文档库 最新最全的文档下载
当前位置:文档库 › 集成电路制造技术-原理与工艺 课后习题答案

集成电路制造技术-原理与工艺 课后习题答案

集成电路制造技术-原理与工艺 课后习题答案
集成电路制造技术-原理与工艺 课后习题答案

第一单元:

3.比较硅单晶锭CZ,MCZ和FZ三种生长方法的优缺点。

答:CZ直拉法工艺成熟,可拉出大直径硅棒,是目前采用最多的硅棒生产方法。但直拉法中会使用到坩埚,而坩埚的使用会带来污染。同时在坩埚中,会有自然对流存在,导致生长条纹和氧的引入。直拉法生长多是采用液相掺杂,受杂质分凝、杂质蒸发,以及坩埚污染影响大,因此,直拉法生长的单晶硅掺杂浓度的均匀性较差。

MCZ磁控直拉法,在CZ法单晶炉上加一强磁场,高传导熔体硅的流动因切割磁力线而产生洛仑兹力,这相当于增强了熔体的粘性,熔体对流受阻。能生长无氧、均匀好的大直径单晶硅棒。设备较直拉法设备复杂得多,造价也高得多,强磁场的存在使得生产成本也大幅提高。

FZ悬浮区熔法,多晶与单晶均由夹具夹着,由高频加热器产生一悬浮的溶区,多晶硅连续通过熔区熔融,在熔区与单晶接触的界面处生长单晶。与直拉法相比,去掉了坩埚,没有坩埚的污染,因此能生长出无氧的,纯度更高的单晶硅棒。

6.硅气相外延工艺采用的衬底不是准确的晶向,通常偏离[100]或[111]等晶向一个小角度,为什么

答:在外延生长过程中,外延气体进入反应器,气体中的反应剂气相输运到衬底,在高温衬底上发生化学反应,生成的外延物质沿着衬底晶向规则地排列,生长出外延层。

气相外延是由外延气体的气相质量传递和表面外延两个过程完成的。表面外延过程实质上包含了吸附、分解、迁移、解吸这几个环节,表面过程表明外延生长是横向进行的,是在衬底台阶的结点位置发生的。因此,在将硅锭切片制备外延衬底时,一般硅片都应偏离主晶面一个小角度。目的是为了得到原子层台阶和结点位置,以利于表面外延生长。

7. 外延层杂质的分布主要受哪几种因素影响

答:杂质掺杂效率不仅依赖于外延温度、生长速率、气流中掺杂剂的摩尔分数、反应室的几何形状等因素,还依赖于掺杂剂自身的特性。另外,影响掺杂效率的因素还有衬底的取向和外延层结晶质量。硅的气相外延工艺中,在外延过程中,衬底和外延层之间存在杂质交换现象,即会出现杂质的再分布现象,主要有自掺杂效应和互扩散效应两种现象引起。

8.异质外延对衬底和外延层有什么要求

答:1.衬底与外延层不发生化学反应,不发生大量的相互溶解现象;

2.衬底与外延层热力学参数相匹配,即热膨胀系数接近。以避免外延层由生长温度冷却至室温时,产生残余热应力,界面位错,甚至外延层破裂。

3.衬底与外延层晶格参数相匹配,即晶体结构,晶格常数接近,以避免晶格参数不匹配引起的外延层与衬底接触的界面晶格缺陷多和应力大的现象。

10.比较分子束外延(MBE)生长硅与气相外延(VPE)生长硅的优缺点。

答:MBE的特点:

超高真空度达10-9~10-11Torr ,外延过程污染少,外延层洁净。

温度低,(100)Si 最低外延温度470K,所以无杂质的再分布现象。

外延分子由喷射炉喷出,速率可调,易于控制,可瞬间开/停,能生长极薄外延层,厚度可薄至量级。

设备上有多个喷射口,可生长多层、杂质分布复杂的外延层,最多层数可达104层。

在整个外延过程中全程监控,外延层质量高。

MBE多用于外延结构复杂、外延层薄的异质外延。

设备复杂、价格昂贵

分子束外延与气相外延相比:

1.衬底温度低,没有自掺杂效应,因而扩散效应带来的杂质再分布现象也很弱。

2.外延生长室真空度超高,非有意掺入的杂质浓度也非常低。

3.外延生长杂质的掺入与停止是由喷射炉控制的,在外延界面没有过渡区。第二单元

3. 欲对扩散杂质起有效的屏蔽作用,对SiO2膜有何要求

答:硅衬底上的SiO2要能够当做掩膜来实现定域扩散,需要x SiO2满足下列条件:预生长的SiO2膜具有一定的厚度,同时杂质在衬底硅中的扩散系数D Si要远远大于其在SiO2中的扩散系数D SiO2,而且SiO22表面杂质浓度与Si/ SiO2界面杂质浓度之比达到一定数值,可保证SiO2膜起到有效的掩膜作用。

8.硅芯片为避免芯片沾污,可否最后热氧化一层SiO2作为保护膜为什么

答:不可以。Si 的热氧化是高温工艺,硅器件芯片完成后再进行高温工艺会因金属电极的氧化、杂质再分布等原因损害器件性能、甚至使其彻底 效。另外,热氧化需要消耗衬底硅,器件表面无硅位置生长不出氧化层。

16. 在1050°C 湿氧气氛生长1um 厚氧化层,计算所需要时间。若抛物线型速率系数与氧化气压成正比,分别计算计算5个、20个大气压下的氧化时间。 P81

[100] 0.295A m μ=,20.413

m B h μ= [111] 0.18A m μ=,20.415m B h μ=

解: 氧化层生长厚度与生长时间之间的关系式为

222()SiO SiO x Ax B t τ+=+

已知0τ=,0.18A m μ=,20.415m B h μ=,21SiO x m μ=

所以

2.84t h ≈

抛物线型速率B T1=t/5, T2=t/20 第三单元

1.比较APCVD 、LPCVD 和PECVD 三种方法的主要异同和主要优缺点 异同点:

