文档库 最新最全的文档下载
当前位置:文档库 › 生物信息学论文

生物信息学论文

生物信息学论文
生物信息学论文

生物信息学

课程论文

(2011学年下学期)

论文题目:浅谈生物信息学的发展和前景班级:08生工3班

学号:0809030308

姓名:周永强

摘要:生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。

关键字:生物信息学、产生背景、发展现状、前景

随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展, 被誉为“解读生命天书的慧眼”。

一、生物信息学产生的背景

生物信息学是80年代未随着人类基因组计划(Human genome project)的启动而兴起的一门新的交叉学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。事实上,它是一门理论概念与实践应用并重的学科。

生物信息学的产生发展仅有10年左右的时间---bioinformatics这一名词在1991年左右才在文献中出现,还只是出现在电子出版物的文本中。事实上,生物信息学的存在已有30多年,只不过最初常被称为基因组信息学。美国人类基因组计划中给基因组信息学的定义:它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。

自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3x109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划终于完成了工作草图,预示着完成人类基因组计划已经指日可待。截止目前为止,仅登录在美国GenBank数据库中的DNA序列总量已超过70亿碱基对。此外,迄今为止,已有一万多种蛋白质的空间结构以不同的分辨率被测定。基于cDNA序列测序所建立起来的EST数据库其纪录已达数百万条。在这些数据基础上派生、整理出来的数据库已达500余个。这一切构成了一个生物学数据的海洋。这种科学数据的急速和海量积累,在人类的科学研究历史中是空前的。

数据并不等于信息和知识,但却是信息和知识的源泉,关键在于如何从中挖掘它们。与正在以指数方式增长的生物学数据相比,人类相关知识的增长(粗略地用每年发表的生物、医学论文数来代表)却十分缓慢。一方面是巨量的数据;另一方面是我们在医学、药物、农

业和环保等方面对新知识的渴求,这些新知识将帮助人们改善其生存环境和提高生活质量。这就构成了一个极大的矛盾。这个矛盾就催生了一门新兴的交叉科学,这就是生物信息学。

二、生物信息学研究的发展现状

资金和实力非常重要,生物信息的研究投入短期不算大,但是结合成果,其投入相当的大。因为目前生物信息主要在于教学和和研究,商业领域的应用不算很广。如一套LIMS加上软件就要花上数千万。加上相关项目的研究开发,不是国内相关的机构所能承受的。所以需要得到政府的支持和帮助。以及有识之士的投入。否则我们又将远远落后国外。国内的制药行业将永不得翻身!基因的流失(国外一些国家打着给国内免费治疗,分析疾病的考旗帜,暗中收集了国内不同省份,地区的遗传类疾病和特性。这些资源,我们国家忽略,应当说目前还没有这样的实力进行研究)。落后就要挨打,21世纪是生物的世纪。基因大战不可避免。基因和疾病的研究很大程度就是数据的分析。里面的领头羊就是生物信息。国内应当在基础教学,基础研究并结合应用力度。

当然国内的人才济济,如有更多计算机领域和数学(统计方面的)人才参与到生物信息,将如虎添翼。目前我国生物信息学发展面临着如下几方面的困境:

⒈政府投资不足虽然国际上生物信息学研究在各发达国家中比较受重视,但仍有不少研究机构抱怨政府资金投入不够。最近美国许多研究院纷纷申请要求政府加大生物信息学工具与数据库方面的投入,而且欧洲、日本、澳大利亚在这些领域也存在着资金困扰问题,欧洲生物信息学研究所(EBI)和欧洲基金会生命科学中心去年都遇到了麻烦。目前虽然危机已经暂时渡过,但未来几年EBI数据库和其它基础结构仍将受到资金短缺的困扰,一致有人发出了"免费数据服务还能维持多久"的疑问。

2.来自商业机构的竞争基因组研究潜在的巨大商业利润使得国际上一批大型制药公司和化学公司向该领域大规模的进军。世界最大制药集团之一的Giba Geigy和Sandoz合资建立的Novartis公司投资2.5亿美元建立基因组研究所;Glaxo-Wellcome在基因组研究领域投入4700万美元,将研究人员增加一倍;Smith Kline公司花125亿美元扩展人基因组的顺序,将生物信息学的研究人员从2人增加至70人,并将该公司药物开发项目中的25%建立在基因组学之上。这一方面给生物信息学发展注入了生机,另一方面对那些政府支持的不以赢利为目的的研究机构造成了巨大的压力,学术部门的资金投入远远不及工业部门,其负面冲击力不可忽视。毕竟经济利益的盲目追求会导致基因组研究的片面性,生物信息学长路漫漫,保护这些学术部门的良好发展非常有必要。

3.专业人才匮乏目前该领域缺乏懂得如何利用计算机技术处理大量生物数据的生物学家,不少生物学家只是将计算机用来打字或作为图纸的替代品。甚至出现了这样有趣的现象:制药业、工业、农业、生物技术研究团体经常在学术机构大肆搜查那些"可疑人",更有甚者他们彼此间互挖"墙角"。虽然对于人才的渴求与日俱增,但全世界也仅有20多个专业人才培训中心,而且这些中心本身也处在恶性循环中,那些经培训后的人才往往由于高薪诱惑而投身应用工业部门,导致培训教育人员越来越少,出现"断层"现象。

综上所述,不难看出,生物信息学并不是一个足以乐观的领域,究竟原因,是由于其是基于分子生物学与多种学科交叉而成的新学科,现有的形势仍表现为各种学科的简单堆砌,相互之间的联系并不是特别的紧密。在处理大规模数据方面,没有行之有效的一般性方法;而对于大规模数据内在的生成机制也没有完全明了,这使得生物信息学的研究短期内很难有突破性的结果。那么,要得到真正的解决,最终不能从计算机科学得到,真正地解决可能还是得从生物学自身,从数学上的新思路来获得本质性的动力。毫无疑问,正如Dulbecco1986年所说:"人类的DNA序列是人类的真谛,这个世界上发生的一切事情,都与这一序列息息相关"。但要完全破译这一序列以及相关的内容,我们还有相当长的路要走。

