文档库 最新最全的文档下载
当前位置:文档库 › 隧道围岩分级及其主要力学参数

隧道围岩分级及其主要力学参数

隧道围岩分级及其主要力学参数
隧道围岩分级及其主要力学参数

隧道围岩分级及其主要力学参数

一、一般规定

在公路勘察设计过程中,是根据周边岩体或土体的稳定特性进行围岩分级的。围岩分Ⅰ~Ⅵ级,由于每级间范围较大,施工阶段对Ⅲ、Ⅳ、Ⅴ基本级别,再进行亚级划分。在公路隧道按土质特性和工程特性分:岩质围岩分级——Ⅰ~Ⅴ级;土质围岩分级Ⅳ~Ⅵ级。对岩质围岩和土质围岩分别采用不同的指标体系进行评定:岩质围岩基本指标为岩质的坚硬程度和完整程度,修正指标为地下水状态,主要软弱结构面产状及初始地应力状态。

土质围岩分级指标体系宜根据土性差异而组成,粘土质围岩基本指标为潮湿程度。沙质土围岩基本指标为密实程度。修正指标潮湿程度。碎石土围岩基本指标为密实程度。至于膨胀土、冻土作为专门研究,这里暂不述。围岩分级指标体系中可用定性分析,也可用定量分析,但由于工地施工条件时间等因素,一般我们仅采用定性分析。下面我讲定性分析来确定围岩级别。

1、确定岩性及风化程度。

2、结构面发育,主要结构面结合程度,主要结构面类型,甚至产状倾角、走向结构面张开度,张裂隙。

3、水的状况涌水量等。

二、岩石坚硬程度的定性划分

1、坚硬岩:锤击声清脆、震手、难击碎,有回弹感,浸水后大多无吸水反应,如微风化的花岗岩——正长岩,闪长岩,辉绿岩,玄

武岩,安山岩,片麻岩,石英片麻岩,硅质板岩,石英岩,硅质胶结的砾岩,石英砂岩,硅质石灰岩等等。

2、较坚硬岩:锤击声较清脆,有轻微回弹,稍震手,较难击碎,浸水后有轻微吸水反应。如未风化~微风化的熔结凝灰岩、大理岩、板岩、白云岩、石灰岩、钙质胶结的砂岩等。

3、较软岩:锤击声不清脆,无回弹,较易击碎,浸水后指甲可刻击印痕。如未风化~微风化的凝灰岩,砂质泥岩,泥灰岩,泥质砂岩,粉砂岩,页岩等。

4、软岩:锤击声哑,无回弹,有凹痕,多击碎,手可掰开。如强风化的坚硬岩,弱风化~强风化的较坚硬岩,弱分化的较软岩,未风化的泥岩等。

5、极软岩:锤击声哑,无回弹,有较深凹痕,手可捏碎,浸水后可捏成团,如全风化的各种岩类,各种半成岩。Rc——岩石单轴饱和抗压强度、定性质与岩石的对应关系,一般Rc>60MPa——坚硬岩,Rc=60~30 MPa为较坚硬岩;Rc=3 0~15MPa为较软岩;Rc=15~5MPa软岩;Rc<5Mpa极软岩。也可用Rc=22.82Is(50),Is(50)——岩石点荷载强度指数。这里不多说。

三、岩质围岩的完整度的定性划分

这是根据岩体的结构状况来定性划分

1、完整:节理裂隙,不发育,节理裂隙1-2组,平均间距>1.0m 层面结合好,一般。

2、较完整:节理裂隙,不发育,节理裂隙1-2组,平均间距1.0m

但层面结合差。但完整节理裂隙较发育,节理裂隙2-3组,平均间距1.0-0.4m之间层面结合一般。呈块状或厚层状结构。

3、较破碎:a节理裂隙较发育,2-3组,平均间距1-0.4m,层间结合面差,裂隙块状或中厚层状结构;b.节理裂隙发育,组数≥3,平均间距0.4~0.2m,层间结合面好或者一般,多半是-1的断层,中、薄层状结构。

4、破碎:a.节理裂隙发育,≥3组,平均间距0.4~0.2m,层间结合面差,裂隙为块状结构;b.节理极发育,间距≥3组,平均间距≤0.2m,层间结合面差,碎裂状结构。

5、极破碎:节理裂隙极发育,组数是无序的,结合很差散体状结构。

下面简单谈Kv值与岩体完整定性值的对应关系。

Kv值是针对不同的工程地岩组或岩性段,选择代表性的点、段测定围岩弹性纵波速度,并在同一围岩段取样,测定岩石弹性纵波速度。Kv=(V Pm/V Pr)2,式中V pm——评价区域岩体的弹性纵波速度(Km/S), Vpr——评价区域弹性岩面的弹性波纵波速度(Km/s),Kv>0.75为完整。0.75-0.55为较完整,0.55-0.35为较碎,0.35-0.15为破碎,<0.15为极破碎,如无Kv值,也可用岩体完整程度定性值的对应关系求得见下表

