文档库 最新最全的文档下载
当前位置:文档库 › ZETA电势测试

ZETA电势测试

ZETA电势测试
ZETA电势测试

Vibration potential imaging:

mechanism of voltage production

and

frequency dependence

Cuong Nguyen,Shougang Wang1,and Gerald Diebold*

Department of Chemistry,Brown University,Providence,RI,01912?

Imaging with the ultrasonic vibration potential is based on voltage generation by a colloidal or ionic suspension in response to the passage of ultrasound.The polarization within a body arising from the oscillatory displacement in the ultrasonic?eld produces a current in a pair of external electrodes that is measured as a function of time or frequency.Existing theory gives the current in the electrodes as arising from both a time varying polarization and ionic conduction.Here, experiments are reported that show that the production of the polarization current is the dominant mechanism for current generation in soft tissue.Experiments are also reported giving the frequency dependence of the ultrasonic vibration current in canine blood and in several dilutions of aqueous silica suspensions.

Keywords:imaging,ultrasound,vibration potential

Introduction

The ultrasonic vibration potential refers to the gener-ation of a time dependent polarization when ultrasound traverses a colloidal or ionic solution[1—4].In the case of the former,the oscillatory motion of the?uid causes distortion of the normally spherical charge distribution surrounding individual colloidal particles resulting in the formation of a dipoles at the sites of the colloidal par-ticles.Over one half wavelength of the ultrasound,the

?Electronic address:Gerald_Diebold@https://www.wendangku.net/doc/dc11502376.html, dipoles add coherently to yield a macroscopic polariza-tion that can be detected with a pair of electrodes ei-ther as an alternating voltage or a current.For imaging a colloidal object within a body,the body is equipped with a pair of external electrodes attached to a sensitive current ampli?er.Images can be constructed by record-ing the current in the circuit as a beam of ultrasound is propagated into the body[5—7].To date,imaging with the vibration potential has focused on frequency domain methods where the phase and amplitude of the current in the external circuit is measured in an experimental arrangement shown schematically in Fig. 1.However,

2

FIG.1:Schematic diagram of the experimental apparatus used for vibration potential imaging.The entire region be-tween the electrodes is taken to have a dielectric constantεand conductivityσThe spherical object at the center whose distribution in space is described by the functionα(x,ω).

it is straightforward to implement time domain imaging by detecting the arrival time of the current when a short burst of ultrasound is launched into the body.The the-ory for frequency domain imaging[8]considers an arbi-trary colloidal object whose spatial dependence is given by the functionα?(x,ω)surrounded by an inert region that does not generate a vibration potential.A pair of electrodes placed externally to the body are maintained at zero potential,which is realized in the laboratory by attaching the electrodes to a low input impedance ampli-?er.The potential?φ(x)in a body containing a colloidal object whose spatial dependence is given by the func-tionα?(x,ω)can be written as a volume integral over a Dirichlet Green’s function G D(x,x0)as

?φ(x)=Z V G D(x,x0)?0·[α?(x0,ω)??p(x0)]dV0,(1)

where the Green’s function is constructed to be zero on the two plates.The quantityα?(x,ω)is related to the material properties of the colloid through

α?(x,ω)=

iωεf?ρmμE

(2) whereσ,ρ,andμE are the dielectric constant,conductiv-ity,density,and electrophoretic mobility of the suspen-sion,respectively,f is the volume fraction of the colloidal particles,and?ρm is the di?erence in density between the colloidal particles and the surrounding?uid.The space dependence ofα?(x,ω)is determined by the geom-etry of the colloidal object under consideration and must be speci?ed on the right hand side Eq.2through the space dependence of f,orμE.

There are two mechanisms for current generation in the external circuit that follow from the creation of a po-larization within the region between the two electrodes. First,as is shown in Fig.1,the ultrasonically generated polarization produces a potential distribution within the inert medium.As a result of migration of anions and cations followed by oxidation and reduction reactions at the electrode surfaces a current is produced in the pream-pli?er circuit,which,for a low input impedance preampli-?er,approximates a nearly zero impedance,closed elec-trical circuit.The current density J F for the migrat-ing free charge is related to the electric?eld through J F=σE so that the current density can be expressed in terms of the potential as

J F(x)=?σ??φ(x).(3)

3

FIG.2:Diagram of the cell used for generation of a vibration

potential.In one set of experiments,layers of nylon of dif-

ferent thicknesses were placed on top of the agarose block.in

contact with the plastic?lm that con?ned the colloidal sus-

pension.In the second set of experiments,where the fre-

quency dependence of the vibration potential was measured,

the bottom electrode was placed in contact with the acrylic

cell.The depth of the water was approximately10cm;the

acrylic cell was25mm thick.

The second mechanism for current generation arises

from the time dependence of the ultrasonically induced

polarization.From Maxwell’s relation?×H=J+?D

it is easy to see that the time derivative of the electrical

displacement vector corresponds to a current.Through

use of the constitutive relation D=εE,the polarization

current density J P is seen to be derivable from the po-

tential as well,through the relation

J P=?ε?

?t?

?φ(x).(4)

The addition of both of these current densities followed by integration over the area of an electrode gives the current in the circuit as

?I(ω)=?iω

h Z V[?α(x,ω)]z p(x)dx dy dz,(5) where h is the distance between the two electrodes,and α(x,ω)=(σ+iωε)α?(x,ω)/iωso that

α(x,ω)=

εf?ρmμE

ρ(σ+iωε)

.(6) Equation5is the fundamental relation between the gradient of the colloidal suspension,the pressure wave launched along the positive z axis,and the current pro-duced in the circuit.

In medical application of vibration potential imaging, which would appear to concern primarily the imaging of blood within soft tissue,the question arises as to whether it is the conduction of free charges or the polarization current that is the dominant mechanism for signal gen-eration.An additional question is whether the current become independent of the frequency altogether at high frequencies,as would be indicated by the expressions for α(x,ω)and?I(ω).Here we address these two ques-tions with a series of experiments,the?rst making use of purely dielectric substances placed across the area of one electrode,and the second through measurement of the frequency dependency of the current.