三、生物信息学的发展前景

《第三次技术革命》里有这样描述:“一场与工业革命和以计算机为基础的革命有相同影响力的变化正在开始。下一个伟大时代将是基因组革命时代,它现在处于初期阶段。”基因组学的发展已经进入后基因组研究阶段,致力于蛋白质功能研究的蛋白质组学和功能蛋白质组学正在蓬勃发展,在生物信息学发展的带动下,我们必定能够揭示各种生命现象的奥秘,并带动多个学科的跨越式发展。生物信息学的发展将对分子生物学、药物设计、工作流管理和医疗成像等领域产生巨大的影响,极有可能引发新的产业革命。此外,生物信息学所倡导的全球范围的资源共享也将对整个自然科学乃至人类社会的发展产生深远的影响。有理由相信,今日生物学数据的巨大积累将导致重大生物学规律的发现,生物信息学的发展在国内、外基本上都处在起步阶段,因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。

生物学是生物信息学的核心和灵魂,数学与计算机技术则是它的基本工具。这一点必须着重指出。预测生物信息学的未来主要就是要预测他对生物学的发展将带来什么样的根本性的突破。这种预测是十分困难的,甚至几乎不可能。但机不可失,时不再来,鉴于生物信息学在我国生物信息学和经济发展中的重要意义和其发展的紧迫性,因此,由国家出面组织全国的力量,搞个类似"两弹一星"那样的,但是,规模要小的多,花钱也少的多的生物信息学发展计划,不是不可以考虑的。要充分发挥中央与地方,生物学科研究人员等方方面面的积极性。生物信息学研究投资少,见效快,可充分发挥我国智力资源丰富的长处,是特别适合我国国情的一项研究领域。要在大学里建立生物信息学专业,设立硕士点和博士点,培养专门人才。可以组织一大批数学、物理、化学和计算机科技工作者,在自愿的基础上,学习有关的生物学知识,开展多方面的生物信息学研究。

经过十几年或更长的时间的努力,逐渐使我国成为生物信息学研究强国,是完全有可能的。信息学的商业价值十分显著。国外很多大学,研究机构,软件公司甚至政府机构纷纷成立各种生物信息机构,建立自立的生物信息集成系统,研制这方面的软件,重金招聘人才,期望从中获取更多的生物信息和数据加以研究和利用,缩短药物开发周期,抢注基因专利,获取更大利润。我国如不加大资金投入力度,将来可能会花更多的钱去购买别人的软件,使用专利基因或购买新的药物。所幸,我国也开始重视这一学科:南、北方人类基因组中心的相继建成,北大生物城的破土动工等,标志着我国对生物信息学的重视。我们有理由相信,

我国的生物信息学在21世纪会有巨大的飞跃。

参考文献

1. 陈润生.生物信息学.生物物理学报,1999,15(1):5-13.

2. 北京生物技术和新医药产业促进中心.世纪之交的新科学:生物信息学.生物技术通报,1999,(8):49-54.

3. 杨福愉.展望21世纪的分子生物学.生物物理学报,1999,15(1):1-5.

4. 郑国清,张瑞玲,段韶芬,徐丽敏;生物信息学的形成与发展[J];河南农业科学;2002年11期

5. 王玉梅,王艳;国外生物信息学发展动态分析[J];科技情报开发与经济;2002年06期

生物信息学论文

生物信息学的进展综述 韩雪晴 (生物工程1201班,学号:201224340124) 摘要:生物信息学是一门研究生物和生物相关系统中信息内容和信息流向的综合性系统科学。80年代以来新兴的一门边缘学科,信息在其中具有广阔的前景。伴随着人类基因组计划的胜利完成与生物信息学的发展有着密不可分的联系,生物信息学的发展为生命科学的发展为生命科学的研究带来了诸多的便利,对此作了简单的分析。 关键词:生物信息学;进展;序列比对;生物芯片 A review of the advances in Bioinformatics Han Xueqing (Bioengineering, Class1201,Student ID:201224340124) Abstract: Bioinformatics is the science of comprehensive system of information content and information flows to a study on the biological and bio related in the system. The edge of an emerging discipline since 80, has broad prospects in which information. With the human genome project was completed and the development of bioinformatics are inextricably linked, for the life science research development of bioinformatics for the development of life science has also brought a lot of convenience, has made the simple analysis. Keywords: bioinformatics;progress;Sequence alignment;biochip 1、生物信息学的产生背景 生物信息学是20世纪80年代末开始,随着基因组测序数据迅猛增加而逐渐兴起的一门学科[1]。应用系统生物学的方法认识生物体代谢、发育、分化、进化以及疾患发生规律的不可或缺的工具[2]。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 2、生物信息学研究内容 主要是利用计算机存储核酸和蛋白质序列,通过研究科学的算法,编制相应的软件对序列进行分析、比较与预测,从中发现规律。白细胞介素-6(IL-6)是机体重要的免疫因子,但在两栖类中未见报道。采用生物信息学方法对两栖类模式动物非洲爪蟾IL-6进行分析[3]。以人IL-6基因对非洲爪蟾数据库进行搜索、分析,并采用RT-PCR方法对所得序列进行验证。结果表明,非洲爪蟾IL-6基因位于scaffold_52基因架上,具有保守的IL-6家族基序[4]。采用生物信息新方法进行不同物种的免疫基因挖掘、克隆,是一种有效的方法[5]。 2.1序列比对 比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA[6]。序列数据库搜索最著名且最常用的工具之一便是BLAST算法。FASTA算法是另一族常用的序列比对及搜索工具[7]。 2.2结构比对 比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。 2.3蛋白质结构预测 从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构[8]。 3、生物信息学的新技术