计算式Jv=N1/L1+N2/L2+……+Nn/Ln+S k=1/d1+1/d2+……+1/dn+S k

式中:Jv-岩体体积节理数(条/m3)

N1…Nn-同组结构面的数目

L1…Ln-垂直于结构面的测线长度(m)

d1…dn-各节理面间距

S k-每立方米非成组面节理条数。

除成组节理外,对延伸长度大于1m的分散节理亦应予统计。已为硅质、铁质、钙质充填再胶结的节理不予统计等。

四、土质围岩分级定性指标

1、粘土质围岩

坚硬扰动后能用手捏成饼,边上多裂口。硬塑、可塑、软塑,扰动后两手相压土成饼状,粘于手掌,揭掉后掌中有湿痕。流塑扰动后手捏后有明显湿痕并土粘于手上。(可作液塑限试验和天然含水量,得出液性指数,可鑑定坚硬,硬塑、可塑、软塑、流塑等。

2、砂质土围岩和碎石土围岩

松散主要表现于天然的坡不能形成徒坎。稍密、中密,用镐挖能成形,但稳定时间不长,易坍塌。密实,呈徒坎状,能立。镐开挖出凹凸形状不易塌。

水对围岩稳定有着重要影响。饱和度来分稍湿、潮湿、饱和,有野外工地实际,一看就明白了。饱和度Sr=(Vw/Vv)×100%,Vw-为水所占的体积,Vv-为孔隙部分所占的体积。简单述下,砂质土围岩潮湿程度,定量质与定性值对应关系

五、围岩分级方法

公路隧道岩质围岩是通过地质调查勘察试验…等等方法和手段。根据取得围岩定性特征和基本质量指标(BQ)进行基本质量分级(BQ) -岩质围岩的基本质量指标,这是作为定量分析所用,暂不多述。地下水状态影响修正,一般淋雨状或涌流状水(水压<0.1Mpa或单位出水量<10L/min),在Ⅲ~Ⅳ级围岩降半级(包含亚级)(水压>0.1Mpa,或单位出水量>10L/min),在Ⅲ、Ⅳ围岩中,一般降一级,这是指岩质围岩还要视具体状况而定,岩层的产状、倾角初始地应力等对围岩稳定是有一定的影响,这里不多述了。

1、岩质围岩一般分为Ⅰ~Ⅴ级,有时可分为亚级,现在我仅对Ⅱ~Ⅴ级基本定性分级。

Ⅱ级围岩-坚硬岩,岩体较完整,块状或厚层状结构,较坚硬岩岩体完整,块状或整体结构。

Ⅲ级围岩-坚硬岩:较破碎,结构面较发育,结合一般,整体结构或镶嵌碎裂结构或裂隙块状结构。较坚硬岩:岩体完整或较破碎,结构面较发育,结合好,块状结构。较软岩:岩体完整,结构面不发育,结合好或一般整体状或巨厚层状。

Ⅳ级围岩-坚硬岩,岩体破碎,结构面极发育,结合面一般或差,碎裂状结构:较坚硬岩:结构面发育结合好或一般,镶嵌碎裂结构。较软岩:岩体完整,结构面较发育,结合好或一般块状结构。软岩:

岩体完整,结构不发育,结合好或一般,整体状或巨厚状结构。

Ⅴ级围岩:坚硬岩及较坚硬岩,岩体破碎,结合面不好,较软岩:结构面发育,碎裂状结构或散体状结构,结合一般或差,极软岩(Rb=0~5Mpa),结构面不发育或结构面较发育,但结合面较好。

2、粘质土围岩基本指标定性分级,一般分Ⅳ、Ⅴ、Ⅵ级。Ⅳ级为坚硬密实粘质土、黄土,液性I L≤0,Ⅴ级从坚硬~硬塑~可塑液性指数I L 0~0.75,一般坚硬,天然密度硬塑状粘质土、可塑状粘质土、黄土。

Ⅵ级为软塑~流塑状粘土,近软塑状及天然密度低,可塑状粘质土。

3、砂质土围岩基本指标定性分级

Ⅳ级:密实,压实或成岩作用砂质土,如定量,按标准贯入击数,N>30。

Ⅴ级:密实~中密~稍密,压密状态,稍湿至潮湿或胶结程度较好的砂质土,标准贯入锤击数10~30。

Ⅵ级:松散潮湿,呈饱和状态的粉细沙土等砂质土。

4、碎石土围岩基本指标定性分极方法

Ⅳ级:密实,一般钙质、铁质胶结的碎石土,卵石土,大块石土。

Ⅴ级:密实~中密~稍密,稍湿至潮湿且较松散的碎石土、卵石土、圆砾、角砾土。特别对于土质围岩水的影响是大的。具体情况具体对待予以评定。对于目前我们主要隧道都是大跨度,开挖跨度大,Ⅱ、Ⅲ级围岩可基本能自稳,Ⅳ、Ⅴ级都有可能发生大、中、小塌方。(大