I.EXPERIMENTS

Experiments were conducted using the cell shown in Fig.2.The cell consists of a hollow aluminum cylinder with a45mm internal diameter.The aluminum body of

4

the cell provides both an electrical ground and shielding from stray electromagnetic radiation.The colloidal solu-tion inside the cell was placed inside a cylindrical acrylic container equipped with plastic?lm at the top and bot-tom that permitted entry and exit of the ultrasound,but which con?ned the colloidal solution.The bottom of the acrylic container rested atop a25mm thick agarose block located at the bottom of the cell.The electrode was placed at the bottom of the agarose block and was connected with a short length of insulated wire to an elec-trical feedthrough which led to the input of the pream-pli?er.The ground electrode was provided by a layer of degassed,deionized water placed above the colloidal sample.The water acts as an acoustic delay line,and, as a result of its small,but?nite conductivity,serves as a ground since it contacts the inner surface of the alu-minum cylinder.

In the experiments with the layers,a continuous si-nusoidal voltage from a signal generator was fed to a gated power ampli?er(Ritek,Inc.,Model GA2500)that drove an unfocused25.4mm diameter LiNbO3transducer (Valpey Fisher Co.,Model E1178)terminated by a wa-ter cooled50?terminator.The signal preampli?er con-nected to the electrodes(Analog Devices Inc.,Model AD 8021)had a voltage ampli?cation of100.Its output was fed to a gated ampli?er whose output,in turn,was fed to an rf lock-in ampli?er(Stanford Research Instruments, Model SP844)whose reference was supplied by the signal generator.The signal amplitude and phase with

respect FIG.3:Signal from the cell versus thickness of several nylon layers for ultrasound at1MHz.The voltage plotted is the output of the second ampli?er.

to the input voltage from the signal generator were then recorded from the lock-in ampli?er output.

In the experiments where the frequency dependences of the various colloidal suspensions was measured,a func-tion generator supplied bursts of rf voltage to a power ampli?er(Empower,Inc.,Model GCS0C2CRR)which was fed to a terminated,3.5MHz,pzt transducer(Pana-metrics,Inc.,Model V382).The signal from the elec-trodes was fed to a charge sensitive preampli?er(EG&G Ortec,Model142A)whose output,in turn,was passed to an rf ampli?er(Femto,Inc.Model DHPCA100)oper-ated with an ampli?cation of100.The magnitude of the ampli?ed signal was then recorded on an oscilloscope. In both experiments,the duration of the rf burst was 20cycles of the applied rf voltage,which was selected to insure that re?ected ultrasound from one burst could not a?ect the signal from the following burst.The sig-

5

nal generated at the interface between the water delay line and the top surface of the colloid was used for the measurements of current in all experiments.

In the?rst set of experiments,carried out using a 1MHz transducer,layers of nylon with various thick-nesses were placed between the agarose and the acrylic container,and the magnitude of the vibration current recorded at a constant ultrasonic amplitude.The plot in Fig.3shows the e?ect of increasing the layer thick-ness.Since the nylon can be approximated as having essentially no electrical conductivity the role of ionic con-duction as the primary mechanism of current generation can be seen to be negligible:a complete loss of signal would be expected for insertion of even the thinnest of the layers used.

Experiments to determine the frequency dependence of colloidal suspensions required careful calibration of the combined power ampli?er and transducer,as well as the signal ampli?ers.The latter was carried out using a func-tion generator which produced a sinusoidal wave with a constant amplitude over the frequency range of the ex-periment.The results of the calibration,as shown in Fig. 4,show a fallo?in gain with frequency as expected for a charge sensitive preampli?er.The decrease in gain seen below about1.2MHz is attributed to the integration time constant of the charge ampli?er.

The active element in the ultrasonic transducer is a res-onant pzt piezoelectric disk attached to a backing mater-ial;hence its frequency response is expected to be

peaked FIG.4:Output signal versus frequency for the combination of the Ortek and Femto ampli?ers.The ampli?cation was determined using an

oscilloscope.

FIG.5:Transducer output pressure in arbitrary units versus frequency for a unit amplitude sinusoidal wave input fed to the power ampli?er.

around its3.5MHz resonance frequency.The data shown in Fig.5were taken using a PVDF transducer with a?at frequency response as the function generator that drove the power ampli?er was slowly swept over the range from0.5to6.5MHz.

All data for the frequency response of the vibration

6

FIG.6:Current in aribtrary units versus frequency for¤

undiluted;°50%,×20%,and410%dilutions of silica

colloid in water;and whole canine blood.

current from the colloidal suspensions were corrected for

the frequency response of both the power ampli?er and

transducer combination,as well as that of the ampli-

?ers.The data shown in Fig.6give the amplitude of

the vibration current versus frequency for four di?erent

dilutions of the silica colloid in water,and that of whole

canine blood preserved with heparin.For frequencies

below5MHz,the amplitude of the signal produced by

whole blood can be seen to be nearly inversely propor-

tional to frequency.

II.DISCUSSION

The ultrasonic vibration potential arises from the?ow

of?uid across the surface of the colloidal particle,and,

as such,is related to the classic problem of a particle in

a plane sound wave.In describing the velocity of the

particle relative to its surround?uid,Temkin[9]de?nes a

dimensionless parameter y,related to the Reynolds num-

ber,from which the ratio of the particle velocity to the

?uid velocity is determined.This parameter is given

by y=pωa2ρ0/2μ0,whereωis the angular frequency

of the ultrasound,a is the particle radius,andρ0and

μ0are the?uid density and shear viscosity.For aque-

ous colloidal silica with particle radii of45nm,at a fre-

quency of1MHz,the parameter y becomes0.073;for

red blood cells with radii[10]of8μm in whole blood

with a viscosity[11]of30×10?3Pa s,and a density[12]of

1067kg/m3,y is2.07.According to the calculation given

in Ref.[9],the motion of the of the colloidal silica parti-

cles lies squarely in the Stokes regime,whereas that of the

red blood cells lies intermediate between the Stokes and

inviscid?ow regimes.Thus,the velocity of the?uid?ow

relative to that of the particle is larger for the blood cells

as compared with the silica particles.Aside from the

frequency dependence of the vibration potential,the rel-

ative magnitudes of the vibration potential for colloidal

silica and whole blood depends on both the volume frac-

tion of particles in suspension and the electrophoretic

mobility,which,for the latter,no measurements appear

to have been reported.

A quantitative description of the curve for signal ver-

sus insulating layer thickness shown in Fig.3requires

a knowledge of the e?ect of addition of layers of di?er-

ent conductivity and dielectric constant on the current

from the cell which requires substantial modi?cation of

7

the Green’s function that is used in the formulation of the theory[8]that gives the integral formula in Eq.5.In the absence of such theory,however,it can be concluded that the current generation mechanism relies on the pro-duction of a time dependent polarization and is wholly independent of the conductivity for the suspensions stud-ied here.Insofar as biological tissue is concerned,where vibration potential imaging may have application,the ra-tio ofσ/ωεat1MHz,as shown in Table I,is exceedingly small.The same statement can be made for for a number of other body tissues[13].