生物信息学论文

生物信息学论文 论文题目 PBL教学法在生物信息学课程教学中的应用与实践 指导老师:谷峻 学生姓名:吕晓莹 学号: 20112501092 院系:生命科学学院 专业:生物科学 撰写时间:2014年4月

摘要:PBL Problem-Based Leaming),即基于问题学习,是由美国神经病学教授Barrows首创并于1969年在加拿大的麦克马斯特大学医学院试行的一种新的教学方法。PBL 的基本特点是以教师为引导,以学生为中心,通过解决问题来学习,与传统的以学科为基础,以教师为中心的教学方法相比有很大的不同。本论文通过对照PBL 教学理念和生物信息学课程理论,来探究PBL 教学法在生物信息学课程教学中应用与实践,为提高生物信息学课程教学质量提供一种可行方法。 关键词:PBL 教学法,生物信息学,应用与实践 1 前言 生物信息学是20世纪90年代由多种学科知识相互渗透、融合而兴起的一门用数理和信息科学的观点、理论以及方法去研究生命现象、组织和分析呈现指数增长的生物医学数据的一门学科,具有开放性、发展性、交叉性、综合性、应用性等特点。鉴于此,尽管国内的生物信息学科学研究开展得如火如荼,但由于受到师资、教材、授课对象、教学条件、教学法等因素限制,开设该课程的高校尚未真正形成一套成熟的、科学的教学体系。 目前, 国内的生物信息学教学基本沿用以“教师讲授为主”的传统教学模式。以课堂为中心、以理论教学为主, 进行“满堂灌”式教育, “照本宣读”的方式也比较常见。缺乏与生物信息学交叉前沿性特点相适应的型教学模式。同时,实验教学比较单一, 常以验证性为目的, 有些甚至成为了“文献检索”课程, 缺乏和专相适应的综合性、设计性实验。现代教学改革与实践证明,在教学过程中必须要突出“学生是教学活动的主体”,既要注意张扬学生“个性”,更要强化学生团队合作意识及创新、创业能力培养,以保证人才培养质量。在这种情况下,传统的教学模式已与当前社会快速发展的局面格格不入,迫切需要变革。因此,为激发学生的学习积极性和教学参与热情,探索先进的教学法以革新生物信息学的教学内容及考核方式等显得尤为重要。其中,以PBL 为例的教学法在生物信息学课程教学应用与实践中取得了良好的课程教学效果。 2 PBL 教学法的优势 2.1 PBL 教学顺应时代的发展 当今社会是信息时代, 生物学不断发展, 知识不断更新, 老师要讲的内容越来越多, 学生要读的书越来越厚, 授课内容与课时不相适应的矛盾非常突出, 且教学双方负担过重, 教学效果难以保证, 这种填鸭式的传统教学越来越无法适应信息社会的要求, 这就要求学生在接受人类已有的科学知识基础上, 着重培养创造能力, 学会自己寻找知识和创造知识的本领。而PBL 教学模式能明显减少说教式教学和学习负担, 既能加强学生独立学习,又能减轻教师的教学负担,顺应了时代的发展。 2.2 有利于培养学生主动学习的能力和形成双向交流 传统的教学模式是以学科为基础, 教师课堂讲解为主, 教学内容进度和方法均由老师决定,其 对象是学生整体, 容易忽视单一个体的学习兴趣、能力及个性特征, 学生始终处于被动地接受知识的地位, 不利于主动学习能力的培养。而PBL 教学法打破传统的界限, 采取以“学生为中心、问题为核心”的教育方式。在教师的整体把握和指导下, 学生充分运用现代化科技手段如教材、图书馆、录像、模型、文献检索系统、电脑学习软件、网络以及多媒体等多种形式进行自学。课堂上,PBL模式强调学生主动参与学习, 从而大大提高学习效果和长期记忆的形成。从教学的角度来看, 指导老师长期与同一小组学生

生物信息学的论文

生物信息学 一、我对生物信息学的认识 1、什么是生物信息学 生物信息学从事对基因组研究相关生物信息的获取、加工、储存、分配、分析和解释。包括了两层含义,一是对海量数据的收集、整理与服务,也就是管好这些数据;另一个是从中发现新的规律,也就是用好这些数据。具体地说,生物信息学是把基因组DNA序列信息分析作为源头,找到基因组序列中代表蛋白质和RNA基因的编码区;同时,阐明基因组中大量存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语文规律;在此基础上,归纳、整理与基因组遗传语文信息释放及其调控相关的转录谱和蛋白质谱的数据,从而认识代谢、发育、分化、进化的规律。 2、、生物信息学的重要性 生物信息学不仅仅是一门科学学科,它更是一种重要的研究开发工具。 从科学的角度来讲,它是一门研究生物和生物相关系统中信息内容物和信息流向的综合系统科学,只有通过生物信息学的计算处理,我们才能从众多分散的生物学观测数据中获得对生命运行机制的详细和系统的理解。 从工具的角度来讲,它是今后几乎进行所有生物(医药)研究开发所必需的舵手和动力机,只有基于生物信息学通过对大量已有数据资料的分析处理所提供的理论指导和分析,我们才能选择正确的研发方向,同样,只有选择正确的生物信息学分析方法和手段,我们才能正确处理和评价新的观测数据并得到准确的结论。 可见生物信息学在今后的无论是生物(医药)科研还是开发中都具有广泛而关键的应用价值;而且,由于生物信息学是生物科学与计算科学、物理学、化学和计算机网络技术等密切结合的交叉性学科,使其具有非常强的专业性,这就使得专业的生物(医药)科研或开发机构自身难以胜任它们所必需的生物信息学业务,残酷的市场竞争及其所带来的市场高度专业化分工的趋势,使得专业的生物(医药)开发机构不可能在自身内部解决对生物信息学服务的迫切需求,学术界内的生物(医药)科研机构也是如此,而这种需求,仅靠那些高度分支化和学术化的分散的生物信息学科研机构是远远不能满足的。可见,在生命科学的新世纪,生物信息学综合服务将是一个非常重要的也是一个极具挑战性的领域。 3、生物信息学的最终目的