APCVD ,是最早出现的CVD 工艺,其淀积过程在大气压力下进行,主要用于二氧化硅薄膜的制备。由质量输运控制淀积速率。

LPCVD ,与APCVD 相比增加了真空系统,气压在1-10-2Torr 之间进行的CVD 。可淀积多晶硅、氮化硅、二氧化硅、PSG 、BPSG 、W 等。淀积速率受表面反应控制,对温度非常敏感,气体分压,气流速对淀积速率也有影响。LPCVD 和 APCVD 一样都是以热激活方式淀积薄膜的CVD 工艺方法。

PECVD ,采用等离子体技术把电能耦合到气体中,激活并维持化学反应进行薄膜的一种工艺方法。等离子增强化学气相淀积就是利用等离子体来增强较低温度下化学反应速率的。 淀积速率是表面反应控制,精确控制衬底温度:温度变化对薄膜厚度均匀性影响很大。

优缺点:

5.等离子体是如何产生的

答:通常情况下,气体处于中性状态,只有极少的分子受到高能宇宙射线的激发而电离。在没有外加电场时,这些电离的带点粒子与气体分子一样,作杂乱无章的热运动。当有外加电场时,气体中的自然产生的离子和电子做定向移动,运动速度随着电压增加而加快,电流也就随着电压的增加而线性增大。当电压足够大到一定时,出现辉光放电现象,气体突然发生击穿现象,使得气体具有一定导电能力。此时的气体由正离子、电子、光子以及原子、原子团、分子及它们的激发态所组成的混合气体,宏观上呈现电中性。这种具有一定导电能力的混合气体就是等离子体。

PECVD是如何利用等离子体的

等离子增强化学气相淀积是采用等离子体技术把电能耦合到气体中,激活并维持化学反应进行薄膜的一种工艺方法。衬底吸附等离子体内活泼的中性原子团与游离基,在表面发生化学反应生成薄膜物质,并不断受到离子和电子轰击,容易迁移、重排,使得淀积薄膜均匀性好,填充小尺寸结构能力强。

16.以铝互连系统作为一种电路芯片的电连系统时,若分别采用真空蒸镀和磁控溅射工艺淀积铝膜,应分别从哪几个方面来提高其台阶覆盖特性

真空蒸镀:通过衬底加热和衬底旋转能够改善真空蒸镀的台阶覆盖特性。P214

磁控溅射:充分升高衬底温度,在衬底上加射频电压,采用强迫填充技术,采用准直溅射技术。P224

是在高真空溅射时,在衬底正上方插入一块高纵横比孔的平板,称为准直器。溅射原子的平均自由程足够长,则在准直器与衬底之间几乎不会发生碰撞。因此,。。。

集成电路制造技术原理与技术试题库样本

填空题( 30分=1分*30) (只是答案)半导体级硅、 GSG 、电子级硅。CZ法、区熔法、硅锭、wafer 、硅、锗、单晶生长、整型、切片、磨片倒角、刻蚀、 ( 抛光) 、清洗、检查和包装。 100 、110 和111 。融化了的半导体级硅液体、有正确晶向的、被掺杂成p型或n型、实现均匀掺杂的同时而且复制仔晶的结构, 得到合适的硅锭直径而且限制杂质引入到硅中、拉伸速率、晶体旋转速率。去掉两端、径向研磨、硅片定位边和定位槽。制备工业硅、生长硅单晶、提纯) 。卧式炉、立式炉、快速热处理炉。干氧氧化、湿氧氧化、水汽氧化。工艺腔、硅片传输系统、气体分配系统、尾气系统、温控系统。局部氧化LOCOS、浅槽隔离STI。掺杂阻挡、表面钝化、场氧化层和金属层间介质。热生长、淀积、薄膜。石英工艺腔、加热器、石英舟。APCVD常压化学气相淀积、 LPCVD低压化学气相淀积、 PECVD等离子体增强化学气相淀积。晶核形成、聚焦成束、汇聚成膜。同质外延、异质外延。膜应力、电短路、诱生电荷。导电率、高黏附性、淀积、平坦化、可靠性、抗腐蚀性、应力等。CMP设备、电机电流终点检测、光学终点检测。平滑、部分平坦化、局部平坦化、全局平坦化。磨料、压力。使硅片表面和石英掩膜版对准并聚焦, 包括图形) ; ( 经过对光刻胶曝光, 把高分辨率的投影掩膜版上图形复制到硅片上) ; ( 在单位时间内 生产出足够多的符合产品质量规格的 硅片) 。化学作用、物理作用、化 学作用与物理作用混合。介质、金 属。在涂胶的硅片上正确地复制掩膜 图形。被刻蚀图形的侧壁形状、各 向同性、各向异性。气相、液相、固 相扩散。间隙式扩散机制、替代式扩 散机制、激活杂质后。一种物质在另 一种物质中的运动、一种材料的浓度 必须高于另一种材料的浓度) 和 ( 系统内必须有足够的能量使高浓 度的材料进入或经过另一种材料。热 扩散、离子注入。预淀积、推进、 激活。时间、温度。扩散区、光刻 区、刻蚀区、注入区、薄膜区、抛 光区。硅片制造备 ) 、 ( 硅片制 造 ) 、硅片测试和拣选、 ( 装配 和封装、终测。微芯片。第一层 层间介质氧化物淀积、氧化物磨抛、 第十层掩模、第一层层间介质刻蚀。 钛淀积阻挡层、氮化钛淀积、钨淀 积、磨抛钨。 1.常见的半导体材料为何选择硅? ( 6分) ( 1) 硅的丰裕度。硅是地球上第二丰 富的元素, 占地壳成分的25%; 经合 理加工, 硅能够提纯到半导体制造所 需的足够高的纯度而消耗更低的成 本; ( 2) 更高的熔化温度允许更宽的工 艺容限。硅1412℃>锗937℃ ( 3) 更宽的工作温度。用硅制造的半 导体件能够用于比锗更宽的温度范围, 增加了半导体的应用范围和可靠性; ( 4) 氧化硅的自然生成。氧化硅是一 种高质量、稳定的电绝缘材料, 而且 能充当优质的化学阻挡层以保护硅不 受外部沾污; 氧化硅具有与硅类似的 机械特性, 允许高温工艺而不会产生 过度的硅片翘曲; 2.晶圆的英文是什么? 简述晶圆 制备的九个工艺步骤。( 6分) Wafer。 (1)单晶硅生长: 晶体生长是把半导 体级硅的多晶硅块转换成一块大的单 晶硅。生长后的单晶硅被称为硅锭。 可用CZ法或区熔法。 (2)整型。去掉两端, 径向研磨, 硅 片定位边或定位槽。 (3)切片。对200mm及以上硅片而言, 一般使用内圆切割机; 对300mm硅片 来讲都使用线锯。 (4)磨片和倒角。切片完成后, 传统 上要进行双面的机械磨片以去除切片 时留下的损伤, 达到硅片两面高度的 平行及平坦。硅片边缘抛光修整, 又 叫倒角, 可使硅片边缘获得平滑的半 径周线。 (5)刻蚀。在刻蚀工艺中, 一般要腐 蚀掉硅片表面约20微米的硅以保证 所有的损伤都被去掉。 (6)抛光。也叫化学机械平坦化 ( CMP) , 它的目标是高平整度的光滑 表面。抛光分为单面抛光和双面抛光。 (7)清洗。半导体硅片必须被清洗使 得在发给芯片制造厂之前达到超净的 洁净状态。 (8)硅片评估。 (9)包装。