Table I

Conductivity,relative dielectric constant andσ/ωεat1MHz.The parametersσandεare taken from

Ref.[13].

In light of the dominance of the polarization current in the overall current measured in the circuit,from Eq. 5and6,it would appear thatα(x,ω)is proportional to ω?1and that?I(ω)is independent of frequency.How-ever,the experiments here show that this is not the case for colloidal silica or blood;hence it follows that the elec-trophoretic mobilityμE must be frequency dependent. Ultimately,the frequency dependence of theα(x,ω) orμE is of little concern for time domain imaging,or, in frequency domain imaging when data is taken over a limited frequency range.In the case of the former, the highest frequency where data can be obtained with a su?cient signal-to-noise ratio is sought so that spatial resolution can be maximized.For frequency domain imaging over a limited frequency range,it is su?cient that no abrupt change in signal amplitude or rapid phase change is introduced at any point along the curve by the inherent response of the mobility to frequency.

III.ACKNOWLEDGEMENT

The authors are grateful for the support of this re-search by the US Army Medical Research and Materiel Command under grant DAMD17-02-1-0307.Opinions, interpretations,conclusions and recommendations are those of the authors and are not necessarily endorsed by the US Army.

1Present address:Columbia University Department of Biomedical Engineering,630W168’th St.,New York,NY10032.

8

[1]P.J.Debye,J.Chem.Phys.1,13(1933).

[2]R.W.O’Brien,J.Fluid Mech.190,71(1988).

[3]R.W.O’Brien,J.Colloid and Interface Sci.113,81

(1986).

[4]M.J.Povey,Ultrasonic Techniques for Fluids Character-

ization(Academic Press,San Diego,1997).

[5]A.C.Beveridge,S.Wang,and G.J.Diebold,Appl.Phys.

Lett.85,5466(2004).

[6]S.Wang, A. C.Beveridge, C.Nguyen,S.Li,and

G.J.Diebold,Appl.Phys.Lett.89,243902(2006).

[7]A.C.Beveridge,S.Wang,and G.J.Diebold,Proc.SPIE

20045320,95(2004).

[8]V.E.Gusev and G.J.Diebold,Ultrasound in Med.and

Biol.31,273(2005).

[9]S.Temkin,Elements of Acoustics(John Wiley,New

York,1981).

[10]N. A.Campbell and J. B.Reece,Biology(Benjamin

Cummings,New York,2002),sixth ed.

[11]G.D.Lowe,A.J.Lee,A.Rumley,J.F.Price,and J.G.

Folkes,Brit.J.Haematology96,168(1997).

[12]J.Cutnell and K.Johnson,Physics(John Wiley,Hobo-

ken NJ,1998).

[13]S.Gabriel,https://www.wendangku.net/doc/dc11502376.html,u,and C.Gabriel,Phys.Med.Biol.

41,2251(1996).

扩散双电层理论和Zeta 电势

64 扩散双电层理论和Zeta 电势 胶体粒子的表面常因解离、吸附、极化、摩擦等原因而带电,分散介质则带反电荷,因此,在相界面上便形成了双电层。胶体的这种结构决定了它的电学性质,并对其稳定性起着十分重要的作用。本专题便来讨论胶体的双电层结构,并从中引出一个决定胶体电学性质和稳定性的重要指标——?(Zeta)电势。 1.双电层模型 (1) Helmholtz 模型 1879年,Helmholtz 在研究胶体在电场作用下运动时,最早提出了一个双电层模型。这个模型如同一个平板电容器,认为固体表面带有某种电荷,介质带有另一种电荷,两者平行,且相距很近,就像图64-1所示。 图64-1 Helmholtz 双电层模型 按照这个模型,若固体表面的电势为0ψ,正、负电荷的间距为δ,则双电层中的电势随间距直线下降,且表面电荷密度σ与电势0ψ的关系如下式表示 δ εψσ0= (64-1) 式中ε为介质的介电常数。 显然,这是一个初级双电层模型,它只考虑到带电固体表面对介质中反离子的静电作用,而忽视了反离子的热运动。虽然,它对胶体的早期研究起过一定的作用,但无法准确地描述胶体在电场作用下的运动。 (2) Gouy(古依)—Chapman (恰普曼)模型 由于Helmholtz 模型的不足,1910和1913年,Gouy 和Chapman 先后作出改进,提出了一个扩散双电层模型。这个模型认为,介质中的反离子不仅受固体表面离子的静电吸引力,从而使其整齐地排列在表面附近,而且还要受热运动的影响,使其离开表面,无规则地分散在介质中。这便形成如图64-2所示的扩散双电层结构。

图64-2 Gouy —Chapman 扩散双电层模型 他们还对模型作了定量的处理,提出了如下四点假设: ① 假设表面是一个无限大的平面,表面上电荷是均匀分布的。 ② 扩散层中,正、负离子都可视为按Boltzmanm 分布的点电荷。 ③ 介质是通过介电常数影响双电层的,且它的介电常数各处相同。 ④ 假设分散系统中只有一种对称的电解质,即正、负离子的电荷数均为z 。 于是,若表面电势为0ψ,相距x 处的电势为ψ,便可按Boltzmanm 分布定律,写出相距x 处的正、负离子的数密度为 ?? ?????=+kT ze n n ψexp 0 (64-2) ?? ????=?kT ze n n ψexp 0 (64-3) 式中0n 为0=ψ即距表面无限远处正或负离子的数密度。距表面x 处的电荷密度当为 () ????????=?? ????????????? ?????=?=?+kT ze zen kT ze kT ze zen n n ze ψψψρsinh 2 exp exp 00 (64-4) 式中函数() y y y ??=e e 21sinh ,称为双曲正弦函数。 根据静电学中的Poisson 方程,电荷密度与电势间应服从如下关系 ε ρψ?=?2 (64-5) 式中2222222///z y x ??+??+??=?为Laplace 算符,ε为分散介质的介电常数。对于表面为平面的情况,222/x ??=? 因此 ?? ?????=?=??kT ze zen x ψεερψsinh 2022 (64-6)

