文档库 最新最全的文档下载
当前位置:文档库 › 应用回归分析证明题及答案

应用回归分析证明题及答案

应用回归分析证明题及答案
应用回归分析证明题及答案

应用回归分析证明题及答案

一. 证明残差满足的约束条件:1

0n

i i e ==∑,1

0n

i i i x e ==∑。

证明:由偏导方程即得该结论:

11

01?1

001?1

1??2()0??2()0

ββββββββββ0====?∣=---=??∣=---=?∑∑n

i i i n i i i i Q y x Q y x x

证毕.

二. 证明平方和分解式:SST SSR SSE =+。 证明:

2

211221

1

1

??()()????()()2()()======-=-+-=-+-+--∑∑∑∑∑n n

i i i i i i n

n

n

i i i i i i i i i SST y y y y

y y y

y y y y y y y

011110111???22()0??2)0

上式第三项ββββ=====??=-=+- ???

??=+= ???

∑∑∑∑∑n n n

i i i i i

i i i n n

i i i i i e y e y e x e x e

2

21

1

??()()即===-+-=+∑∑n n

i i i i i SST y

y y y SSR SSE

证毕.

三. 证明三种检验的关系:

(1

);(2) 2212?/1F=

== t ?/(2)xx L SSR SSE n βσ- 证明:由于

22? SSR ,β?=

=

=

==?L r r SST 2

2?

2

2

σ

-==--∑i

e SST SSR

n n

所以

;==t 212?/1

.?/(2)βσ

==-xx L SSR F SSE n

证毕.

四.证明:22

2()1()1 ()σ??-=--??

-???

?∑i i i x x Var e n x x 。 证明:由于

011

1???()?()()1()

βββ

==-=-+=----=---∑∑i i i i i

i

i

n i i i i i

i xx

e y y y x y y x x x x y y y x x n L

于是

()121112

()1()()()1()()12,2,()()12,()σ====??

-=---????

??-??

=++-??

?????

??-??

---??

????????-+-????

=+∑∑∑∑∑∑∑∑n i i i i i i

i xx n i i i i i i xx n i i i i i i i xx n i i i i

i xx x x y Var e Var y y x x n L x x y Var y Var y Var x x n L x x y Cov y y Cov y x x n L x x y Cov y x x n L 22222222

()()1122()11σσσσ

σ--+--??-=--????i i xx xx

i xx x x x x n L n L x x n

L

证毕.

五.证明:在一元回归中,201

??(,)xx

x Cov L ββσ=-。 证明:

01111111()()1??(,),()()1,()()1,()(1ββ======????--=-?? ? ???????

????--=-?? ?????????--=-?? ?????

??-=- ?

??∑∑∑∑∑∑∑∑n i i i i i i xx xx n n i i i i i i xx xx

n n i i i i i i xx xx

n

i i xx x x y x x y Cov Cov y x n L L x x x x Cov x y y n L L x x x x Cov x y y n L L x x x n

L 2

2

)σσ-=-i xx xx

x x L x L

证毕.

六.证明:21

? 1

SSE n p σ

=--是误差项方差2σ的无偏估计。

证明:由于 22

2()1()1 ()σ??-=--??-????

∑i i i x x D e n x x 而 ()2

2

()()

()()

=+=

i i i i E e D e E e D e 所以

2

21

211

2211

?() ()1111()(1)111(1)1

σσσσ===??== ?----??==-----=--=--∑

∑∑n

i i n n

i ii i i E E SSE E e n p n p D e h n p n p n p n p 证毕.

七.证明:?()E =ββ;21?()()D σ-'=βX X 。 证明:

()()()1111

?()()()()()----''''==''=+''==E E E E β

X X X y X X X y X X X X βεX X X X β

β

()

()111112121

???(),(),()(),()()()()σσ-------''''??==??

'''='''='=D Cov Cov Cov βββX X X y X X X y X X X y y X X X X X X IX X X X X

证毕.

八.证明:在多元线性回归中,假设2(,)n N σ~ε0I ,则随机向量2(,)n N σ~y X βI 。九.证明:当2(,)n N σ~y X βI 时,则:

(1)21?(,())σ-'~N ββX X ;(2)2/(1)σχ2~--SSE n p 。 证明:

(1)因为1?()-''=β

X X X y ,X 是固定的设计矩阵,因此,?β是y 的线性变换。 又当2(,)n N σ~ε0I 时,有随机向量2(,)n N σ~y X βI ,所以?β

服从正态分布,且 21??(),()()σ-'==E D βββX X ,即有21?(,())σ-'~N ββX X 。 (2):由于

[][]

??()()()()

=''===''='=++''==SSE NX e e y -y

y -y (I -H)y (I -H)y y (I -H)y y Ny

X βεN X βεεN ε

借助于定理:设(,)~n N X 0I ,A 为?n n 对称阵,秩为r ,则当A 满足:2=A A ,二次型22χ' r X A X ,只需证明:()1=--rk n p N 即可。 因为N 是幂等阵,所以有()()=rk tr N N ,故

()

()111

()()()()1

---''=-''=-''=-=--n rk tr n tr n tr n p N I X X X X X X X X X X X X

证毕.