塌方——塌方高度>6m,塌方体积100m3,中塌方——塌方高度3~6m,塌方体积30~100m3,小塌方——塌方高度<3m,塌方体积<30m3)。按此在本段施工,对Ⅳ、Ⅴ级围岩更要注意安全。

隧道围岩分级及其主要力学参数

隧道围岩分级及其主要力学参数 一、一般规定 在公路勘察设计过程中,是根据周边岩体或土体的稳定特性进行围岩分级的。围岩分Ⅰ~Ⅵ级,由于每级间范围较大,施工阶段对Ⅲ、Ⅳ、Ⅴ基本级别,再进行亚级划分。在公路隧道按土质特性和工程特性分:岩质围岩分级——Ⅰ~Ⅴ级;土质围岩分级Ⅳ~Ⅵ级。对岩质围岩和土质围岩分别采用不同的指标体系进行评定:岩质围岩基本指标为岩质的坚硬程度和完整程度,修正指标为地下水状态,主要软弱结构面产状及初始地应力状态。 土质围岩分级指标体系宜根据土性差异而组成,粘土质围岩基本指标为潮湿程度。沙质土围岩基本指标为密实程度。修正指标潮湿程度。碎石土围岩基本指标为密实程度。至于膨胀土、冻土作为专门研究,这里暂不述。围岩分级指标体系中可用定性分析,也可用定量分析,但由于工地施工条件时间等因素,一般我们仅采用定性分析。下面我讲定性分析来确定围岩级别。 1、确定岩性及风化程度。 2、结构面发育,主要结构面结合程度,主要结构面类型,甚至产状倾角、走向结构面张开度,张裂隙。 3、水的状况涌水量等。 二、岩石坚硬程度的定性划分 1、坚硬岩:锤击声清脆、震手、难击碎,有回弹感,浸水后大多无吸水反应,如微风化的花岗岩——正长岩,闪长岩,辉绿岩,玄

武岩,安山岩,片麻岩,石英片麻岩,硅质板岩,石英岩,硅质胶结的砾岩,石英砂岩,硅质石灰岩等等。 2、较坚硬岩:锤击声较清脆,有轻微回弹,稍震手,较难击碎,浸水后有轻微吸水反应。如未风化~微风化的熔结凝灰岩、大理岩、板岩、白云岩、石灰岩、钙质胶结的砂岩等。 3、较软岩:锤击声不清脆,无回弹,较易击碎,浸水后指甲可刻击印痕。如未风化~微风化的凝灰岩,砂质泥岩,泥灰岩,泥质砂岩,粉砂岩,页岩等。 4、软岩:锤击声哑,无回弹,有凹痕,多击碎,手可掰开。如强风化的坚硬岩,弱风化~强风化的较坚硬岩,弱分化的较软岩,未风化的泥岩等。 5、极软岩:锤击声哑,无回弹,有较深凹痕,手可捏碎,浸水后可捏成团,如全风化的各种岩类,各种半成岩。Rc——岩石单轴饱和抗压强度、定性质与岩石的对应关系,一般Rc>60MPa——坚硬岩,Rc=60~30 MPa为较坚硬岩;Rc=3 0~15MPa为较软岩;Rc=15~5MPa 软岩;Rc<5Mpa极软岩。也可用Rc=22.82Is(50),Is(50)——岩石点荷载强度指数。这里不多说。 三、岩质围岩的完整度的定性划分 这是根据岩体的结构状况来定性划分 1、完整:节理裂隙,不发育,节理裂隙1-2组,平均间距>1.0m 层面结合好,一般。 2、较完整:节理裂隙,不发育,节理裂隙1-2组,平均间距1.0m

