体破坏和溃堤。 产生上述现象的原因是:孔口处出现沙沸使地基砂体液化,继续增加水头,砂粒便会从沙沸处向外涌出形成砂环,由于堤基砂层的水平破坏坡降比垂直破坏坡降要小得多,因此地基便会有砂粒从沙沸处涌出形成管涌通道,在未达到临界坡降前管涌通道最终趋于稳定,这是由于砂粒向沙沸处输送,积聚在孔口附近具有了一定的反滤作用,从而加大了局部水头损失,还有管涌通道中的砂粒被水流带出堆积在沙沸处形成砂环,从而抬升了水位降低了有效作用水头。由于地基砂粒的离散性具有随机性,因此这种稳定需要很长时间,条件的微小改变就有可能打破这种稳定,因此时间是影响管涌破坏发生与否非常重要的因素。 (三)管涌破坏位置分析。管涌产生的位置都是发生在强弱透水层接触面的浅层,对深层地基的渗流并无影响,其主要原因是:一是堤基砂层顶面的渗径最短因此此处水平水力坡降最大;二是堤基砂层的水平破坏坡降比垂直破坏坡降要小得多。 三、结语 堤基管涌发展的原因主要是在水平渗透力作用下的水平向浅层破坏。因此,垂直防渗是在发生管涌后地基渗透破 坏治理的优选方法。堤基管涌通道能否趋于稳定与管涌口是否涌砂有很大关系。所以,反滤压盖阻止堤基管涌通道内的砂粒持续涌出应当作为抗洪抢险时的首选。管涌通道趋于稳定的主要原因是:管涌通道的发展使管涌通道前端堤基砂层的水平渗透比降逐渐降低,和管涌口垂直破坏坡降不断增大,直至等于砂层的局部破坏比降。【参考文献】1.刘忠玉,乐金朝,苗天德.无黏性土中管涌的毛管模型及其应用[ J ].岩石力学与工程学报,20042.毛昶熙,段祥宝,蔡金傍,茹建辉.堤基渗流管涌发展的理论分析[J ].水利学报,20043.李广信,周晓杰.堤基管涌发生发展过程的试验模拟[J ].水利水电科技进展,20054.姚秋玲,丁留谦.单层和双层堤基管涌砂槽模型试验研究[J ].水利水电技术,2007 5.陈建生,李兴文,赵维炳.堤防管涌产生集中渗漏通道机理与探测方法研究[J ].水利学报,20006.朱伟,山村和也.日本阿武隈川的洪水灾害及其综合治理[J ].河海大学学报,2000 7.郭书亮.堤基管涌模型试验及形成机理研究[D ].河北工程大学, 2012· 67·

蒙特卡洛算法简介

算法简介 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 编辑本段背景知识 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.] 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和Nick Metropolis共同发明,被称为蒙特卡洛方法。它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:1,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。摘自《细数二十世纪最伟大的十种算法》CSDN JUL Y译 编辑本段算法描述 以概率和统计理论方法为基础的一种计算方法。将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。比如,给定x=a,和x=b,你要求某一曲线f和这两竖线,及x轴围成的面积,你可以起定y轴一横线y=c 其中c>=f(x)max,很简单的,你可以求出y=c,x=a,x=b及x轴围成的矩形面积,然后利用随机产生大量在这个矩形范围之内的点,统计出现在曲线上部点数和出现在曲线下部点的数目,记为:doteUpCount,nodeDownCount,然后所要求的面积可以近似为doteDownCounts所占比例*矩形面积。 编辑本段问题描述 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,从而得到Pi的值。怎样求出扇形面积在正方形面积中占的比例K呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m与所投点的总数n的比m/n作为k的近似值。P落在扇形内的充要条件是x^2+y^2<=1。

相关文档
相关文档 最新文档