Zeta电位仪测试简化过程

Zeta电位仪测试简化过程 1、开启仪器(仪器的开关在设备的后面的右上部位), 将出现“嘟嘟”声,指示仪器已开启,开始初始化步骤;如果仪器完成例程,出现第二次“嘟嘟”声。将再次听到两次“嘟嘟”声,说明仪器已达到25°C的默认温度。因为本仪器为632.8激光光源,一般需稳定30分钟 2、点击图标,启动Zetasizer软件 3、点击软件中 File – New - Measurement file,创建此次测试文 件,一经创建,本次测试的结果均自动保存在此文件中,无需另行保存。 4、制备样品 5、将制备的样品注入样品池,粒径分布需1.0 ml—1.5 ml,Zeta点 位测量至少需要1.0 ml。 6、将样品池插入仪器中,等待温度平衡 7、点击Start (),即进行测量。 8、使用光盘拷取数据。 使用注意事项 测量粒径分布 1.测量粒径前,需查知样品分散剂的粘度、折光指数(Refractive Index) 2.用卷纸轻轻点拭样品池外侧水滴,切勿用力擦拭,以防将样品池划伤,如发现样品池 有划纹,需更换。 3.手尽量避免触摸样品池下端,否则会影响光路。 4.一定要去除样品池内的气泡 5.实验室提供的样品池为聚苯乙烯材质,不可用于测量有机分散体系 6.实验室提供的样品池,测量温度不可高于50摄氏度 7.如需测量有机分散体系或高于50摄氏度,请自带石英比色皿 8.使用滤纸过滤时,舍去过滤后的第一滴样品,以防滤纸上杂质进入样品池 测量时需自带:卷纸、多个注射器、多个离心管(用于稀释样品)

Zeta电位测量 1、测量粒径前,需查知样品分散剂的粘度、折光指数(Refractive Index)、介电常数 (Dielectric constant) 2、用卷纸轻轻点拭样品池外侧水滴,尤其是两个塞子外侧 3、一定要去除样品池内的气泡,尤其是电极上气泡 4、如发现电极变黑,需更换 5、实验室提供的样品池为聚苯乙烯材质,不可用于测量有机分散体系 6、实验室提供的样品池测量温度不可高于70度 7、使用滤纸过滤时,舍去过滤后的第一滴样品,以防滤纸上杂质进入样品池 测量时需自带:卷纸、多个注射器(5ml)、多个离心管(用于稀释样品) 制备样品—粒径 样品浓度 每个类型的样品材料,有最佳的样品浓度测量范围。 ?如果样品浓度太低,可能会没有足够的散射光进行测量。除极端情况外,对该仪器来说一般不会发生。 ?如果样品太浓,那么一个粒子散射光也会被其它粒离所散射(这称为多重散射)。 ?浓度的上限也要考虑到:在某一浓度以上,由于粒子间相互作用,粒子不再进行自由扩散。 小粒子需要考虑的事项 最小浓度 对小于10nm的粒子,决定最小浓度的主要因素是样品生成的散射光强。实用的角度,这种浓度应生成最低光强为10,000cp/s(10 kcps),这样才能超过分散剂的散射。作为一个指导,水的散射光强应超过10kcp的,甲苯的应超过100kcps。 最大浓度 对小粒径的样品,最大浓度实际上不存在(以进行动态光散射(DLS)测量的术语来说)。 但实际,样品的性质本身会决定此最大值。例如,样品可能有以下性质:

高等数学重要常用符号读法指南

大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔 Γγgamma gamma 伽马 Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔 Ηηeta eta 艾塔 Θθtheta θita西塔 Ιιiota iota 约塔 Κκkappa kappa 卡帕 ∧λlambda lambda 兰姆达Μμmu miu 缪 Ννnu niu 纽 Ξξxi ksi 可塞 Οοomicron omikron 奥密可戎∏πpi pai 派 Ρρrho rou 柔 ∑σsigma sigma 西格马 Ττtau tau 套 Υυupsilon jupsilon 衣普西隆Φφphi fai 斐 Χχchi khai 喜 Ψψpsi psai 普西

Ωωomega omiga 欧米伽 符号表 符号含义 i -1的平方根 f(x) 函数f在自变量x处的值 sin(x) 在自变量x处的正弦函数值 exp(x) 在自变量x处的指数函数值,常被写作ex a^x a的x次方;有理数x由反函数定义 ln x exp x 的反函数 ax 同a^x logba 以b为底a的对数;blogba = a cos x 在自变量x处余弦函数的值 tan x 其值等于sin x/cos x cot x 余切函数的值或cos x/sin x sec x 正割含数的值,其值等于1/cos x

符号含义 csc x 余割函数的值,其值等于1/sin x asin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc y θ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时 i, j, k 分别表示x、y、z方向上的单位向量 (a, b, c) 以a、b、c为元素的向量 (a, b) 以a、b为元素的向量 (a, b) a、b向量的点积

20170517-基本Zeta变换器的演绎过程和工作原理

基本Zeta 变换器的演绎过程和工作原理 普高(杭州)科技开发有限公司 张兴柱 博士 将基本Cuk 变换器中的开关S 与输入电感互换位置,再考虑实际可工作的器件方向,所得 (a) Cuk 变换器 (b) Zeta 变换器 图1 Zeta 变换器与Cuk 变换器的拓扑变换 的拓扑就是基本Zeta 变换器,如图1所示。 类似的,也可将基本Cuk 变换器看作是有基本Zeta 变换器演变得到的,但因为它们具有不同的拓扑特性(如输入端的电流特性,输出电压与输入电压的极性关系),所以仍把它们看作是不同的个体,按兄弟相称。 从电路图可知基本Zeta 变换器的工作原理为:当有源开关S 导通时,无源开关D 因反偏而截止,此时输入给滤波电感L1储能(或激磁),电容C1中的能量给滤波电感L2储能(或激磁),并给负载供电;当有源开关S 截止时,由于电感电流不能突变,故使无源开关D 正偏而导通,此时电感L1和电感L2的总电流经二极管续流,L2储存的能量向负载供电,L1储存的能量补充电容C1在前一间隔所损失的能量。并由输出电压对电感L2进行去磁。电容C1电压对电感L1进行去磁。电容C1的作用有两个,一是在开关S 导通时给电感L2储能和给负载供电,另一是限制其上的开关频率纹波分量,使之远远小于其上的稳态电压。输出滤波电容的作用是限制输出电压上的开关频率纹波分量,使之远远小于稳态的直流输出电压。 在忽略电容C1电压和输出电压的开关纹波时,我们可利用前面介绍的电感电压伏秒平衡定律,推得基本Zeta 变换器在理想情况下的稳态电压关系为(推导过程见方框内): D DV V g o ?= 1 其中:s on T T D =为驱动脉冲的稳态控制占空比,有10<≤D ,故基本Zeta 变换器的输出电压既可大于它的输入电压、又可小于它的输入电压,是一种升降压变换器,且输出与输入具有相同的电压极性。 电容电压:o c V V =1 (可从电感开关周期平均电压为零获得) 正向伏秒:s g DT V × 反向伏秒:s o T D V )1(?× 所以:s o s g T D V DT V )1(?×=× 故有稳态电压关系:)1/(D DV V g o ?=