生物信息学课程论文 作业题目 分配表

生物技术12-1 生物技术12-1 学号姓名性 别 签名学号姓名性别签名学号姓名性 别 签名 12114350101陈丽娜女大肠杆菌连接 酶 12114350104黄少敏女人的胰蛋白 酶 12114350105黄晓静女T4噬菌体 DNA聚合酶12114350106纪秀玲女人的肌红蛋白12114350107列泳婵女蛋白酶K序 列 12114350108石彩虹女小鼠P53基 因12114350110周海琪女拟南芥端粒酶 序列 12114350111曹杰濠男淀粉酶12114350113陈永成男G-谷氨酰转 肽酶12114350115方壮杰男乳酸脱氢酶12114350116冯健锋男肝癌铁蛋白12114350118黄静云男牛血清白蛋 白12114350119李树森男18S rDNA 12114350120李涛男ATP合成酶12114350121林秀尧男谷氨酸脱羧 酶12114350123刘国标男CDK4 12114350124罗皓炽男胃蛋白酶12114350125阮永刚男鲨烯合酶基 因12114350126石晓洲男肌动蛋白12114350129王佐正男肥胖基因相 关蛋白 12114350130吴文祯男柑橘果胶酯 酶12114350131吴永鹏男凝血酶原12114350132徐国相男维生素C合 成基因 12114350133叶业林男葡萄糖脱氢 酶

12114350134张维彬男大肠杆菌Β-半 乳糖苷酶 12114350135张伟龙男抗干旱基因12114350136郑晓坤男人血红蛋白 12114350142郑桂捷男磷酸酶的蛋白 质12114350138黄忠海男牛凝乳酶原 基因 12114350139徐少东男岩藻糖苷酶 12114350141王晓敏女木瓜蛋白酶 本班总人数:31 生物技术12-2 生物技术12-2 学号姓名性别签名学号姓名性别签名学号姓名性别签名12114350201黄雪梅女人的胰岛素12114350202李晨晨女热震惊蛋白/ 热击蛋白 1211435020 3 廖垭娣女乙肝病毒 CABYR- binding prot ein 12114350204冉梦梦女腺苷酸环化酶12114350205魏丹璇女DNA ase I 1211435020 6 吴彩凤女纤维素酶 12114350207武亦婷女18 rDNA 12114350208叶国玲女谷胱甘肽1211435020 9 叶锦玉女线粒体基因

生物信息学课程论文

生物信息学的发展和前景 摘要:生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。 关键字:生物信息学、产生、发展、前景

生物信息学的发展和前景 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics))应运而生,并大大推动了相关研究的开展,被誉为“解读生命天书的慧眼”。 生物信息学的产生 生物信息学是80年代未随着人类基因组计划(Human genome project)的启动而兴起的一门新的交叉学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。事实上,它是一门理论概念与实践应用并重的学科。 生物信息学的产生发展仅有10年左右的时间---bioinformatics这一名词在1991年左右才在文献中出现,还只是出现在电子出版物的文本中。事实上,生物信息学的存在已有30多年,只不过最初常被称为基因组信息学。美国人类基因组计划中给基因组信息学的定义:它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。 自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约

生物信息学小论文

生物信息学的过去现在和将来 摘要:生物信息学是生物技术的核心,是一门由生物、数学、物理、化学、计算机科学、信息科学等多学科交叉产生的新兴学科。本文介绍了生物信息学的概念,分析了发展生物信息学对现今科学发展的重大意义。根据生物信息学的发展特点,具体分析了生物信息学研究的内容:基因组序列的分析; 基因进化;药物设计; 基因区域预测; 基因功能预测;蛋白质结构预测。评述了生物信息学发展的现状,指出我国生物信息学发展中存在的问题, 并对我国发展生物信息学提出了一些建议。最后分析了生物信息学发展的方向, 展望了生物信息学的发展前景。 关键词:生物信息发展实际应用生产 正文: 生物信息学是生命科学、信息科学、数理科学等众多行馆学科相互交融所形成的一门新兴边缘学科,它随人类基因组计划(HGP)的实施而诞生,已旭旭发展成为当今生命科学的重大前沿领域之一。 一、生物信息学产生的背景 有人说, 基于序列的生物学时代已经到来,尽管对/ 序列生物学0这一提法可能有所争议,但是今日像潮水般涌现的序列信息却是无可争辩的事实。自从1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3@109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命/ 阿波罗计划0的人类基因组计划,经过美、英、日、法、德和中国科学家的艰苦努力, 终于完成了工作草图, 这是人类科学史上又一个里程碑式的事件。它预示着完成人类基因组计划已经指日可待。截止日前为止,仅登录在美国GenBank数据库中的DNA序列总量已超过70亿碱基对。在人类基因组计划进行过程中所积累起来的技术和经验,使得其它生物基因组的测序工作可以完成得更为快捷。可以预计, 今后DNA序列数据的增长将更为惊人。生物学数据的积累并不仅仅表现在DNA 序列方面,与其同步的还有蛋白质的一级结构, 即氨基酸序列的增长。此外,迄今为止, 已有一万多种蛋白质的空间结构以不同的分辨率被测定。基于cDNA序列测序所建立起来的EST数据库其记录已达数百万条。在这些数据的基础上派生、整理出来的数据库已达500余个。这一切构成了一个生物学数据的海洋。可以打一个比方来说明这些数据的规模。有人估计,人类( 包括已经去世的和仍然在世的) 所说过的话的信息总量约为5唉字节( 1唉字节等于10@18字节) 。而如今生物学数据信息总量已经接近甚至超过此数量级。这种科学数据的急速和海量积累,在人类的科学研究历史中是空前的。数据并不等于信息和知识, 但却是信息和知识的源泉,关键在于如何从中挖掘它们。与正在以指数方式增长的生物学数据相比, 人类相关知识的增长(粗略地用每年所发表的生物、医学论文数来代表) 却十分缓慢。一方面是巨量的数据;另一方面是我们在医学、药物、农业和环保等方面对新知识的渴求,这些新知识将帮助人们改善其生存环境和提高其生活质