十.证明:在多元线性回归中,最小二乘估计?β与残差向量e 不相关,即?(,)0Cov =βe 。 证明:

()1112121?(,)(),()(),()()()()(())0

σσ-----''??=-??

'''=-''=-''''=-=Cov Cov Cov βe X X X y I H y X X X y y I H X X X I I H X X X I I X X X X

证毕.

十一.证明:?2(1)DW ρ

≈-

,其中1?n

t t e e

ρ-=∑。

证明:由于

2

221

1

1

2

2

2

2222

2

()

2---======-+-=

=

∑∑∑∑∑∑n

n n

n

t

t t t t t t t t t n

n

t

t

t t e e

e e

e e DW e

e

如果认为2

21

2

2

-==≈∑∑n n

t

t t t e e ,则有1

222

-==≈∑∑n

t t t n

t

t e e

e

,所以

1222?212(1)ρ-==??

??

??≈-=-??????

∑∑n

t t t n

t t e e DW e . 证毕.

十二. 试证明:在二元线性回归模型01122βββε=+++i i i i y x x 中,当1x 和2x 相互独立时,对回归系数1β 和2β的OLS 估计值,等于i y 分别对

1x 和2x 做简单线性回归时回归系数的OLS 估计值。

线性回归推导及实例

数据点基本落在一条直线附近。这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y的测试结果。如果我们要研究X与Y的关系,可以作线性拟合 (2-1-1) 我们称(2-1-1)式为回归方程,a与b是待定常数,称为回归系数。从理论上讲,(2-1-1)式有无穷多组解,回归分析的任务是求出其最佳的线性拟合。 二、最小二乘法原理 如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这种偏差称为残差,记为e i(i=1,2,3,…,n)。这样,我们就可以用残差平方和来度量测量值与回归直线的接近或偏差程度。残差平方和定义为: (2-1-2) 所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所 有直线中与测量值残差平方和Q最小的一条。由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。下面讨论的a和b的求法。 三、正规方程组 根据微分中求极值的方法可知,Q(a,b)取得最小值应满足 (2-1-3) 由(2-1-2)式,并考虑上述条件,则 (2-1-4) (2-1-4)式称为正规方程组。解这一方程组可得 (2-1-5) 其中 (2-1-6)

(2-1-7) 式中,L xy称为xy的协方差之和,L xx称为x的平方差之和。 如果改写(2-1-1)式,可得 (2-1-8) 或 (2-1-9) 由此可见,回归直线是通过点的,即通过由所有实验测量值的平均值组成的点。从力学观点看, 即是N个散点的重心位置。 现在我们来建立关于例1的回归关系式。将表2-1-1的结果代入(2-1-5)式至(2-1-7)式,得出 a=1231.65 b=-2236.63 因此,在例1中灰铸铁初生奥氏体析出温度(y)与氮含量(x)的回归关系式为 y=1231.65-2236.63x 四、一元线性回归的统计学原理 如果X和Y都是相关的随机变量,在确定x的条件下,对应的y值并不确定,而是形成一个分布。当X 取确定的值时,Y的数学期望值也就确定了,因此Y的数学期望是x的函数,即 E(Y|X=x)=f(x) (2-1-10) 这里方程f(x)称为Y对X的回归方程。如果回归方程是线性的,则 E(Y|X=x)=α+βx (2-1-11) 或 Y=α+βx+ε(2-1-12) 其中 ε―随机误差 从样本中我们只能得到关于特征数的估计,并不能精确地求出特征数。因此只能用f(x)的估计 式来取代(2-1-11)式,用参数a和b分别作为α和β的估计量。那么,这两个估计量是否能够满足要求呢? 1. 无偏性 把(x,y)的n组观测值作为一个样本,由样本只能得到总体参数α和β的估计值。可以证明,当满足下列条件: (1)(x i,y i)是n个相互独立的观测值 (2)εi是服从分布的随机变量 则由最小二乘法得到的a与b分别是总体参数α和β的无偏估计,即 E(a)= α E(b)=β 由此可推知 E()=E(y)