集成电路制造技术-原理与工艺 课后习题答案

第一单元: 3.比较硅单晶锭CZ,MCZ和FZ三种生长方法的优缺点。 答:CZ直拉法工艺成熟,可拉出大直径硅棒,是目前采用最多的硅棒生产方法。但直拉法中会使用到坩埚,而坩埚的使用会带来污染。同时在坩埚中,会有自然对流存在,导致生长条纹和氧的引入。直拉法生长多是采用液相掺杂,受杂质分凝、杂质蒸发,以及坩埚污染影响大,因此,直拉法生长的单晶硅掺杂浓度的均匀性较差。 MCZ磁控直拉法,在CZ法单晶炉上加一强磁场,高传导熔体硅的流动因切割磁力线而产生洛仑兹力,这相当于增强了熔体的粘性,熔体对流受阻。能生长无氧、均匀好的大直径单晶硅棒。设备较直拉法设备复杂得多,造价也高得多,强磁场的存在使得生产成本也大幅提高。 FZ悬浮区熔法,多晶与单晶均由夹具夹着,由高频加热器产生一悬浮的溶区,多晶硅连续通过熔区熔融,在熔区与单晶接触的界面处生长单晶。与直拉法相比,去掉了坩埚,没有坩埚的污染,因此能生长出无氧的,纯度更高的单晶硅棒。 6.硅气相外延工艺采用的衬底不是准确的晶向,通常偏离[100]或[111]等晶向一个小角度,为什么? 答:在外延生长过程中,外延气体进入反应器,气体中的反应剂气相输运到衬底,在高温衬底上发生化学反应,生成的外延物质沿着衬底晶向规则地排列,生长出外延层。 气相外延是由外延气体的气相质量传递和表面外延两个过程完成的。表面外延过程实质上包含了吸附、分解、迁移、解吸这几个环节,表面过程表明外延生长是横向进行的,是在衬底台阶的结点位置发生的。因此,在将硅锭切片制备外延衬底时,一般硅片都应偏离主晶面一个小角度。目的是为了得到原子层台阶和结点位置,以利于表面外延生长。 7. 外延层杂质的分布主要受哪几种因素影响? 答:杂质掺杂效率不仅依赖于外延温度、生长速率、气流中掺杂剂的摩尔分数、反应室的几何形状等因素,还依赖于掺杂剂自身的特性。另外,影响掺杂效率的因素还有衬底的取向和外延层结晶质量。硅的气相外延工艺中,在外延过程中,衬底和外延层之间存在杂质交换现象,即会出现杂质的再分布现象,主要有自掺杂效应和互扩散效应两种现象引起。