生物信息学认识

浅谈生物信息学 一、生物信息学产生的背景 有人说,基于序列的生物学时代已经到来,尽管对“序列生物学”这一提法可能有所争议,但是今日像潮水般涌现的序列信息却是无可争辩的事实。自从1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3x109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划,经过美、英、日、法、德和中国科学家的艰苦努力,终于完成了工作草图,这是人类科学世上又一个里程碑式的事件。它预示着完成人类基因组计划已经指日可待。截止目前为止,仅登录在美国GenBank数据库中的DNA序列总量已超过70亿碱基对。在人类基因组计划进行过程中所积累起来的技术和经验,使得其它生物基因组的测序工作可以完成得更快捷。可以预计,今后DNA序列数据的增长将更为惊人。生物学数据的积累并不仅仅表现在DNA序列方面,与其同步的还有蛋白质的一级结构,即氨基酸序列的增长。此外,迄今为止,已有一万多种蛋白质的空间结构以不同的分辨率被测定。基于cDNA 序列测序所建立起来的EST数据库其纪录已达数百万条。在这些数据基础上派生、整理出来的数据库已达500余个。这一切构成了一个生物学数据的海洋。可以打一个比方来说明这些数据的规模。有人估计,人类(包括已经去世的和仍然在世的)所说过的话的信息总量约为5唉字节(1唉字节等于1018字节)。而如今生物学数据信息总量已接近甚至超过此数量级。这种科学数据的急速和海量积累,在人类的科学研究历史中是空前的。 数据并不等于信息和知识,但却是信息和知识的源泉,关键在于如何从中挖掘它们。与正在以指数方式增长的生物学数据相比,人类相关知识的增长(粗略地用每年发表的生物、医学论文数来代表)却十分缓慢。一方面是巨量的数据;另一方面是我们在医学、药物、农业和环保等方面对新知识的渴求,这些新知识将帮助人们改善其生存

生物信息学课程论文.doc

番茄WRKY26基因的生物信息学分析 摘要:番茄(Lyeopersicon https://www.wendangku.net/doc/db15453391.html,1)是世界上重要的蔬菜作物之一,已 经成为蔬菜基因工程研究的模式植物之一。由于环境污染,气候条件不断恶化,使地球上的生物生存环境遭受到越来越严重的危害,因此番茄非生物抗逆性改良的研究工作就更显得迫切和重要。已有研究证明WRKY转录因子可参与多种植物抗性反应,WRKY26基因存在于番茄中,其编码的WRKY26转录因子对番茄抗旱性有重要调控作用,研究其生物学功能显得尤为重要。本文采用生物信息学的方法对已在GenBank 上登录的番茄WRKY26基因的核酸及氨基酸序列、组成成分、同源性比对、编码蛋白质的理化性质、信号肽、跨膜结构域、亲、疏水性、蛋白质结构及功能域等进行预测和推断。结果表明:该基因的ORF长度为1608bp 且与马铃薯STWRKY8同源性很高,该基因编码的蛋白质分子量为分子量为59624.9,等电点为6.87,为酸性疏水性蛋白质,且不稳定。该蛋白质无信号肽和跨膜结构域,属于非分泌蛋白质。蛋白质结构表明该蛋白主要为β转角和无规则卷曲,没有α螺旋。通过此次研究,希望为今后深入研究该类基因的功能和结构特征提供依据。 关键词:番茄;WRKY26基因;蛋白质功能;同源性 前言 番茄基因组中,数目众多的转录因子参与植物的生长发育、物质代谢、响应 生物和非生物胁迫等多种生物进程。WRKY基因家族是植物重要的转录因子家族, 在抗病信号转导途径中起重要调控作用,因而成为分子植物病理研究领域中的热 点。WRKY转录因子是一类植物所特有的抗逆相关转录因子超家族,在植物生物、 非生物胁迫[1]以及植物的生长发育和多种代谢途[2]的调控中起重要作用。 近年来的研究发现,转录因子和抗逆基因会对环境胁迫作出响应。一个抗逆 基因的超表达只能提高植物单一抗性,而一个转录因子基因的超表达能够激活多 个下游抗逆基因的表达,从而提高植物综合抗逆能力。所以与单抗基因相比,转录 因子已成为作物改良的研究热点。尤其是WRKY转录因子,因其可显著地调控植 物生物和非生物胁迫,更是备受关注[3]。WRKY家族中的大部分成员受到水杨酸(SA)、NaCl、低温等刺激后会诱导表达[4-6]。Q iu等[7]发现OsWRKY45可在病原菌的诱导下表达,并提高转基因拟南芥的抗病性,说明WRKY基因还具有潜在的抗病能力。现已证明WRKY可参与多种植物抗病反应[8]。番茄作为重要的模式植物周年生产中常受到高盐、低温、病原菌的影响,其遗传改良越来越受到重视[9]。所以研究WRKY26基因的生物信息学功能显得尤为重要,可以为转基因番茄等其他遗传操作提供技术储备。 一.基因的查找,在NCBI中查找基因序列 mRNA sequence >gi|723709376|ref|XM_004241707.2| PREDICTED: Solanum lycopersicum probable WRKY transcription factor 26 (LOC101255501), mRNA