(完整)高等数学所有符号的写法与读法

高等数学所有符号的写法与读法  ̄hyphen 连字符 ' apostrophe 省略号;所有格符号 — dash 破折号 ‘’single quotation marks 单引号 “”double quotation marks 双引号( ) parentheses 圆括号 [ ] square brackets 方括号 Angle bracket {} Brace 《》French quotes 法文引号;书名号... ellipsis 省略号 ¨ tandem colon 双点号 " ditto 同上 ‖ parallel 双线号 /virgule 斜线号 &ampersand = and ~swung dash 代字号 § section; division 分节号 → arrow 箭号;参见号 +plus 加号;正号 -minus 减号;负号

± plus or minus 正负号 × is multiplied by 乘号 ÷ is divided by 除号 =is equal to 等于号 ≠ is not equal to 不等于号 ≡ is equivalent to 全等于号 ≌ is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号 <is less than 小于号 >is more than 大于号 ≮ is not less than 不小于号 ≯ is not more than 不大于号 ≤ is less than or equal to 小于或等于号 ≥ is more than or equal to 大于或等于号 %per cent 百分之… ‰ per mill 千分之… ∞ infinity 无限大号 ∝ varies as 与…成比例 √ (square) root 平方根 ∵ since; because 因为 ∴ hence 所以 ∷ equals, as (proportion) 等于,成比例

实验7.zeta电位实验

实验7 Zeta 电位法测蛋白质的等电点 实验目的 1. 掌握zeta 电位的测试原理方法以及zeta 电位仪的使用。 2. 掌握通过zeta 电位测量蛋白质等电点的方法。 实验原理 分散于液相介质中的固体颗粒,由于吸附、水解、离解等作用,其表面常常是带电荷的。Zeta 电位是描述胶粒表面电荷性质的一个物理量,它是距离胶粒表面一定距离处的电位。若胶粒表面带有某种电荷,其表面就会吸附相反符号的电荷,构成双电层[1]。在滑动面处产生的动电电位叫作Zeta 电位,这就是我们通常所测的胶粒表面的(动电)电位。 蛋白质是两性电解质。蛋白质分子中可以解离的基团除N ―端α―氨基与C ―端α―羧基外,还有肽链上某些氨基酸残基的侧链基团,如酚基、巯基、胍基、咪唑基等集团,它们都能解离为带电基团。因此,在蛋白质溶液中存在着下列平衡: C COOH H R NH 3+-C H R NH 3COO --+C COO -H NH 2R 阳离子 两性离子 阴离子 pH < pI pH = pI pH > pI 调节溶液的pH 使蛋白质分子的酸性解离与碱性解离相等,即所带正负电荷相等,净电荷为零,此时溶液的pH 值称为蛋白质的等电点。

图1. PH值对BSA的zeta电位的影响(0.1mol / L NaCl溶液)[2] 等电点是蛋白质的一个重要性质,本实验旨在通过测定不同pH下1mg/ml 的牛血清白蛋白(BSA)溶液的zeta电位,用zeta电位值对pH作图(如图1),对应于zeta电位为零的pH即为牛血清白蛋白(BSA)的等电点。 实验仪器及试剂: ZetaPALS型Zeta电位及纳米粒度分析仪,比色皿,钯电极,牛血清白蛋白(BSA),柠檬酸,柠檬酸钠,去离子水。 实验步骤: 1.配制pH值分别为3.0,4.2,5.4,6.6的0.1mol/L柠檬酸-柠檬酸钠缓冲溶液 溶液脱气后,再加入BSA充分溶解。 2.打开仪器后面的开关及显示器。 3.打开BIC Zeta potential Analyzer(水相体系)/BIC PALS Zeta potential Analyzer(有机相)程序,选择所要保存数据的文件夹(File-Database-Create Flod 新建文件夹,File-Database-双击所选文件夹-数据可自动保存在此文件夹),待机器稳定15-20min后使用。 4.待测溶液配制完成后需放置一段时间进行Zeta电位测试,将待测液加入比色 皿1/3高度处,赶走气泡,钯电极插入溶液中,拿稳钯电极上端和比色皿下端,不要让两者脱离,连上插头,关上仪器外盖,则开始实验。(AQ-961钯电极用于pH为2-12的水相体系,SR-482钯电极用于有机相和pH为1-13的水相体系,钯电极可在溶液中浸润一会儿)。

常用的数学符号大全、关系代数符号

常用数学符号大全、关系代数符号 1、几何符号 ⊥∥∠⌒⊙≡≌△ 2、代数符号 ∝∧∨~∫≠≤≥≈∞∶ 3、运算符号 如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。 4、集合符号 ∪∩∈ 5、特殊符号 ∑π(圆周率) 6、推理符号 |a| ⊥∽△∠∩∪≠≡±≥≤∈← ↑→↓↖↗↘↙∥∧∨ &; § ①②③④⑤⑥⑦⑧⑨⑩ ΓΔΘΛΞΟΠΣΦΧΨΩ αβγδεζηθικλμν ξοπρστυφχψω ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ

∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮ ∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥ ⊿⌒℃ 指数0123:o123 7、数量符号 如:i,2+i,a,x,自然对数底e,圆周率π。 8、关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。 9、结合符号 如小括号“()”中括号“[]”,大括号“{}”横线“—” 10、性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 11、省略符号 如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠), ∵因为,(一个脚站着的,站不住) ∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。