《半导体集成电路》考试题目及参考答案

第一部分考试试题 第0章绪论 1.什么叫半导体集成电路? 2.按照半导体集成电路的集成度来分,分为哪些类型,请同时写出它们对应的英文缩写? 3.按照器件类型分,半导体集成电路分为哪几类? 4.按电路功能或信号类型分,半导体集成电路分为哪几类? 5.什么是特征尺寸?它对集成电路工艺有何影响? 6.名词解释:集成度、wafer size、die size、摩尔定律? 第1章集成电路的基本制造工艺 1.四层三结的结构的双极型晶体管中隐埋层的作用? 2.在制作晶体管的时候,衬底材料电阻率的选取对器件有何影响?。 3.简单叙述一下pn结隔离的NPN晶体管的光刻步骤? 4.简述硅栅p阱CMOS的光刻步骤? 5.以p阱CMOS工艺为基础的BiCMOS的有哪些不足? 6.以N阱CMOS工艺为基础的BiCMOS的有哪些优缺点?并请提出改进方法。 7. 请画出NPN晶体管的版图,并且标注各层掺杂区域类型。 8.请画出CMOS反相器的版图,并标注各层掺杂类型和输入输出端子。 第2章集成电路中的晶体管及其寄生效应 1.简述集成双极晶体管的有源寄生效应在其各工作区能否忽略?。 2.什么是集成双极晶体管的无源寄生效应? 3. 什么是MOS晶体管的有源寄生效应? 4. 什么是MOS晶体管的闩锁效应,其对晶体管有什么影响? 5. 消除“Latch-up”效应的方法? 6.如何解决MOS器件的场区寄生MOSFET效应? 7. 如何解决MOS器件中的寄生双极晶体管效应? 第3章集成电路中的无源元件 1.双极性集成电路中最常用的电阻器和MOS集成电路中常用的电阻都有哪些? 2.集成电路中常用的电容有哪些。 3. 为什么基区薄层电阻需要修正。 4. 为什么新的工艺中要用铜布线取代铝布线。 5. 运用基区扩散电阻,设计一个方块电阻200欧,阻值为1K的电阻,已知耗散功率为20W/c㎡,该电阻上的压降为5V,设计此电阻。 第4章TTL电路 1.名词解释

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

(完整版)集成电路工艺原理期末试题

电子科技大学成都学院二零一零至二零一一学年第二学期 集成电路工艺原理课程考试题A卷(120分钟)一张A4纸开卷教师:邓小川 一二三四五六七八九十总分评卷教师 1、名词解释:(7分) 答:Moore law:芯片上所集成的晶体管的数目,每隔18个月翻一番。 特征尺寸:集成电路中半导体器件能够加工的最小尺寸。 Fabless:IC 设计公司,只设计不生产。 SOI:绝缘体上硅。 RTA:快速热退火。 微电子:微型电子电路。 IDM:集成器件制造商。 Chipless:既不生产也不设计芯片,设计IP内核,授权给半导体公司使用。 LOCOS:局部氧化工艺。 STI:浅槽隔离工艺。 2、现在国际上批量生产IC所用的最小线宽大致是多少,是何家企业生产?请 举出三个以上在这种工艺中所采用的新技术(与亚微米工艺相比)?(7分) 答:国际上批量生产IC所用的最小线宽是Intel公司的32nm。 在这种工艺中所采用的新技术有:铜互联;Low-K材料;金属栅;High-K材料;应变硅技术。 3、集成电路制造工艺中,主要有哪两种隔离工艺?目前的主流深亚微米隔离工 艺是哪种器件隔离工艺,为什么?(7分) 答:集成电路制造工艺中,主要有局部氧化工艺-LOCOS;浅槽隔离技术-STI两种隔离工艺。 主流深亚微米隔离工艺是:STI。STI与LOCOS工艺相比,具有以下优点:更有效的器件隔离;显著减小器件表面积;超强的闩锁保护能力;对沟道无 侵蚀;与CMP兼容。 4、在集成电路制造工艺中,轻掺杂漏(LDD)注入工艺是如何减少结和沟道区间的电场,从而防止热载流子的产生?(7分) 答:如果没有LDD形成,在晶体管正常工作时会在结和沟道区之间形成高

数字电子技术试卷及答案(免费版)

第1页(共28页) 第2页(共28页) 姓名:__ _______ 班级:__________ 考号:___________ 成绩:____________ 本试卷共 6 页,满分100 分;考试时间:90 分钟;考试方式:闭卷 题 号 一 二 三 四(1) 四(2) 四(3) 四(4) 总 分 得 分 1. 有一数码10010011,作为自然二进制数时,它相当于十进制数( ),作为8421BCD 码 时,它相当于十进制数( )。 2.三态门电路的输出有高电平、低电平和( )3种状态。 3.TTL 与非门多余的输入端应接( )。 4.TTL 集成JK 触发器正常工作时,其d R 和d S 端应接( )电平。 5. 已知某函数??? ??+??? ??++=D C AB D C A B F ,该函数的反函数F =( ) 。 6. 如果对键盘上108个符号进行二进制编码,则至少要( )位二进制数码。 7. 典型的TTL 与非门电路使用的电路为电源电压为( )V ,其输出高电平为( )V ,输出低电平为( )V , CMOS 电路的电源电压为( ) V 。 8.74LS138是3线—8线译码器,译码为输出低电平有效,若输入为A 2A 1A 0=110时,输出 01234567Y Y Y Y Y Y Y Y 应为( ) 。 9.将一个包含有32768个基本存储单元的存储电路设计16位为一个字节的ROM 。该ROM 有( )根地址线,有( )根数据读出线。 10. 两片中规模集成电路10进制计数器串联后,最大计数容量为( )位。 11. 下图所示电路中, Y 1=( );Y 2 =( );Y 3 =( )。 12. 某计数器的输出波形如图1所示,该计数器是( )进制计数器。 13.驱动共阳极七段数码管的译码器的输出电平为( )有效。 二、单项选择题(本大题共15小题,每小题2分,共30分) (在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其代码填写在题后的括号内。错 选、多选或未选均无分。) 1. 函数F(A,B,C)=AB+BC+AC 的最小项表达式为( ) 。 A .F(A,B,C)=∑m (0,2,4) B. (A,B,C)=∑m (3,5,6,7) C .F(A,B,C)=∑m (0,2,3,4) D. F(A,B,C)=∑m (2,4,6,7) 2.8线—3线优先编码器的输入为I 0—I 7 ,当优先级别最高的I 7有效时,其输出012Y Y Y ??的值是( )。 A .111 B. 010 C. 000 D. 101 3.十六路数据选择器的地址输入(选择控制)端有( )个。 A .16 B.2 C.4 D.8 4. 有一个左移移位寄存器,当预先置入1011后,其串行输入固定接0,在4个移位脉冲CP 作用下,四位数据的移位过程是( )。 A. 1011--0110--1100--1000--0000 B. 1011--0101--0010--0001--0000 C. 1011--1100--1101--1110--1111 D. 1011--1010--1001--1000--0111 5.已知74LS138译码器的输入三个使能端(E 1=1, E 2A = E 2B =0)时,地址码A 2A 1A 0=011,则输出 Y 7 ~Y 0是( ) 。 A. 11111101 B. 10111111 C. 11110111 D. 11111111 6. 一只四输入端或非门,使其输出为1的输入变量取值组合有( )种。 A .15 B .8 C .7 D .1 7. 随机存取存储器具有( )功能。 A.读/写 B.无读/写 C.只读 D.只写 8.N 个触发器可以构成最大计数长度(进制数)为( )的计数器。 A.N B.2N C.N 2 D.2N 9.某计数器的状态转换图如下, 其计数的容量为( ) A . 八 B. 五 C. 四 D. 三 A B Y 1 Y 2 Y 3 000 001 010 011 100 101 110 111