生物信息学论文汇总

生物信息学论文 学院:生命科学技术学院 专业:生物科学 班级:2013级 老师:高亚梅 学生:王秉政 学号:20134083038

黑曲霉GH75及米曲霉GH76-5基因生物信息学分析王秉政(黑龙江八一农垦大学,生命科学技术学院,2013级生物科学专业,黑龙江省,大庆市) 【摘要】目的:分析和预测黑曲霉GH75和米曲霉GH76-5基因及其编码蛋白质的结构和特征。方法:利用NCBI、CBS和ExPASy网站中的各种信息分析工具,并结合VectorNTIsuite8.0生物信息分析软件包,分析预测黑曲霉GH75和米曲霉GH76-5基因并预测该基因编码蛋白结构的特征和功能。结果:GH75基因全长174bp,编码区具有57个氨基酸,在GenBank同源序列中,其与Aspergillus niger contig An04c0140, genomic contig 基因氨基酸序列一致性达到100%,且有GH75保守域。GH75蛋白相对分子量预测为26257.2,理论等电点为4.69。预测GH75编码蛋白α螺旋(H ) 、β折叠(E )、无规则卷(L )的比例分别是11.07%、25.41%、63.52%,1个GTPase结构域。GH75蛋白为亲水蛋白,有跨膜区,有信号肽。GH76-5基因全长309bp,编码区具有102个氨基酸,在GenBank同源序列中,其与Aspergillus niger contig An14c0130, genomic contig基因氨基酸序列一致性达到100%,且有GH76-5保守域。GH76-5蛋白相对分子量预测为46029.3,理论等电点为5.28。预测GH76-5编码蛋白α螺旋(H ) 、β折叠(E )、无规则卷(L )的比例分别是26.90%、20.71%、52.38%,2个GTPase结构域。GH76-5蛋白为疏水蛋白,无跨膜区,无信号肽。结论:成功预测GH75和GH76-5基因及其编码蛋白生化及其结构特征,为下一步对其进行克隆和表达奠定基础。 【关键词】黑曲霉、米曲霉;糖基水解酶家族(GH75);糖基水解酶家族(GH76-5)生物信息学 黑曲霉是一种重要工业微生物,在酶制剂、异源蛋白、有机酸等领域应用广泛。2007年黑曲霉基因组的公布将黑曲霉的研究引入后基因组时代,各种组学数据如雨后春笋般涌现,人们对黑曲霉高效生产机制的理解上升到系统、分子层次;与此同时,黑曲霉遗传操作系统也不断成熟,为系统地研究和改造黑曲霉、将黑曲霉打造成通用细胞工厂奠定了基础。 米曲霉是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业,并已被安全地应用了1000多年。米曲霉是理想的生产大肠杆菌不能表达的真核生物活性蛋白的载体。米曲霉基因组所包含的信息可以用来寻找最适合米曲霉发酵的条件,这将有助于提高食品酿造业的生产效率和产品质量。 一、资料与方法 1.1资料 通过ExPASy 数据库的UniProtKB(https://www.wendangku.net/doc/db15453391.html,或https://www.wendangku.net/doc/db15453391.html,/uniprot)获得黑曲霉的GH75与米曲霉GH76-5基因序列。GH75基因编号为4990860.,NCBI的登录号为XM_001401782.1. ,其他物种的GH75的氨基酸序列均来自Genbank,登录号见图1。GH76-5基因编号为4987208.,NCBI的登录号为XM_001400940.2. ,其他物种的GH76-5的氨基酸序列均来自Genbank,登录号见图2。 1.2方法 利用美国国家生物技术信息中心(NCBI,https://www.wendangku.net/doc/db15453391.html,)的基本局部比对搜索工具(BLAST,https://www.wendangku.net/doc/db15453391.html,/blast/),运用Blastx完成基因同源性分析。 应用ORF finder(https://www.wendangku.net/doc/db15453391.html,/gorf/orfig.cgi)寻找其开放读码框,并推导出可编码蛋白序列。 利用保守结构域(https://www.wendangku.net/doc/db15453391.html,/Structure/cdd/wrpsb.cgi)分析预测其保守域。 通过瑞士生物信息学研究所的蛋白分析专家系统(ExPASy,https://www.wendangku.net/doc/db15453391.html,)所提供的蛋白组学和分

生物信息学小论文

课程论文 课程名称:《基因组学与生物信息学》 论文题目:基因组学的最新研究进展及其重要的科学意义专业:遗传学 学号:112013408002221 姓名:李念念 2014.01.04