多元线性回归模型练习题及答案

C .(1-R)(k-1) 多元线性回归模型练习 一、单项选择题 1.在由n=30的一组样本估计的、包含3个解释变量的线性回归模型中,计算得可决系数为0.8500,则调整后的可决系数为(D) A.0.8603 B.0.8389 C.0.8655 D.0.8327 2.用一组有30个观测值的样本估计模型y t=b0+b1x1t+b2x2t+u t后,在0.05的 显著性水平上对b1的显著性作t检验,则b1显著地不等于零的条件是其统计量t大于等于(C) A.t0.05(30) B.t0.025(28) C.t0.025(27) D.F0.025(1,28) 3.线性回归模型y t=b0+b1x1t+b2x2t+......+b k x kt+u t中,检验 H0:b t=0(i=0,1,2,...k)时,所用的统计量服从(C) A.t(n-k+1) B.t(n-k-2) C.t(n-k-1) D.t(n-k+2) 4.调整的可决系数与多元样本判定系数之间有如下关系(D) A.R2=n-1 n-k-1 R2 B. R2=1-n-1 n-k-1 R2 C.R2=1-n-1 n-k-1 (1+R2) D. R2=1-n-1 n-k-1 (1-R2) 5.对模型Y i=β0+β1X1i+β2X2i+μi进行总体显著性F检验,检验的零假设是( A) A.β1=β2=0 B.β1=0 C.β2=0 D.β0=0或β1=0 6.设k为回归模型中的参数个数,n为样本容量。则对多元线性回归方程进行显著性检验时,所用的F统计量可表示为(B) A.RSS k-1)B. R2k (1-R2)(n-k-1) R2(n-k) 2 ESS/(k-1) D.TSS n-k) 7.多元线性回归分析中(回归模型中的参数个数为k),调整后的可决系数R2与可决系数R2之间的关系(A) R2=1-(1-R2)n-1 n-k-1 A. B.R2≥R2

应用回归分析,第5章课后习题参考答案.docx

第5 章自变量选择与逐步回归 思考与练习参考答案 自变量选择对回归参数的估计有何影响? 答:回归自变量的选择是建立回归模型得一个极为重要的问题。如果模型中丢 掉了重要的自变量, 出现模型的设定偏误,这样模型容易出现异方差或自相关 性,影响回归的效果;如果模型中增加了不必要的自变量, 或者数据质量很差的自变量, 不仅使得建模计算量增大, 自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。 自变量选择对回归预测有何影响? 答:当全模型(m元)正确采用选模型(p 元)时,我们舍弃了m-p 个自变量,回归系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型的参数估计、预测残差和预测均方误差具有较小的方差, 所以全模型正确而误用选模型有利有弊。当选模型(p 元)正确采用全模型(m 元)时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选 模型的大,所以回归自变量的选择应少而精。 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣? 答:如果所建模型主要用于预测,则应使用C p 统计量达到最小的准则来衡量回 归方程的优劣。 试述前进法的思想方法。 答:前进法的基本思想方法是:首先因变量Y对全部的自变量x1,x2,...,xm 建立m个一元线性回归方程, 并计算 F 检验值,选择偏回归平方和显著的变量(F 值最大且大于临界值)进入回归方程。每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的 F 检验值,选择偏回归平方和显著的两变量变 量(F 值最大且大于临界值)进入回归方程。在确定引入的两个自变量以后,再 引入一个变量,建立m-2 个三元线性回归方程,计算它们的 F 检验值,选择偏

计量经济学题库(超完整版)及答案

2.已知一模型的最小二乘的回归结果如下: i i ?Y =101.4-4.78X 标准差 (45.2) (1.53) n=30 R 2 =0.31 其中,Y :政府债券价格(百美元),X :利率(%)。 回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是i ?Y 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。 13.假设某国的货币供给量Y 与国民收入X 的历史如系下表。 某国的货币供给量X 与国民收入Y 的历史数据 根据以上数据估计货币供给量Y 对国民收入X 的回归方程,利用Eivews 软件输出结果为: Dependent Variable: Y Variable Coefficient Std. Error t-Statistic Prob. X 1.968085 0.135252 14.55127 0.0000 C 0.353191 0.562909 0.627440 0.5444 R-squared 0.954902 Mean dependent var 8.258333 Adjusted R-squared 0.950392 S.D. dependent var 2.292858 S.E. of regression 0.510684 F-statistic 211.7394 Sum squared resid 2.607979 Prob(F-statistic) 0.000000 问:(1)写出回归模型的方程形式,并说明回归系数的显著性() 。 (2)解释回归系数的含义。 (2)如果希望1997年国民收入达到15,那么应该把货币供给量定在什么水平? 14.假定有如下的回归结果 t t X Y 4795.06911.2?-= 其中,Y 表示美国的咖啡消费量(每天每人消费的杯数),X 表示咖啡的零售价格(单位:美元/杯),t 表示时间。问: (1)这是一个时间序列回归还是横截面回归?做出回归线。 (2)如何解释截距的意义?它有经济含义吗?如何解释斜率?(3)能否救出真实的总体回归函数? (4)根据需求的价格弹性定义: Y X ?弹性=斜率,依据上述回归结果,你能救出对咖啡需求的价格弹性吗?如果不能,计算此弹性还需要其他什么信息? 15.下面数据是依据10组X 和Y 的观察值得到的: 1110=∑i Y ,1680 =∑i X ,204200=∑i i Y X ,315400 2=∑ i X ,133300 2 =∑i Y 假定满足所有经典线性回归模型的假设,求0β,1β的估计值; 16.根据某地1961—1999年共39年的总产出Y 、劳动投入L 和资本投入K 的年度数据,运用普通最小二乘法估计得出了下列回归方程:

26、回归分析测试题及答案

中级经济师基础知识 第 1题:单选题(本题1分) 某公司产品当产量为1000单位时,其总成本为4000元;当产量为2000单位时,其总成本为5000,则设产量为x,总成本为y,正确的一元回归方程表达式应该是( )。 A、y = 3000 + x B、y = 4000 + 4x C、y = 4000 + x D、y = 3000 + 4x 【正确答案】:A 【答案解析】: 本题可列方程组:设该方程为y = a + bx,则由题意可得:4000 = a + 1000b5000 = a + 2000b 解该方程,得b=1,a=3000,所以方程为y = 3000 + x 第 2题:单选题(本题1分) 在回归分析中,估计回归系数的最小二乘法的原理是( )。 A、使得因变量观测值与均值之间的离差平方和最小 B、使得因变量估计值与均值之间的离差平方和最小 C、使得观测值与估计值之间的乘积和最小 D、使得因变量观测值与估计值之间的离差平方和最小 【正确答案】:D 【答案解析】: 较偏较难的一道题目。最小二乘法就是使得因变量的观测值与估计值之间的离差平方和最小来估计参数的一种方法 第 3题:多选题(本题2分) 关于相关分析和回归分析的说法,正确的的有() A、相关分析可以从一个变量的变化来推测另一个变量的变化 B、相关分析研究变量间相关的方向和相关的程度 C、相关分析中需要明确自变量和因变量 D、回归分析研究变量间相互关系的具体形式 E、相关分析和回归分析在研究方法和研究目的有明显区别 【正确答案】:BDE 【答案解析】: 相关分析与回归分析在研究目的和方法上具有明显的区别。 (1)、相关分析研究变量之间相关的方向和相关的程度,无法从一个变量的变化来推测另一变量的变化情况。 (2)、回归分析是研究变量之间相关关系的具体形式

应用回归分析第2章课后习题参考答案

2.1 一元线性回归模型有哪些基本假定? 答:1. 解释变量 1x , ,2x ,p x 是非随机变量,观测值,1i x ,,2 i x ip x 是常数。 2. 等方差及不相关的假定条件为 ? ? ? ? ? ? ??????≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1, 0)(2 σεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。 3. 正态分布的假定条件为 ???=相互独立 n i n i N εεεσε,,,,,2,1),,0(~212 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。 4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。 在整个回归分析中,线性回归的统计模型最为重要。一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。因此,线性回归模型的理论和应用是本书研究的重点。 1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i =求出p ββββ,,,,210 及方差2σ的估计; 2. 对回归方程及回归系数的种种假设进行检验; 3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。 2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1 =+=εβ误差n εεε,,,21 仍满足基本假定。求1β的最小二 乘估计。 答:∑∑==-=-=n i n i i i i x y y E y Q 1 1 2112 1)())(()(ββ

相关与回归分析习题

第六章相关与回归分析习题 一、填空题 1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。 2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。 3.相关系数的取值围是。 4.完全相关即是关系,其相关系数为。 5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。 6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。 7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。 8.回归方程y=a+bx中的参数a是,b是。在统计中估计待定参数的常用方法是。 9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。 10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。 11.用来说明回归方程代表性大小的统计分析指标是。 二、单项选择题 3.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( ) A增加70元B减少70元C增加80元D减少80元 4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( ) A+1 B 0 C 0.5 D [1] 5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关B正相关还是负相关 C完全相关还是不完全相关D单相关还是复相关 6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程y =a+b x。经计算,方程为y c=200—0.8x,该方程参数的计算( ) c A a值是明显不对的 B b值是明显不对的 C a值和b值都是不对的 C a值和6值都是正确的 7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( ) A 8 B 0.32 C 2 D 12.5 8.进行相关分析,要求相关的两个变量( ) A都是随机的B都不是随机的C一个是随机的,一个不是随机的 D随机或不随机都可以 9.下列关系中,属于正相关关系的有( ) A合理限度,施肥量和平均单产量之间的关系 B产品产量与单位产品成本之间的关系