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

集成电路制造工艺原理

《集成电路制造工艺原理》 课程教学 教案 山东大学信息科学与工程学院 电子科学与技术教研室(微电) 张新

课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编 《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技 术。 5.教学课时安排:(按54学时) 课程介绍及绪论 2学时 第一章衬底材料及衬底制备 6学时 第二章外延工艺 8学时 第三章氧化工艺 7学时 第四章掺杂工艺 12学时 第五章光刻工艺 3学时 第六章制版工艺 3学时 第七章隔离工艺 3学时 第八章表面钝化工艺 5学时 第九章表面内电极与互连 3学时 第十章器件组装 2学时

《数字集成电路》期末试卷(含答案)

浙江工业大学 / 学年第一学期 《数字电路和数字逻辑》期终考试试卷 A 姓名 学号 班级 任课教师 一、填空题(本大题共10小题,每空格1分,共10分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.十进制数(68)10对应的二进制数等于 ; 2.描述组合逻辑电路逻辑功能的方法有真值表、逻辑函数、卡诺图、逻辑电路图、波形图和硬件描述语言(HDL )法等,其中 描述法是基础且最直接。 3.1 A ⊕可以简化为 。 4.图1所示逻辑电路对应的逻辑函数L 等于 。 A B L ≥1 & C Y C 图1 图2 5.如图2所示,当输入C 是(高电平,低电平) 时,AB Y =。 6.两输入端TTL 与非门的输出逻辑函数AB Z =,当A =B =1时,输出低电平且V Z =0.3V ,当该与非门加上负载后,输出电压将(增大,减小) 。 7.Moore 型时序电路和Mealy 型时序电路相比, 型电路的抗干扰能力更强。 8.与同步时序电路相比,异步时序电路的最大缺陷是会产生 状态。 9.JK 触发器的功能有置0、置1、保持和 。 10.现有容量为210×4位的SRAM2114,若要将其容量扩展成211×8位,则需要 片这样 的RAM 。 二、选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 11.十进制数(172)10对应的8421BCD 编码是 。 【 】 A .(1111010)8421BCD B .(10111010)8421BCD C .(000101110010)8421BC D D .(101110010)8421BCD 12.逻辑函数AC B A C B A Z +=),,(包含 个最小项。 【 】