基因组学的最新研究进展及其重要的科学意义 摘要:生物信息学是生物技术的核心,是一门由生物、数学、物理、化学、计算机科学、信息科学等多学科交叉产生的新兴学科。本文介绍了生物信息学的概念,分析了发展生物信息学对现今科学发展的重大意义。根据生物信息学的发展特点,具体分析了生物信息学研究的内容:基因组序列的分析; 基因进化;药物设计; 基因区域预测; 基因功能预测;蛋白质结构预测。评述了生物信息学发展的现状,指出我国生物信息学发展中存在的问题, 并对我国发展生物信息学提出了一些建议。最后分析了生物信息学发展的方向, 展望了生物信息学的发展前景。 关键词:生物信息发展实际应用生产 正文: 生物信息学是生命科学、信息科学、数理科学等众多行馆学科相互交融所形成的一门新兴边缘学科,它随人类基因组计划(HGP)的实施而诞生,已旭旭发展成为当今生命科学的重大前沿领域之一。 一.生物信息学产生的背景 有人说, 基于序列的生物学时代已经到来,尽管对/ 序列生物学0这一提法可能有所争议,但是今日像潮水般涌现的序列信息却是无可争辩的事实。自从1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3@109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命/ 阿波罗计划0的人类基因组计划,经过美、英、日、法、德和中国科学家的艰苦努力, 终于完成了工作草图, 这是人类科学史上又一个里程碑式的事件。它预示着完成人类基因组计划已经指日可待。截止日前为止,仅登录在美国GenBank数据库中的DNA序列总量已超过70亿碱基对。在人类基因组计划进行过程中所积累起来的技术和经验,使得其它生物基因组的测序工作可以完成得更为快捷。可以预计, 今后DNA序列数据的增长将更为惊人。生物学数据的积累并不仅仅表现在DNA 序列方面,与其同步的还有蛋白质的一级结构, 即氨基酸序列的增长。此外,迄今为止, 已有一万多种蛋白质的空间结构以不同的分辨率被测定。基于cDNA序列测序所建立起来的EST数据库其记录已达数百万条。在这些数据的基础上派生、整理出来的数据库已达500余个。这一切构成了一个生物学数据的海洋。可以打一个比方来说明这些数据的规模。有人估计,人类( 包括已经去世的和仍然在世的) 所说过的话的信息总量约为5唉字节( 1唉字节等于10@18字节) 。而如今生物学数据信息总量已经接近甚至超过此数量级。这种科学数据的急速和海量积累,在人类的科学研究历史中是空前的。数据并不等于信息和知识, 但却是信息和知识的源泉,关键在于如何从中挖掘它们。与正在以指数方式增长的生物学数据相比, 人类相关知识的增长(粗略地用每年所发表的生物、医学论文数来代表) 却十分缓慢。一方面是巨量的数据;另一方面是我们在医学、药物、农业和环保等方面对新知识的渴求,这些新知识将帮助人们改善其生存环境和提高其生活质量。这就构成了一个极大的矛盾。这个矛盾就催生了一门新兴的交叉学科, 这就是生物信息学。美国人类基因组计划实施五年后的总结报告中, 对生物信息学作了以下的定义: 生物信息学是一门交叉学科, 它包含了生物信息的获取、处理、储存、分发、分析和解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具, 来阐明和理解大量数据所包含的生物学意义。生物信息学这一名词的出现仅仅是几年前的事情, 但是计算生物学这一名词的出现则要早得多。鉴于这两门学科之间并没有或难以界定严格的

生物信息学论文

生物信息学 课程论文 (2011学年下学期) 论文题目:浅谈生物信息学的发展和前景班级:08生工3班 学号:0809030308 姓名:周永强

摘要:生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。 关键字:生物信息学、产生背景、发展现状、前景 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展, 被誉为“解读生命天书的慧眼”。 一、生物信息学产生的背景 生物信息学是80年代未随着人类基因组计划(Human genome project)的启动而兴起的一门新的交叉学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。事实上,它是一门理论概念与实践应用并重的学科。 生物信息学的产生发展仅有10年左右的时间---bioinformatics这一名词在1991年左右才在文献中出现,还只是出现在电子出版物的文本中。事实上,生物信息学的存在已有30多年,只不过最初常被称为基因组信息学。美国人类基因组计划中给基因组信息学的定义:它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。 自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3x109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划终于完成了工作草图,预示着完成人类基因组计划已经指日可待。截止目前为止,仅登录在美国GenBank数据库中的DNA序列总量已超过70亿碱基对。此外,迄今为止,已有一万多种蛋白质的空间结构以不同的分辨率被测定。基于cDNA序列测序所建立起来的EST数据库其纪录已达数百万条。在这些数据基础上派生、整理出来的数据库已达500余个。这一切构成了一个生物学数据的海洋。这种科学数据的急速和海量积累,在人类的科学研究历史中是空前的。 数据并不等于信息和知识,但却是信息和知识的源泉,关键在于如何从中挖掘它们。与正在以指数方式增长的生物学数据相比,人类相关知识的增长(粗略地用每年发表的生物、医学论文数来代表)却十分缓慢。一方面是巨量的数据;另一方面是我们在医学、药物、农

生物信息学的现状及前景论文

生物信息学的现状及前景论文 作者:aaaa Aaaa aaaa aaaa aaaa 摘要︰生物信息学是一门交叉科学,它包含了生物信息的获取、处理、存储、分发、分析和解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具,来阐明和理解大量数据所包含的生物学意义。随着大规模基因组测序、基因预测以及注释工作的完成,生物信息学研究进入了后基因组时代,系统生物学作为其中一个新兴的研究领域,受到了越来越多的关注。生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。 关键字︰生物信息学基因组测序系统生物学后基因 Bioinformatics situation and the future of the thesis Author: aaaa Biological scientific and professional class 1 of grade 2009. 09300115 Abstract:Bioinformatics is an interdisciplinary science, it contains a biological information acquisition, processing, storage, distribution, analysis and interpretation, and all aspects of it, the integrated use of mathematics, computer science and biology tools, to clarify and understand a lot of data contains biological significance. Along with large scale genome sequencing and gene prediction and annotation of the work completed, bioinformatics research into the post genome era, systems biology as one of the emerging field of study, got more and more attention. Bioinformatics has become the whole life science development as an important part of the life become the frontiers of science. In this paper, the background of bioinformatics and the present study situation are discussed, and future prospect of the development of bioinformatics. The development of bioinformatics in the domestic and foreign basically all at the beginning stage. Therefore, this is our country biology catch up with the world's advanced level of a very good opportunity for the. Key word: Bioinformatics genome sequencing systems biology gene 一、生物信息学研究的发展现状 国内的制药行业将永不得翻身!基因的流失(国外一些国家打着给国内免费治疗,分析疾病的考旗帜,暗中收集了国内不同省份,地区的遗传类疾病和特性。这些资源,我们国家忽略,应当说目前还没有这样的实力进行研究)。资金和实力非常重要,生物信息的研究投入短期不算大,但是结合成果,其投入相当的大。否则我们又将远远落后国外。落后就要挨打,21世纪是生物的世纪。基因大战不可避免。基因和疾病的研究很大程度就是数据的分析。因为目前生物信息主要在于教学和和研究,商业领域的应用不算很广。如一套LIMS加