回归分析练习试题和参考答案解析

1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据: 求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。 (2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。 (3)求出估计的回归方程,并解释回归系数的实际意义。 (4)计算判定系数,并解释其意义。 α=)。 (5)检验回归方程线性关系的显著性(0.05 (6)如果某地区的人均GDP为5000元,预测其人均消费水平。 (7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。 解:(1)

可能存在线性关系。 (2)相关系数: 系数a 模型非标准化系数标准系数 t Sig. 相关性 B标准误差试用版零阶偏部分 1(常量).003 人均GDP.309.008.998.000.998.998.998 a. 因变量: 人均消费水平 有很强的线性关系。 (3)回归方程:734.6930.309 y x =+ 系数a 模型非标准化系数标准系数t Sig.相关性

回归系数的含义:人均GDP没增加1元,人均消费增加元。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。 系数(a) 模型非标准化系数标准化系数 t显著性B标准误Beta 1(常量) 人均GDP(元) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4) 模型汇总 模型R R 方调整 R 方标准估计的误 差 1.998a.996.996 a. 预测变量: (常量), 人均GDP。 人均GDP对人均消费的影响达到%。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。 模型摘要 模型R R 方调整的 R 方估计的标准差

应用回归分析-第3章课后习题参考答案

第3章 多元线性回归 思考与练习参考答案 3.1 见教材P64-65 3.2 讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响? 答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。如果n<=p 对模型的参数估计会带来很严重的影响。因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。 2. 解释变量X 是确定性变量,要求()1rank p n =+

回归分析方法及其应用中的例子

3.1.2 虚拟变量的应用 例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为: 123log log P Y βββ++logQ= 其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据 P ——家庭所在地的住房单位价格 Y ——家庭收入 经计算:0.247log 0.96log P Y -+logy=4.17 2 0.371R = ()() () 上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。 但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D : 01i D ?=?? 黑人家庭 白人家庭或其他家庭 模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ= 例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元) ①根据上述数据建立一元线性回归方程:

? 1.01610.09357y x =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。 01i D ?=?? 19791979i i <≥年 年 建立回归方程为: ?0.98550.06920.4945y x D =++ ()() () 20.9498R = 0.1751y S = 75.6895F = 虽然上述两个模型都可通过显着性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。 3.5.4 岭回归的举例说明 企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下: 假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。 同样,A1服务界面可能会有A11……A1n 共N 个因素的影响,那么利用上述方法也可以计算出A11……A1n 对A1的不同影响系数,由此确定A1界面中的重要因素。 通过两个层次的分析,我们不仅得出各大服务界面对客户总体满意度影响的大小以及不同服务界面上各因素的影响程度,同时也可综合得出某一界面某一因素对总体满意度的影响大小,由此再结合用户满意度评价、与竞争对手的比较等因素来确定每个界面细分因素在以后工作改进中的轻重缓急、重要性差异等,从而起到事半功倍的作用。 例 3.5.4:对某地移动通信公司的服务满意度研究中,利用回归方法分析各服务界面对总体满意度的影响。 a. 直接进入法 显然,这种方法计算的结果中,C 界面不能通过显着性检验,直接利用分析结果是错误

第6章 相关与回归分析习题解答

第六章 相关与回归分析 思考与练习 一、判断题 1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。 答:错。应是相关关系。单位成本与产量间不存在确定的数值对应关系。 2.相关系数为0表明两个变量之间不存在任何关系。 答:.错。相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。 3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。 答:对,因果关系的判断还有赖于实质性科学的理论分析。 4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。 答:错。两者是精确的函数关系。 5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。 答:对。 6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。 答:对。因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。 二、选择题 1.变量之间的关系按相关程度分可分为:b 、c 、d a.正相关; b. 不相关; c. 完全相关; d.不完全相关; 2.复相关系数的取值区间为:a a. 10≤≤R ; b.11≤≤-R ; c.1≤≤∞-R ; d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、d a.2 2 R R ≤; b.有时小于0 ; c. 102 ≤≤R ; d.比2 R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、d a 样本容量; b 自变量预测值与自变量样本平均数的离差 c 自变量预测误差; d 随机误差项的方差 三、问答题 1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。 答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。两者之间的单相关关系出现正相关是因为背后还有天气等因素的影响,天气越热,两种冷饮的消费量都越多。如果设法将天气等因素固定不变,单纯考察冰激凌与汽水的消费量,则可能出现负相关关系。像这种假定其他影响因素不变专门考察其中两个因素之间的关系就成为偏相关。 2.讨论以下几种场合,回归方程t t t t u X X Y +++=33221βββ中回归系数的经济意义和应取的符号。 (1)Y t 为商业利润率;X 2t 为人均销售额;X 3t 为流通费用率。 (2)Y t 为粮食销售量;X 2t 为人口数;X 3t 为人均收入。