Zeta电位及粒度分析仪使用操作规程讲课讲稿

ZetaPALS型Zeta电位及粒度分析仪使用操作规程 —美国Brookhaven公司 粒度测定: 1 打开仪器后面的开关及显示器。 2 打开BIC Particle Sizing Software程序,选择所要保存数据的文件夹(File—Datebase—Create Fold新建文 件夹;File—Datebase—双击所选文件夹—数据可自动保存在此文件夹),待机器稳定15~20分钟左右后使用。 3 待测溶液经过离心或过滤处理后,将待测溶液加入比色皿(水相用塑料,有机相用玻璃)中,盖上比色 皿盖,插入样品槽,关上黑色盖子和仪器外盖。 4 点程序界面parameters,对测量的参数进行设置:Sample ID 输入样品名;Runs扫描遍数;Temp.设置温 度(5-70℃);Liquid选择溶剂(Unspecified是未知液,可输入Viscosity 和Ref.Index值,可以查文献,其中Ref.Index可由阿贝折射仪测得);Angle在90°不能改;Run Duration是扫描时间,一般2min,观察程序界面左上角Count Rate如小于20Kcps,则延长测量时间(5min或更长)。 5 Start开始测量。 6 数据分析:程序界面左上角Effective Diameter是直径,Polydispersity是多分散系数(<0.02是单分散体 系,0.02-0.08是窄分布体系,>0.08是宽分布体系),Avg. Count Rate是光强;右上角Lognomal可得到对数图,MSD是多分布宽度,Corr.Funct.是相关曲线图(非常重要,数据可信度参考相关曲线图,测量基线要回归到计算基线上);点击Zoom可选择Intensity、Volume、Surface Area和Number,一般是选择Intensity;点击Lognomal Summary—Copy for Spreadsheet可拷贝数据,点击Copy to Cliboard可将图拷贝到写字板。程序左下角的Copy to Cliboard也可将图拷贝到写字板,Turn Dust Filter Off是数据保有率。 7 关闭仪器和显示屏;靠数据找老师拿专用优盘 注意事项: 1. 一般来说,样品测量范围1nm~6μm,浓度体积比≤0.5%(最好0.1%,保证Count Rate不超过800Kcps), 体积1.5~3mL,测量时间1~2min/Run。 2. 样品放入样品池后需要在仪器中稳定5min左右。 3. 实验后及时清理样品仓,还原所使用附件。比色皿冲洗后可重复利用。 4. 在点击Datebase时不要误点到Rebuild Database File Index,如不小心点到,在弹出的对话框中点击cancel。 5. 不能判断浓度时,可点击Setup—Incident Power Settings—Maximize Incident Power Now,Avg. Count Rate

常用数学符号大全

常用数学符号大全 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

常用数学输入符号:~~≈ ≡ ≠ =≤≥ <>≮≯∷ ±+- × ÷/∫ ∮∝∞ ∧∨∑ ∏ ∪∩ ∈∵∴//⊥‖ ∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ α?β?γ?δ?ε?ζ?η?θ?ι?κ?λ?μ?ν?ξ?ο?π?ρ?σ?τ?υ?φ?χ?ψ?ω?? Α?Β?Γ?Δ?Ε?Ζ?Η?Θ?Ι?Κ?∧?Μ?Ν?Ξ?Ο?∏?Ρ?∑?Τ?Υ?Φ?Χ?Ψ?Ω?? а?б?в?г?д?е?ё?ж?з?и?й?к?л?м?н?о?п?р?с?т?у?ф?х?ц?ч?ш?щ?ъ??ы?ь?э?ю?я? А?Б?В?Г?Д?Е?Ё?Ж?З?И?Й?К?Л?М?Н?О?П?Р?С?Т?У?Ф?Х?Ц?Ч?Ш?Щ?Ъ??Ы?Ь?Э?Ю?Я?

i -1的平方根 f(x) 函数f在自变量x处的值 sin(x) 在自变量x处的正弦函数值 exp(x) 在自变量x处的指数函数值,常被写作e x a^x a的x次方;有理数x由反函数定义 ln x exp x 的反函数 a x同 a^x log b a 以b为底a的对数; b log b a = a cos x 在自变量x处余弦函数的值 tan x 其值等于 sin x/cos x cot x 余切函数的值或 cos x/sin x sec x 正割含数的值,其值等于 1/cos x csc x 余割函数的值,其值等于 1/sin x asin x y,正弦函数反函数在x处的值,即 x = sin y acos x y,余弦函数反函数在x处的值,即 x = cos y atan x y,正切函数反函数在x处的值,即 x = tan y acot x y,余切函数反函数在x处的值,即 x = cot y asec x y,正割函数反函数在x处的值,即 x = sec y acsc x y,余割函数反函数在x处的值,即 x = csc y θ角度的一个标准符号,不注明均指弧度,尤其用 于表示atan x/y,当x、y、z用于表示空间中的 点时 i, j, k 分别表示x、y、z方向上的单位向量 (a, b, c) 以a、b、c为元素的向量 (a, b) 以a、b为元素的向量 (a, b) a、b向量的点积 a?b a、b向量的点积 ((a?b)) a、b向量的点积 |v| 向量v的模 |x| 数x的绝对值 Σ表示求和,通常是某项指数。下边界值写在其下 部,上边界值写在其上部。如j从1到100 的和 可以表示成:。这表示1 + 2 + … + n M 表示一个矩阵或数列或其它 |v> 列向量,即元素被写成列或可被看成k×1阶矩阵 的向量

Zeta电位及其测定方法

Zeta电位及其测定方法 Zeta电位(Zeta potential),又叫电动电位或电动电势(ζ电位或ζ电势),是指滑动面(Shear Plane)的电位。它是表征胶体分散系稳定性的重要指标。目前测量Zeta电位的方法主要有电泳法、电渗 1、Zeta电位及Stern模型 1.1胶体双电层理论、胶团结构: 胶体粒子间的静电排斥力减少相互碰撞的频率,使聚结的机会大大降低,从而增加了相对的稳定性。当固体与液体接触时,可以是固体

从溶液中选择性吸附某种离子,也可以是固体分子本身发生电离作用而使离子进入溶液,以致使固液两相分别带有不同符号的电荷,在界面上形成了双电层的结构。 对于双电层的具体结构,最早于1879年Helmholz(亥姆霍兹)提出平板型模型;1910年Gouy和1913年Chapmar修正了平板型模型,提出了扩散双电层模型;后来Stern又提出了Stern模型。 1.1.1亥姆霍兹平板型模型 亥姆霍兹认为固体的表面电荷与溶液中带相反电荷的(即反离子)构成平行的两层,如同一个平板电容器。整个双电层厚度为汉固体表面与液体内部的总的电位差即等于热力学电势仰,在双电层内,热力学电势呈直线下降。在电场作用下,带电质点和溶液中的反离子分别向相反方向运动。该模型过于简单,由于离子热运动,不可能形成平板电容器也不能解释带电质点的表面电势仰与质点运动时固液两相发生