生物信息学课程论文

湖南农业大学课程论文 学院:生物科学技术学院班级:xx班 姓名:xx 学号:xx 课程论文题目:巨大芽孢杆菌AP25内切葡聚糖酶基因序列信息分析课程名称:生物信息学 评阅成绩: 评阅意见: 成绩评定教师签名: 日期:年月日

巨大芽孢杆菌AP25内切葡聚糖酶基因序列信息分析 生物科学技术学院xx班 xx 学号:xx 从土壤中分离到产纤维素酶的巨大芽孢杆菌AP25,经羧甲基纤维素平板检测,巨大芽孢杆菌AP25可产生葡聚糖内切酶。葡聚糖酶是将葡聚糖降解为葡萄糖的一类水解酶。葡聚糖酶可以作为探针来分析酵母细胞壁的结构及为酵母原生质作准备。葡聚糖酶和几丁质酶同时作用于真菌细胞壁,可以完全消解病原菌细胞壁,抑制病原菌生长,达到防菌目的,在真菌害病的生物防治中具有重要的商业价值。下面对巨大芽孢杆菌AP25内切葡聚糖酶基因序列进行分析。 一.先从GenBank中查找到巨大芽孢杆菌AP25内切葡聚糖酶基因的序列 结果如下: ORIGIN 1 ATGAAACGGT CAATCTCTAT TTTTATTACG TGTTTATTGA TTACGGTATT GACAATGGGC 61 GGCTTGCAGG CTTCGCCGGC ATCTGCATCA GGGACAAAAA CGCCAGCAGC CAAGAATGGA 121 CAGCTTAGCA TAAAAGGAAC ACAGCTCGTA AACCGGGACG GCAAAGCGGT ACAATTGAAA 181 GGGATCAGTT CACATGGAGT GCGGTGGTAT GGCGATTTTG TCAATAAAGA CAGCTTAAAA 241 TGGCTGAGAG ACGATTGGGG CATAACCGTT TTCCGCGCGG CGATGTATAC CGCAGATGGC 301 GGTTATATTG ACAACCCTTC CGTGAAAAAT AAAGTAAAAG AAGCGGTTGA AGCGGCAAAA 361 GAACTTGGGA TATATGTCAT CATTGACTGG CATATCTTAA ATGACGGCTA CCCAAACCAA 421 CATAAAGAGA AGGCAAAAGA ATTTTTTAAG GAAATGTCAA GTCTTTGCGG AAACACGCCA 481 AACGTCATTT ATGAAATTGC AAACGAACCA AACGGTGATG TGAACTGGAA GCGGGATATT 541 AAACCGTATG CGGAAGAAGT GATTTCCGTT ATCCGCAAAA ATGATCCAGA CAACATCATC 601 ATTGTCGGAA CCGGTACATG GAGCCAAGAT GTGAATGATG CAGCCGATGA TCAGCTAAAA 661 GATGCAAACG TCATGTACGC GCTTCATTTT TATGCCGGCA CACACGGCCA ATCTTTACGG 721 GATAAAGCAA ACTATGCACT CAGTAAAGGA GCGCCTATTT TCGTGACGGA ATGGGGAACA 781 AGCGACGCGT CTGGAAATGG CGGTGTATTC CTTGACCAGT CGCGGGAATG GCTGAATTAT 841 CTCGACAGCA AGAACATCAG CTGGGTGAAC TGGAATCTTT CTGATAAGCA GGAAACATCC 901 TCAGCGTTAA AGCCGGGAGC ATCTAAAACA GGCGGCTGGC CGCTTACAGA TTTAACTGCT 961 TCAGGAACAT TCGTAAGAGA AAACATTCTC GGCAACAAAG ATTCAACGAA AGAACGCCCT 1021 GAAACGCCAG CACAAGATAA CCCCGCACAG GAAAACGGCA TTTCTGTACA ATACAAAGCA 1081 GGGGATGGGG GTGTGAACAG CAACCAAATC CGCCCGCAGC TTCACATAAA AAATAACGGC

PhyA基因序列分析,生物信息学论文

PhyA基因序列分析 前言:phyA基因是编码拟南芥(arabidopsis)phyA(光敏色素A)基因,光敏色素是植物体本身合成的一种调节生长发育的色蛋白,由蛋白质及生色团两部分组成。植物光敏色素作为光受体,感知环境条件,进行能量转换。深入挖掘光敏色素基因作用的分子机理,便于提升其在作物遗传改良中应用的有效性。在生物学中起着重要作用。因此,用生物信息学的 方法和软件对phyA基因进行分析是很有必要的。 编码拟南芥(arabidopsis)phyA(光敏色素A)基因,它的GI: 224576211. Unigene号:EU915082基因序列: >gi|224576211|gb|EU915082.1| Arabidopsis thaliana phytochrome A (PHYA) gene, partial cds GACTTTGAGCCGGTGAAGCCTTACGAAGTCCCCATGACAGCTGCTGGTGCCTTACAATCATACAAGCTC G CTGCCAAAGCAATCACTAGGCTGCAATCTTTACCCAGCGGGAGTATGGAAAGGCTTTGTGATACAATGG T TCAAGAGGTTTTTGAACTCACGGGGTATGACAGGGTGATGGCTTATAAGTTTCATGAAGATGATCACGG T GAGGTTGTCTCCGAGGTTACAAAACCTGGGCTGGAGCCTTATCTTGGGCTGCATTATCCTGCCACCGAC A TCCCTCAAGCAGCCCGTTTTCTGTTTATGAAGAACAAGGTCCGGATGATAGTTGATTGCAATGCAAAAC A TGCTAGGGTGCTTCAAGACGAAAAGCTTTCCTTTGACCTTACCTGGTGTGGCTCCACCCTTAGAGCACC G CACAGCTGCCATTTGCAGTACATGGCCAACATGGATTCAATTGCATCTCTGGTTATGGCGGTTGTAGTT A

相关文档