回归分析练习题及参考答案

地区人均GDP/元人均消费水平/元 22460 11226 34547 4851 5444 2662 4549 7326 4490 11546 2396 2208 1608 2035 求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。 (2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。 (3)求出估计的回归方程,并解释回归系数的实际意义。 (4)计算判定系数,并解释其意义。 (5)检验回归方程线性关系的显著性(0.05 α=)。 (6)如果某地区的人均GDP为5000元,预测其人均消费水平。 (7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。 解:(1) 可能存在线性关系。 (2)相关系数:

有很强的线性关系。 (3)回归方程:734.6930.309 y x =+ 回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。 系数(a) 模型非标准化系数标准化系数 t 显著性B 标准误Beta 1 (常量)734.693 139.540 5.265 0.003 人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (4) 模型汇总 模型R R 方调整R 方标准估计的误 差 1 .998a.996 .996 247.303 a. 预测变量: (常量), 人均GDP。 人均GDP对人均消费的影响达到99.6%。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。 模型摘要 模型R R 方调整的R 方估计的标准差 1 .998(a) 0.996 0.996 247.303

应用回归分析,第4章课后习题参考答案

第4章违背基本假设的情况 思考与练习参考答案 4.1 试举例说明产生异方差的原因。 答:例4.1:截面资料下研究居民家庭的储蓄行为 Y i=β0+β1X i+εi 其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。 由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。 例4.2:以某一行业的企业为样本建立企业生产函数模型 Y i=A iβ1K iβ2L iβ3eεi 被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。 4.2 异方差带来的后果有哪些? 答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果: 1、参数估计量非有效 2、变量的显著性检验失去意义 3、回归方程的应用效果极不理想 总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。 4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。 答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。然而在异方差

的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。这样对残差所提供信息的重要程度作一番校正,以提高参数估计的精度。 加权最小二乘法的方法: 4.4简述用加权最小二乘法消除多元线性回归中异方差性的思想与方法。 答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回归的类似。多元线性回归加权最小二乘法是在平方和中加入一个适当的权数i w ,以调整各项在平方和中的作用,加权最小二乘的离差平方和为: ∑=----=n i ip p i i i p w x x y w Q 1211010)( ),,,(ββββββ (2) 加权最小二乘估计就是寻找参数p βββ,,,10 的估计值pw w w βββ?,,?,?10 使式(2)的离差平方和w Q 达极小。所得加权最小二乘经验回归方程记做 22011 1 ???()()N N w i i i i i i i i Q w y y w y x ββ===-=--∑∑22 __ 1 _ 2 _ _ 02 222 ()() ?()?1 11 1 ,i i N w i i i w i w i w w w w w kx i i i i m i i i m i w x x y y x x y x w kx x kx w x σβββσσ==---=-= = ===∑∑1N i =1 1表示=或

回归方程及回归系数的显著性检验

§ 3回归方程及回归系数的显著性检验 1、回归方程的显著性检验 (1)回归平方和与剩余平方和 建立回归方程以后,回归效果如何呢?因变量.?与自变量是否确实存在线性关系呢?这 是需要进行统计检验才能加以肯定或否定,为此,我们要进一步研究因变量取值的变化规律。的每次 取值1是有波动的,这种波动常称为变差,每次观测值jt的变差大小,常用该次观侧值 U 与t次观测值的平均值的差丨、/(称为离差)来表示,而全部:次观测值的总变差可由总的 离差平方和 呦迄以*)亠另(n+剳*诃吃+卩 , 其中: ~ 称为回归平方和,是回归值与均值.之差的平方和,它反映了自变量 九心[如的变化所引起的丿的波动,其自由度h~加(川为自变量的个数)。 称为剩余平方和(或称残差平方和),是实测值T与回归值.■,之差的平方和,它是由试验误差及其它因素引起的,其自由度]T 一。总的离差平方和一二的自由度为:亠。 如果观测值给定,则总的离差平方和-二是确定的,即是确定的,因此i.i大则匚小,反之,L 小则〔大,所以U与I都可用来衡量回归效果,且回归平方和U越大则线性回归效果越显著,或者说剩余平方和_越小回归效果越显著,如果_= 0,则回归超平面过所有观测点;如果一大,则线性回归效果不好。 (2)复相关系数 为检验总的回归效果,人们也常引用无量纲指标 -' ,(3.1) 或 R=匸倉 V 切,(3.2)