相对移动时所产生的电势差—Zeta电势(电动电势)的区别,也不能解释电解质对Zeta电势的影响等。 1.1.2扩散双电层模型 Gouy(古依)和Chapman(查普曼)认为,由于正、负离子静电吸引和热运动两种效应的结果,溶液中的反离子只有一部分紧密地排在固体表面附近,相距约一、二个离子厚度称为紧密层;另一部分离子按一定的浓度梯度扩散到本体溶液中,离子的分布可用玻兹曼公式表示,称为扩散层。双电层由紧密层和扩散层构成。移动的切动面为AB面。Gouy一ChaPman理论虽然考虑到了静电吸引力和热运动力的平衡,但是它没有考虑到固体表面上的吸附作用,尤其是特殊的吸附作用。 1.1.3 Stern模型 1924年Stern(斯特恩)对扩散双电层模型作进一步修正。该模型认为溶液一侧的带电层应分为紧密层和扩散层两部分。他认为固体表面因静电引力和范德华引力而吸引一层反离子,紧贴固体表面形成一

380 ZLS zeta电位等电点测试应用案例

PSS仪器用于咖啡伴侣的等电点测试分析 等电点可以通过滴定样品PH值,再用Nicomp 380 ZLS 记录Zeta电位,Zeta电位为0时的PH值就是等电点。 应用案例: 将奶精粉与去离子水以0.1g:100 mL混合。样品置于磁力搅拌盘内一直搅拌,并插入一个全新的PH 探针。 随着0.1N 的盐酸加入,PH会发生改变。当PH稳定后用注射器移取样品到Zeta电位测量池。测量三次取其平圴值,与相对应的PH值作图,如下所示: 此次研究中奶精粉悬浮液的等电点为PH 4.26 Nicomp 380 ZLS 不仅仅可以测量蛋白质的粒径还可以测量等电点(IEP) 我们将从Sigma Aldrich 公司购得的牛血清白蛋白与去离子水以1:100稀释 表A 显示了粒子平均体积加权平均值为5.5nm,同时也显示有25nm的粒子检测出。 Figure AFigure B 为了确定它的等电点(IEP),我们加了0.1M的KOH并用0.01M HCl滴定到PH为3.75。表B 显示了测量的电位结果,从图中我们可以知道等电点(IEP)为pH 5.07

Isoelectric Point (IEP) Test PSS仪器用于等电点测试案例分析 Zeta 电位是测量粒子的表面电荷。Zeta 电位是分散体系化学表面系数的表征,受PH、盐分及表面活性剂的浓度影响。当PH处在等电点的时候,此时Zeta 电位值为0,意味着粒子表面没有电荷。确定分散体系的等电点有助于分析体系是否稳定,鉴定粒子表面起主要作用的化学物质。测试等电位(IEP)在以下情况有很大帮助: ·确定分散体系稳定的最佳条件 ·鉴定一个复杂粒子表面起主要作用的化学物质。 ·等电位(IEP)对分散体系储存及胶体电泳等化学进程至关重要。 等电位(IEP) 可以通过PH值滴定样品再使用Nicomp 380 ZLS根据其PH 测出其Zate电位值。例如乳剂和蛋白质都可以使用Nicomp 380 ZLS 获得其等电位(IEP)。

ZETA电位分析仪操作规范

ZETA电位分析仪操作规范 1、打开zeta电位仪主机,启动电脑,进入控制程序窗口ZetaProbe Main Panel; 2、PH探针校正:将PH计放入缓冲液中边搅动,点zeta电位仪主机控制面板上Calibrate→PH→Acid/Neutral/Base→调节PH值到标准值(右下旋钮)→Acid Set/Neutral Set/Base Set; 3、电导率校正:将标准液倒入容器中盖好,调节转速~100r/min,点zeta电位仪主机控制面板上Calibrate→Cond→Cell K→调节Cond值到标准值(右下旋钮)→Cell Set; 4、主探头校正:将KSiW溶液倒入容器内盖好,调节转速~100r/min,点菜单Calibrate,进入Calibrate ZetaProbe窗口,点Calibrate,即自动运行; 5、将被测粉体配制成一定浓度的悬浮液,要求液面高度在容器的两条线之间(250~280ml),调节转速进行搅拌; 6、按照《ZetaProbe TM使用说明书》进行zeta电位等测试。注意测试前按要求输入正确的颗粒和溶液性质参数; 7、保存所创文件(包括实验数据、参数等),关机。 注意事项 1、若要进行酸碱滴定测等电点或测PH值,则每次实验前须校正PH探针;若要测试溶液电导率,则须校正电导率。主探头可每周校正一次; 2、每次更换样品均需清洗主探头、PH探针以及容器,最好擦干,以免前面残留粉末影响实验结果; 3、实验结束后要彻底清洗主探头、PH探针和容器,并将PH探针放回酸性缓冲液中; 4、若进行酸碱滴定则每次关机前需将酸碱滴定管清洗3~5次。

Zeta电位及其测定方法

Zeta电位及其测定方法 ±10 ±30 ±40 1、Zeta电位及Stern模型 1.1胶体双电层理论、胶团结构: 胶体粒子间的静电排斥力减少相互碰撞的频率,使聚结的机会大大降低,从而增加了相对的稳定性。当固体与液体接触时,可以是固体从溶液中选择性吸附某种离子,也可以是固体分子本身发生电离作用而使离子进入溶液,以致使固液两相分别带有不同符号的电荷,在界面上形成了双电层的结构。

对于双电层的具体结构,最早于1879年Helmholz(亥姆霍兹)提出平板型模型;1910年Gouy和1913年Chapmar修正了平板型模型,提出了扩散双电层模型;后来Stern又提出了Stern模型。 1.1.1亥姆霍兹平板型模型 亥姆霍兹认为固体的表面电荷与溶液中带相反电荷的(即反离子)构成平行的两层,如同一个平板电容器。整个双电层厚度为汉固体表面与液体内部的总的电位差即等于热力学电势仰,在双电层内,热力 学电势呈直线下降。在电场作用下,带电质点和溶液中的反离子分别向相反方向运动。该模型过于简单,由于离子热运动,不可能形成平板电容器也不能解释带电质点的表面电势仰与质点运动时固液两相发 生相对移动时所产生的电势差—Zeta电势(电动电势)的区别,也不能解释电解质对Zeta电势的影响等。 1.1.2扩散双电层模型 Gouy(古依)和Chapman(查普曼)认为,由于正、负离子静电吸引