集成电路工艺原理试题总体答案

目录 一、填空题(每空1分,共24分) (1) 二、判断题(每小题1.5分,共9分) (1) 三、简答题(每小题4分,共28分) (2) 四、计算题(每小题5分,共10分) (4) 五、综合题(共9分) (5) 一、填空题(每空1分,共24分) 1.制作电阻分压器共需要三次光刻,分别是电阻薄膜层光刻、高层绝缘层光刻和互连金属层光刻。 2.集成电路制作工艺大体上可以分成三类,包括图形转化技术、薄膜制备技术、掺杂技术。 3.晶体中的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷等四种。 4.高纯硅制备过程为氧化硅→粗硅→ 低纯四氯化硅→ 高纯四氯化硅→ 高纯硅。 5.直拉法单晶生长过程包括下种、收颈、放肩、等径生长、收尾等步骤。 6.提拉出合格的单晶硅棒后,还要经过切片、研磨、抛光等工序过程方可制备出符合集成电路制造要求的硅衬底 片。 7.常规的硅材料抛光方式有:机械抛光,化学抛光,机械化学抛光等。 8.热氧化制备SiO2的方法可分为四种,包括干氧氧化、水蒸汽氧化、湿氧氧化、氢氧合成氧化。 9.硅平面工艺中高温氧化生成的非本征无定性二氧化硅对硼、磷、砷(As)、锑(Sb)等元素具有掩蔽作用。 10.在SiO2内和Si- SiO2界面存在有可动离子电荷、氧化层固定电荷、界面陷阱电荷、氧化层陷阱等电荷。 11.制备SiO2的方法有溅射法、真空蒸发法、阳极氧化法、热氧化法、热分解淀积法等。 12.常规平面工艺扩散工序中的恒定表面源扩散过程中,杂质在体内满足余误差函数分布。常规平面工艺扩散工序中的有限表 面源扩散过程中,杂质在体内满足高斯分布函数分布。 13.离子注入在衬底中产生的损伤主要有点缺陷、非晶区、非晶层等三种。 14.离子注入系统结构一般包括离子源、磁分析器、加速管、聚焦和扫描系统、靶室等部分。 15.真空蒸发的蒸发源有电阻加热源、电子束加热源、激光加热源、高频感应加热蒸发源等。 16.真空蒸发设备由三大部分组成,分别是真空系统、蒸发系统、基板及加热系统。 17.自持放电的形式有辉光放电、弧光放电、电晕放电、火花放电。 18.离子对物体表面轰击时可能发生的物理过程有反射、产生二次电子、溅射、注入。 19.溅射镀膜方法有直流溅射、射频溅射、偏压溅射、磁控溅射(反应溅射、离子束溅射)等。 20.常用的溅射镀膜气体是氩气(Ar),射频溅射镀膜的射频频率是13.56MHz。 21.CVD过程中化学反应所需的激活能来源有?热能、等离子体、光能等。 22.根据向衬底输送原子的方式可以把外延分为:气相外延、液相外延、固相外延。 23.硅气相外延的硅源有四氯化硅(SiCl4)、三氯硅烷(SiHCl3)、二氯硅烷(SiH2Cl2)、硅烷(SiH4)等。 24.特大规模集成电路(ULIC)对光刻的基本要求包括高分辨率、高灵敏度的光刻胶、低缺陷、精密的套刻对准、对大尺寸硅片 的加工等五个方面。 25.常规硅集成电路平面制造工艺中光刻工序包括的步骤有涂胶、前烘、曝光、显影、坚膜、腐蚀、 去胶等。 26.光刻中影响甩胶后光刻胶膜厚的因素有溶解度、温度、甩胶时间、转速。 27.控制湿法腐蚀的主要参数有腐蚀液浓度、腐蚀时间、腐蚀液温度、溶液的搅拌方式等。 28.湿法腐蚀Si所用溶液有硝酸-氢氟酸-醋酸(或水)混合液、KOH溶液等,腐蚀SiO2常用的腐蚀剂是HF溶液,腐蚀 Si3N4常用的腐蚀剂是磷酸。 29.湿法腐蚀的特点是选择比高、工艺简单、各向同性、线条宽度难以控制。 30.常规集成电路平面制造工艺主要由光刻、氧化、扩散、刻蚀、离子注入(外延、CVD、PVD)等工 艺手段组成。 31.设计与生产一种最简单的硅双极型PN结隔离结构的集成电路,需要埋层光刻、隔离光刻、基区光刻、发射区光刻、引线区 光刻、反刻铝电极等六次光刻。 32.集成电路中隔离技术有哪些类? 二、判断题(每小题1.5分,共9分) 1.连续固溶体可以是替位式固溶体,也可以是间隙式固溶体(×) 2.管芯在芯片表面上的位置安排应考虑材料的解理方向,而解理向的确定应根据定向切割硅锭时制作出的定位面为依据。(√) 3.当位错线与滑移矢量垂直时,这样的位错称为刃位错,如果位错线与滑移矢量平行,称为螺位错(√) 4.热氧化过程中是硅向二氧化硅外表面运动,在二氧化硅表面与氧化剂反应生成二氧化硅。(×) 5.热氧化生长的SiO2都是四面体结构,有桥键氧、非桥键氧,桥键氧越多结构越致密,SiO2中有离子键成份,氧空位表现为带正

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n 阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。

集成电路制造工艺原理

集成电路制造工艺原理 课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社 3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技术。 5.教学课时安排:(按54学时) 课程介绍及绪论2学时第一章衬底材料及衬底制备6学时 第二章外延工艺8学时第三章氧化工艺7学时第四章掺杂工艺12学时第五章光刻工艺3学时第六章制版工艺3学时第七章隔离工艺3

学时 第八章表面钝化工艺5学时 第九章表面内电极与互连3学时 第十章器件组装2学时 课程教案: 课程介绍及序论 (2学时) 内容: 课程介绍: 1 教学内容 1.1与微电子技术相关的器件、集成电路的制造工艺原理 1.2 与光电子技术相关的器件、集成电路的制造 1.3 参考教材 2教学课时安排 3学习要求 序论: 课程内容: 1半导体技术概况 1.1 半导体器件制造技术 1.1.1 半导体器件制造的工艺设计 1.1.2 工艺制造 1.1.3 工艺分析 1.1.4 质量控制 1.2 半导体器件制造的关键问题 1.2.1 工艺改革和新工艺的应用 1.2.2 环境条件改革和工艺条件优化 1.2.3 注重情报和产品结构的及时调整 1.2.4 工业化生产 2典型硅外延平面器件管芯制造工艺流程及讨论 2.1 常规npn外延平面管管芯制造工艺流程 2.2 典型pn隔离集成电路管芯制造工艺流程 2.3 两工艺流程的讨论 2.3.1 有关说明 2.3.2 两工艺流程的区别及原因 课程重点:介绍了与电子科学与技术中的两个专业方向(微电子技术方向和光电子技术方向)相关的制造业,指明该制造业是社会的基础工业、是现代化的基础工业,是国家远景规划中置于首位发展的工业。介绍了与微电子技术方向相关的分离器件(硅器件)、集成电路(硅集成电路)的制造工艺原理的内容,指明微电子技术从某种意义上是指大规模集成电路和超大规模集成电路的制造技术。由于集成电路的制造技术是由分离器件的制造技术发展起来的,则从制造工艺上看,两种工艺流程中绝大多数制造工艺是相通

数电期末试卷及答案(共4套)