称为复相关系数。因为回归平方和u实际上是反映回归方程中全部自变量的“方差贡献”,因此 F「就 是这种贡献在总回归平方和中所占的比例,因此〕.表示全部自变量与因变量.■的相关程度。显然[上「二*。 复相关系数越接近1 ,回归效果就越好,因此它可以作为检验总的回归效果的一个指标。但应注意,亠与回归方程中自变量的个数“!及观测组数F有关,当[相对于T并不很大时,常有较大的值,因此实际计算中应注意I与.的适当比例,一般认为应取I至少为■!的5到10倍为宜。 ⑶/'检验 要检验 m 1仪是否存在线性关系,就是要检验假设 :…',(3.3) 当假设二i成立时,贝匚与…… 无线性关系,否则认为线性关系显著。检验假设^0应用统计量 r Uim F = -------- -11- ,(3.4) 这是两个方差之比,它服从自由度为十及- 'I的F分布,即 F ------------- w -1 的”1),(3.5) 用此统计量F可检验回归的总体效果。如果假设上一成立,则当给定检验水平 a下,统计量F应有卜當w 匕二J 一 1 一匚(3.6) 对于给定的置信度a,由F分布表可查得'L1'的值,如果根据统计量算得的 F值为 厂'- ■'_■■_11,则拒绝假设’|.,即不能认为全部为0,即〒个自变量的总体回归效果是显著的 否则认为回归效果不显著。 利用「检验对回归方程进行显著性检验的方法称为方差分析。上面对回归效果的讨论可归结于一个方 差分析表中,如表3.1 o

回归分析练习题与参考答案

1 下面是7个地区2000年的人均国生产总值(GDP)与人均消费水平的统计数据:地区人均GDP/元人均消费水平/元 北京上海 22460 11226 34547 4851 5444 2662 4549 7326 4490 11546 2396 2208 1608 2035 求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。 (2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。 (3)求出估计的回归方程,并解释回归系数的实际意义。 (4)计算判定系数,并解释其意义。 (5)检验回归方程线性关系的显著性(0.05 α=)。 (6)如果某地区的人均GDP为5000元,预测其人均消费水平。 (7)求人均GDP为5000元时,人均消费水平95%的置信区间与预测区间。 解:(1) 可能存在线性关系。 (2)相关系数:

(3)回归方程:734.6930.309 y x =+ 回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规排版。 系数(a) 模型非标准化系数标准化系数 t 显著性B 标准误Beta 1 (常量)734.693 .540 5.265 0.003 人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (4) 模型汇总 模型R R 方调整 R 方标准估计的误 差 1 .998a.996 .996 247.303 a. 预测变量: (常量), 人均GDP。 人均GDP对人均消费的影响达到99.6%。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规排版。 模型摘要 模型R R 方调整的 R 方估计的标准差 1 .998(a) 0.996 0.996 247.303 a. 预测变量:(常量), 人均GDP(元)。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

回归分析方法应用实例

4、回归分析方法应用实例 在制定运动员选材标准时,理论上要求先对不同年龄的运动员,各测试一个较大的样本,然后,计算出各年龄的平均数、标准差,再来制定标准。 但是,在实际工作中,有时某些年龄组不能测到较大的样本。这时能不能使用统计的方法,进行处理呢? 我们遇到一个实例。测得45名11至18岁男田径运动员的立定三级跳远数据。其各年龄组人数分布如表一。由于受到许多客观因素的限制,一时无法再扩大样本,因此决定使用统计方法进行处理。 第一步,首先用原始数据做散点图,并通过添加趋势线,看数据的变化趋势是否符合随年龄增长而变化的趋势,决定能否使用回归方程制定标准。如果趋势线不符合随年龄增长而变化的趋势,或者相关程度很差就不能用了。 本例作出的散点图如图1,图上用一元回归方法添加趋势线,并计算出年龄和立定三级跳远的: 一元回归方程:Y=2.5836+0.3392 X 相关系数 r=0.7945(P<0.01) 由于从趋势线可以看出,立定三级跳远的成绩是随年龄增加而逐渐增加,符合青少年的发育特点。而且, 相关系数r=0.7945,呈高度相关。因此,可以认为计算出的一元回归方程,反映了11至18岁男运动员年龄和立定三级跳远成绩的线性关系。决定用一元回归方程来制定各年龄组的标准。 第二步,用一元回归方程:Y=2.5836+0.3392 X 推算出各年龄的立定三级跳远回归值,作为各年龄组的第2等标准。 第三步,用45人的立定三级跳远数据计算出标准差为:0.8271。由于在正态分布下,如把平均数作为标准约有50%的人可达到标准,用平均数-0.25标准差制定标准则约有60%的人可达到,用平均数+0.25、+0.52、+0.84标准差制定标准约有40%、30%、20%的人可达到标准。本例用各年龄组回归值-0.25标准差、+0.25标准差、+0.52标准差、+0.84标准差计算出1至5等标准如表2、图2。