和热运动两种效应的结果,溶液中的反离子只有一部分紧密地排在固体表面附近,相距约一、二个离子厚度称为紧密层;另一部分离子按一定的浓度梯度扩散到本体溶液中,离子的分布可用玻兹曼公式表示,称为扩散层。双电层由紧密层和扩散层构成。移动的切动面为AB面。Gouy一ChaPman理论虽然考虑到了静电吸引力和热运动力的平衡,但是它没有考虑到固体表面上的吸附作用,尤其是特殊的吸附作用。 1.1.3 Stern模型 1924年Stern(斯特恩)对扩散双电层模型作进一步修正。该模型认为溶液一侧的带电层应分为紧密层和扩散层两部分。他认为固体表面因静电引力和范德华引力而吸引一层反离子,紧贴固体表面形成一个固定的吸附层,这种吸附称为特性吸附,这一吸附层(固定层)称为Stern层(见上图)。Stern层由被吸附离子的大小决定。吸附反离子的中心构成的平面称为Stern面。滑动面是比Stern面厚的一个曲折曲面,滑动面由Stern层和部分扩散层构成。由Stern面到溶液

ZETA电势测试

Vibration potential imaging: mechanism of voltage production and frequency dependence Cuong Nguyen,Shougang Wang1,and Gerald Diebold* Department of Chemistry,Brown University,Providence,RI,01912? Imaging with the ultrasonic vibration potential is based on voltage generation by a colloidal or ionic suspension in response to the passage of ultrasound.The polarization within a body arising from the oscillatory displacement in the ultrasonic?eld produces a current in a pair of external electrodes that is measured as a function of time or frequency.Existing theory gives the current in the electrodes as arising from both a time varying polarization and ionic conduction.Here, experiments are reported that show that the production of the polarization current is the dominant mechanism for current generation in soft tissue.Experiments are also reported giving the frequency dependence of the ultrasonic vibration current in canine blood and in several dilutions of aqueous silica suspensions. Keywords:imaging,ultrasound,vibration potential Introduction The ultrasonic vibration potential refers to the gener-ation of a time dependent polarization when ultrasound traverses a colloidal or ionic solution[1—4].In the case of the former,the oscillatory motion of the?uid causes distortion of the normally spherical charge distribution surrounding individual colloidal particles resulting in the formation of a dipoles at the sites of the colloidal par-ticles.Over one half wavelength of the ultrasound,the ?Electronic address:Gerald_Diebold@https://www.wendangku.net/doc/dc11502376.html, dipoles add coherently to yield a macroscopic polariza-tion that can be detected with a pair of electrodes ei-ther as an alternating voltage or a current.For imaging a colloidal object within a body,the body is equipped with a pair of external electrodes attached to a sensitive current ampli?er.Images can be constructed by record-ing the current in the circuit as a beam of ultrasound is propagated into the body[5—7].To date,imaging with the vibration potential has focused on frequency domain methods where the phase and amplitude of the current in the external circuit is measured in an experimental arrangement shown schematically in Fig. 1.However,

Zeta电位测量

动态光散射基本原理及其在纳米科技中的应用——Zeta电位测量 前言:Zeta电位是纳米材料的一种重要表征参数。现代仪器可以通过简便的手段快速准确地测得。大致原理为:通过电化学原理将Zeta电位的测量转化成带电粒子淌度的测量,而粒子淌度的测量测是通过动态光散射,运用波的多普勒效应测得。 1.Zeta电位与双电层(图1) 粒子表面存在的净电荷,影响粒子界面周围区域的离子分布,导致接近表面抗衡离子(与粒子电。荷相反的离子)浓度增加。于是,每个粒子周围均存在双电层。围绕粒子的液体层存在两部分:一是内层区,称为Stern层,其中离子与粒子紧紧地结合在一起;另一个是外层分散区,其中离子不那么紧密的与粒子相吸附。在分散层内,有一个抽象边界,在边界内的离子和粒子形成稳定实体。当粒子运动时(如由于重力),在此边界内的离子随着粒子运动,但此边界外的离子不随着粒子运动。这个边界称为流体力学剪切层或滑动面(slippingplane)。在这个边界上存在的电位即称为Zeta电位。 2.Zeta电位与胶体的稳定性(DLVO理论) 在1940年代Derjaguin, Landau, Verway与Overbeek 提出了描述胶体稳定的理论,认为胶体体系的稳定性是当颗粒相互接近时它们之间的双电层互斥力与范德瓦尔互吸力的净结果。此理论提出当颗粒接近时颗粒之间的能量障碍来自于互斥力,当颗粒有足够的能量克服此障碍时,互吸力将使颗粒进一步接近并不可逆的粘在一起。(图2) Zeta电位可用来作为胶体体系稳定性的指示: 如果颗粒带有很多负的或正的电荷,也就是说很高的Zeta电位,它们会相互排斥,从而达到整个体系的稳定性;如果颗粒带有很少负的或正的电荷,也就是说它的Zeta电位很低,它们会相互吸引,从而达到整个体系的不稳定性。 一般来说, Zeta电位愈高,颗粒的分散体系愈稳定,水相中颗粒分散稳定性的分界线一般认为在+30mV或-30mV,如果所有颗粒都带有高于+30mV或低于-30mV的zeta电位,则该分散体系应该比较稳定 3.影响Zeta电位的因素 分散体系的Zeta电位可因下列因素而变化: A. pH 的变化 B. 溶液电导率的变化 C. 某种特殊添加剂的浓度,如表面活性剂,高分子 测量一个颗粒的zeta势能作为上述变量的变化可了解产品的稳定性,反过来也可决定生成絮凝的最佳条件。 3.1 Zeta电位与pH(图3) 影响zeta电位最重要的因素是pH,当谈论zeta电位时,不指明pH根本一点意义都没有。 假定在悬浮液中有一个带负电的颗粒; 假如往这一悬浮液中加入碱性物质,颗粒会得到更多的负电; 假如往这一悬浮液中加入酸性物质,在一定程度时,颗粒的电荷将会被中和; 进一步加入酸,颗粒将会带更多的正电。

相关文档