XX大学信息院《数字电子技术基础》 期终考试试题(110分钟)(第一套) 一、填空题:(每空1分,共15分) 1.逻辑函数Y AB C =+的两种标准形式分别为()、 ()。 2.将2004个“1”异或起来得到的结果是()。 3.半导体存储器的结构主要包含三个部分,分别是()、()、()。 4.8位D/A转换器当输入数字量10000000为5v。若只有最低位为高电平,则输出电压为()v;当输入为10001000,则输出电压为()v。 5.就逐次逼近型和双积分型两种A/D转换器而言,()的抗干扰能力强,()的转换速度快。 6.由555定时器构成的三种电路中,()和()是脉冲的整形电路。7.与PAL相比,GAL器件有可编程的输出结构,它是通过对()进行编程设定其()的工作模式来实现的,而且由于采用了()的工艺结构,可以重复编程,使它的通用性很好,使用更为方便灵活。 二、根据要求作题:(共15分) 1.将逻辑函数P=AB+AC写成“与或非”表达式,并用“集电极开路与非门”来实现。 2.图1、2中电路均由CMOS门电路构成,写出P、Q 的表达式,并画出对应A、B、C的P、Q波形。 三、分析图3所示电路:(10分) 1)试写出8选1数据选择器的输出函数式; 2)画出A2、A1、A0从000~111连续变化时,Y的波形图; 3)说明电路的逻辑功能。

四、设计“一位十进制数”的四舍五入电路(采用8421BCD码)。要求只设定一个输出,并画出用最少“与非门”实现的逻辑电路图。(15分) 五、已知电路及CP、A的波形如图4(a) (b)所示,设触发器的初态均为“0”,试画出输出端B和C的波形。(8分) B C 六、用T触发器和异或门构成的某种电路如图5(a)所示,在示波器上观察到波形如图5(b)所示。试问该电路是如何连接的?请在原图上画出正确的连接图,并标明T的取值。 (6分) 七、图6所示是16*4位ROM和同步十六进制加法计数器74LS161组成的脉冲分频电路。ROM 中的数据见表1所示。试画出在CP信号连续作用下的D3、D2、D1、D0输出的电压波形,并说明它们和CP信号频率之比。(16分) 表1:

集成电路制造技术原理与工艺[王蔚][习题答案(第2单元)

第二单元习题解答 1.SiO 2膜网络结构特点是什么?氧和杂质在SiO 2 网络结构中的作用和用途是什 么?对SiO 2 膜性能有哪些影响? 二氧化硅的基本结构单元为Si-O四面体网络状结构,四面体中心为硅原子,四个顶角上为氧原子。对SiO2网络在结构上具备“长程无序、短程有序”的一类固态无定形体或玻璃体。半导体工艺中形成和利用的都是这种无定形的玻璃态SiO2。 氧在SiO2网络中起桥联氧原子或非桥联氧原子作用,桥联氧原子的数目越多,网络结合越紧密,反之则越疏松。在连接两个Si-O四面体之间的氧原子 掺入SiO2中的杂质,按它们在SiO2网络中所处的位置来说,基本上可以有两类:替代(位)式杂质或间隙式杂质。取代Si-O四面体中Si原子位置的杂质为替代(位)式杂质。这类杂质主要是ⅢA,ⅤA元素,如B、P等,这类杂质的特点是离子半径与Si原子的半径相接近或更小,在网络结构中能替代或占据Si原子位置,亦称为网络形成杂质。 由于它们的价电子数往往和硅不同,所以当其取代硅原子位置后,会使网络的结构和性质发生变化。如杂质磷进入二氧化硅构成的薄膜称为磷硅玻璃,记为PSG;杂质硼进入二氧化硅构成的薄膜称为硼硅玻璃,记为BSG。当它们替代硅原子的位置后,其配位数将发生改变。 具有较大离子半径的杂质进入SiO2网络只能占据网络中间隙孔(洞)位置,成为网络变形(改变)杂质,如Na、K、Ca、Ba、Pb等碱金属、碱土金属原子多是这类杂质。当网络改变杂质的氧化物进入SiO2后,将被电离并把氧离子交给网络,使网络产生更多的非桥联氧离子来代替原来的桥联氧离子,引起非桥联氧离子浓度增大而形成更多的孔洞,降低网络结构强度,降低熔点,以及引起其它性能变化。 2.在SiO 2 系统中存在哪几种电荷?他们对器件性能有些什么影响?工艺上如何降低他们的密度? 在二氧化硅层中存在着与制备工艺有关的正电荷。在SiO2内和SiO2-Si界面上有四种类型的电荷:可动离子电荷:Q m;氧化层固定电荷:Q f;界面陷阱电荷:Q it;氧化层陷阱电荷:Q Ot。这些正电荷将引起硅/二氧化硅界面p-硅的反型层,以及MOS器件阈值电压不稳定等现象,应尽量避免。 (1)可动离子电荷(Mobile ionic charge)Q m主要是Na+、K+、H+等荷正电的碱金属离子,这些离子在二氧化硅中都是网络修正杂质,为快扩散杂质,电荷密度在1010~1012/cm2。其中主要是Na+,因为在人体与环境中大量存在Na+,热氧化时容易发生Na+沾污。 Na+离子沾污往往是在SiO2层中造成正电荷的一个主要来源。这种正电荷将影响到SiO2层下的硅的表面势,从而,SiO2层中Na+的运动及其数量的变化都将影响到器件的性能。进入氧化层中的Na+数量依赖于氧化过程中的清洁度。现在工艺水平已经能较好地控制Na+的沾污,保障MOS晶体管阈值电压V T的稳定。 存在于SiO2中的Na+,即使在低于200℃的温度下在氧化层中也具有很高的扩散系数。