应用回归分析 课后习题参考答案

第二章 一元线性回归分析 思考与练习参考答案 一元线性回归有哪些基本假定? 答: 假设1、解释变量X 是确定性变量,Y 是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=?2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, ?2 ) i=1,2, …,n 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n 误差εi (i=1,2, …,n )仍满足基本假定。求 β1的最小二乘估计 解: 得: 证明(式),?e i =0 ,?e i X i =0 。 证明:∑∑+-=-=n i i i n i X Y Y Y Q 1 2102 1 ))??(()?(ββ 其中: 即: ?e i =0 ,?e i X i =0 211 1 2)?()?(i n i i n i i i e X Y Y Y Q β∑∑==-=-=0)?(2?11 1 =--=??∑=i i n i i e X X Y Q ββ) () (?1 2 1 1 ∑∑===n i i n i i i X Y X β01????i i i i i Y X e Y Y ββ=+=-0 1 00??Q Q β β ??==??

回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。 答:由于εi ~N(0, ?2 ) i=1,2, …,n 所以Y i =β0 + β1X i + εi ~N (β0+β1X i , ?2 ) 最大似然函数: 使得Ln (L )最大的0 ?β,1?β就是β0,β1的最大似然估计值。 同时发现使得Ln (L )最大就是使得下式最小, ∑∑+-=-=n i i i n i X Y Y Y Q 1 21021 ))??(()?(ββ 上式恰好就是最小二乘估计的目标函数相同。值得注意的是:最大似然估计是在εi ~N (0, ?2 )的假设下求得,最小二乘估计则不要求分布假设。 所以在εi ~N(0, ?2 ) 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。 证明0 ?β是β0的无偏估计。 证明:)1[)?()?(1 110∑∑==--=-=n i i xx i n i i Y L X X X Y n E X Y E E ββ )] )(1 ([])1([1011i i xx i n i i xx i n i X L X X X n E Y L X X X n E εββ++--=--=∑∑== 1010)()1 (])1([βεβεβ=--+=--+=∑∑==i xx i n i i xx i n i E L X X X n L X X X n E 证明 证明: )] ()1([])1([)?(102110i i xx i n i i xx i n i X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑== () ) 1()1()?(2 2 2 1 2 2 xx n i i L X n X X X n Var +=-+=∑=σσβ

应用回归分析证明题及答案

应用回归分析证明题及答案 一. 证明残差满足的约束条件:1 0n i i e ==∑,1 0n i i i x e ==∑。 证明:由偏导方程即得该结论: 证毕. 二. 证明平方和分解式:SST SSR SSE =+。 证明: 证毕. 三. 证明三种检验的关系: (1 );(2) 2212?/1F= == t ?/(2)xx L SSR SSE n βσ- 证明:由于 所以 = ==t 证毕. 四.证明:22 2()1()1 ()σ??-=--??-???? ∑i i i x x Var e n x x 。 证明:由于 于是 证毕. 五.证明:在一元回归中,201 ??(,)xx x Cov L ββσ=-。 证明: 证毕. 六.证明:21 ? 1 SSE n p σ =--是误差项方差2σ的无偏估计。 证明:由于 22 2()1()1 ()σ??-=--?? -???? ∑i i i x x D e n x x 而 ()2 2()()()()=+=i i i i E e D e E e D e 所以 证毕. 七.证明:?()E =β β;21?()()D σ-'=βX X 。 证明: 证毕.

八.证明:在多元线性回归中,假设2(,)n N σ~ε0I ,则随机向量2(,)n N σ~y X βI 。九.证明:当2(,)n N σ~y X βI 时,则: (1)21?(,())σ-'~N ββX X ;(2)2/(1)σχ2~--SSE n p 。 证明: (1)因为1?()-''=β X X X y ,X 是固定的设计矩阵,因此,?β是y 的线性变换。 又当2(,)n N σ~ε0I 时,有随机向量2(,)n N σ~y X βI ,所以?β服从正态分布,且 21??(),()()σ-'==E D β ββX X ,即有21?(,())σ-'~N ββX X 。 (2):由于 借助于定理:设(,)~n N X 0I ,A 为?n n 对称阵,秩为r ,则当A 满足:2=A A ,二次型22χ'r X A X ,只需证明:()1=--rk n p N 即可。 因为N 是幂等阵,所以有()()=rk tr N N ,故 证毕. 十.证明:在多元线性回归中,最小二乘估计?β与残差向量e 不相关,即?(,)0Cov =β e 。 证明: 证毕. 十一.证明:?2(1)DW ρ ≈- ,其中1?n t t e e ρ-=∑ 证明:由于 如果认为221 2 2 -==≈∑∑n n t t t t e e ,则有1 2 22 ?ρ -==≈∑∑n t t t n t t e e e ,所以 1222?212(1)ρ-==?? ?? ??≈-=-?????? ∑∑n t t t n t t e e DW e . 证毕.

相关文档
相关文档 最新文档