超大规模集成电路及其生产工艺流程

超大规模集成电路及其生产工艺流程 现今世界上超大规模集成电路厂(Integrated Circuit, 简称IC,台湾称之为晶圆厂)主要集中分布于美国、日本、西欧、新加坡及台湾等少数发达国家和地区,其中台湾地区占有举足轻重的地位。但由于近年来台湾地区历经地震、金融危机、政府更迭等一系列事件影响,使得本来就存在资源匮乏、市场狭小、人心浮动的台湾岛更加动荡不安,于是就引发了一场晶圆厂外迁的风潮。而具有幅员辽阔、资源充足、巨大潜在市场、充沛的人力资源供给等方面优势的祖国大陆当然顺理成章地成为了其首选的迁往地。 晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在应在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。 一、晶圆 所谓晶圆实际上就是我国以往习惯上所称的单晶硅,在六、七十年代我国就已研制出了单晶硅,并被列为当年的十天新闻之一。但由于其后续的集成电路制造工序繁多(从原料开始融炼到最终产品包装大约需400多道工序)、工艺复杂且技术难度非常高,以后多年我国一直末能完全掌握其一系列关键技术。所以至今仅能很小规模地生产其部分产品,不能形成规模经济生产,在质量和数量上与一些已形成完整晶圆制造业的发达国家和地区相比存在着巨大的差距。 二、晶圆的生产工艺流程: 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两面大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 多晶硅——单晶硅——晶棒成长——晶棒裁切与检测——外径研磨——切片——圆边——表层研磨——蚀刻——去疵——抛光—(外延——蚀刻——去疵)—清洗——检验——包装 1、晶棒成长工序:它又可细分为: 1)、融化(Melt Down):将块状的高纯度多晶硅置石英坩锅内,加热到其熔点1420℃以上,使其完全融化。2)、颈部成长(Neck Growth):待硅融浆的温度稳定之后,将,〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此真径并拉长100---200mm,以消除晶种内的晶粒排列取向差异。 3)、晶冠成长(Crown Growth):颈部成长完成后,慢慢降低提升速度和温度,使颈直径逐渐加响应到所需尺寸(如5、6、8、12时等)。 4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5、)尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2、晶棒裁切与检测(Cutting & Inspection):将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3、外径研磨(Surface Grinding & Shaping):由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4、切片(Wire Saw Slicing):由于硅的硬度非常大,所以在本序里,采用环状、其内径边缘嵌有钻石颗粒的薄锯片将晶棒切割成一片片薄片。 5、圆边(Edge profiling):由于刚切下来的晶片外边缘很锋利,单晶硅又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6、研磨(Lapping):研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。

(工艺技术)集成电路的基本制造工艺

第1章 集成电路的基本制造工艺 1.6 一般TTL 集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么? 答:集成运算放大器电路的外延层电阻率比一般TTL 集成电路的外延层电阻率高。 第2章 集成电路中的晶体管及其寄生效应 复 习 思 考 题 2.2 利用截锥体电阻公式,计算TTL “与非”门输出管的CS r ,其图形如图题2.2 所示。 提示:先求截锥体的高度 up BL epi mc jc epi T x x T T -----= 然后利用公式: b a a b WL T r c -? = /ln 1ρ , 2 1 2?? =--BL C E BL S C W L R r b a a b WL T r c -? = /ln 3ρ 321C C C CS r r r r ++= 注意:在计算W 、L 时, 应考虑横向扩散。 2.3 伴随一个横向PNP 器件产生两个寄生的PNP 晶体管,试问当横向PNP 器件在4种可能的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大? 答:当横向PNP 管处于饱和状态时,会使得寄生晶体管的影响最大。 2.8 试设计一个单基极、单发射极和单集电极的输出晶体管,要求其在20mA 的电流负载下 ,OL V ≤0.4V ,请在坐标纸上放大500倍画出其版图。给出设计条件如下: 答: 解题思路 ⑴由0I 、α求有效发射区周长Eeff L ; ⑵由设计条件画图 ①先画发射区引线孔; ②由孔四边各距A D 画出发射区扩散孔; ③由A D 先画出基区扩散孔的三边; ④由B E D -画出基区引线孔; ⑤由A D 画出基区扩散孔的另一边;

《集成电路设计原理》试卷及答案课件

电科《集成电路原理》期末考试试卷 一、填空题 1.(1分) 年,第一次观测到了具有放大作用的晶体管。 2 . ( 2 分 ) 摩 尔 定 律 是 指 。 3. 集 成 电 路 按 工 作 原 理 来 分 可 分 为 、 、 。 4.(4分)光刻的工艺过程有底膜处理、涂胶、前烘、 、 、 、 和去胶。 5.(4分)MOSFET 可以分为 增强型NMOS ,耗尽型NMOS ,增强型PMOS ,耗尽型PMOS___四种基本类型。 6.(3分)影响MOSFET 阈值电压的因素有: 、 以及 。 7.(2分)在CMOS 反相器中,V in ,V out 分别作为PMOS 和NMOS 的 栅极, 和 漏极 ; VDD , 作为PMOS 的源极和体端, ,GND 作为NMOS 的源极和体端。 8.(2分)CMOS 逻辑电路的功耗可以分为 和 。 9.(3分)下图的传输门阵列中5DD V V =,各管的阈值电压1T V V =,电路中各节点的初始电压为0,如果不考虑衬偏效应,则各输出节点的输出电压Y 1= 4 V ,Y 2= 3 V ,Y 3= 3 V 。 DD 1 3 2 10.(6分)写出下列电路输出信号的逻辑表达式:Y 1= ;Y 2= ;Y 3= 。 A B Y 1 A B 2 3 二、画图题:(共12分)

1.(6分)画出由静态CMOS电路实现逻辑关系Y ABD CD =+的电路图,要求使用的MOS管最少。 2.(6分)用动态电路级联实现逻辑功能Y ABC =,画出其相应的电路图。 三、简答题:(每小题5分,共20分) 1.简单说明n阱CMOS的制作工艺流程,n阱的作用是什么? 2.场区氧化的作用是什么,采用LOCOS工艺有什么缺点,更好的隔离方法是什么? 3.简述静态CMOS电路的优点。

相关文档
相关文档 最新文档