隧道力学数值方法

第一章 1、 隧道力学:是岩土力学的一个重要组成部分。其所采用的数值方法与结构物的周围环境、 施工方法等因素息息相关。 研究范围:隧道围岩的工程地质分级;隧道和地下结构物的静力分析和动力分析;现场测试和室内模型试验与数值方法的相互验证及参数获取;岩土物理力学性质和本构关系的研究 2、 隧道与地下结构设计模型:经验法、收敛—约束法、结构力学法、连续介质法 第二章 相应减少,同时还能够保证较高的计算精度1、对原结构可采用不规则单元,真实模拟复杂的边界形状。2、建立一基准单元:通过简单变化,能代表各类曲边、曲面单元,且完全不影响单元的特性计算;或不规则单元变换为规则单元,从而容易构造位移模式。3、引入数值分析方法,对积分做近似计算。在基准单元上实现规则化的数值积分,可使用标准数值计算方案,形成统一程序。等参变换条件:如果坐标变换和未知函数(如位移)插值采用相同的节点,并且采用相同的插值函数。 第三章 1.非线性问题:采用数值方法分析结构时,离散化后得到代数方程组:KU+F=0,当总刚度矩阵K 中的元素k ij 为常量时,所代表的的问题为线性问题,当k ij 为变量时,则式为非线性方程组,它所描述的问题为非线性问题。材料非线性:指的是当应力超过某一限值后,应力与应变的变化不成线性关系,但应变与位移的变化仍成线性关系。几何非线性:指的是当应变或应变速率超过某一限值以后,应变与位移的变化不成线性关系,但应力与应变的变化仍成线性关系。 有些情况下,非线性问题即包括材料非线性又包括几何非线性的特征。 2.非线性问题的四种求解方法 直接迭代法 :① 给定初值0x 、计算精度; ② 用迭代格式()1k k x g x +=进行迭代计算; ③ 判断迭代结果是否满足收敛判据,如果满足,终止计算并输出结果,否则返回步骤②。 特点:适用于求解很多场的问题,但不能保证迭代过程的收敛。 牛顿法—切线刚度法:使用函数f(x )的泰勒级数的前面几项来寻找方程f(x) = 0的根。 其最大优点是在方程f(x) = 0的单根附近具有平方收敛 。特点:如果初始试探解误差较大,则迭代过程也可能发散。只要初始刚度矩阵式对称的,则切线刚度矩阵将始终保持对称,而在大变形下割线刚度矩阵则不一定能保持这种对称性。 修正的牛顿法—初始刚度法 :每条线均为平行,均采用初始刚度,显然不用每次迭代都计算刚度矩阵,迭代次数增多,但计算时间不一定多。特点:对于材料应变软化以及体系中塑性区域发展范围较大的情况,采用初始刚度矩阵仍能取得迭代求解的收敛,而在这种情况下采用切线刚度法则难以甚至不能达到收敛。 混合法该法为切线刚度法与初始刚度法联合使用的方法。为此必须采用增量加荷的方式,将总荷载分成几级,逐级加荷。在每一级荷载作用下采用一种初始刚度进行迭代运算,达到收敛后再施加下一级荷载,并采用新的切线刚度矩阵[]r K 进行迭代运算。 3.岩土材料的弹塑性应力应变关系即本构关系四个组成部分:1.屈服条件和破坏条件,确定材料是否塑性屈服和破坏。

有关隧道围岩的分级

关于隧道围岩的分级 最近一段时间学习了关于隧道围岩分级的问题,逐渐的了解了隧道的施工工艺及工序,也在网上查找了一些关于围岩问题的文章,学习了,很深奥,有很多东西还是不能够理解,希望能交到良师益友向您学习,本文章来自于百度文库,我整理了下,其中有些内容是我通过查找规范所得。 《公路隧道设计规范JTGD70-2004》 《公路工程地质勘察规范JTJ064-98》 《岩土工程勘察规范GB50021-2001》 《水工隧洞设计规范》(SL279-2002) 《工程岩体分级标准》(GB50218-94) 《铁路隧道设计规范》(TB10003-2005) 《地铁设计规范》(GB50157-2003) 《锚杆喷射混凝土支护技术规范》(50086-2001) 《公路隧道施工技术规范》(JTJF60-2009) 《工程岩体分级标准》(GB50218-94) 名词解释: 围岩:围岩是隧道开挖后其周围产生的应力重分布范围内的岩体,或指隧道开挖后对其稳定性产生影响的那部分岩体,(这里所指的岩体是土体与岩体的总称)

在不同的岩体中开挖隧道后岩体所表现出的性态是不同的,可归纳为充分稳定、基本稳定、暂时稳定和不稳定四种。 岩爆:岩体中聚积的弹性变形能在地下工程开挖中突然猛烈释放,使岩石爆裂并弹射出来的现象。轻微的岩爆仅剥落岩片,无弹射现象。严重的可测到4.6级的震级,一般持续几天或几个月。发生岩爆的原因是岩体中有较高的地应力,并且超过了岩石本身的强度,同时岩石具有较高的脆性度和弹性。这时一旦地下工程破坏了岩体的平衡,强大的能量把岩石破坏,并将破碎岩石抛出。预防岩爆的方法是应力解除法、注水软化法和使用锚栓-钢丝网-混凝土支护。 在JTJD70-2004《公路隧道设计规范》中关于隧道围岩级别划分为六级,级别越大围岩越差,六级为土,但目前实施中不同,《岩土工程勘察规范GB50021-2001》中规定地下铁道围岩分类应按 GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》, GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》中的围岩分类方法引自原《铁路隧道设计规范》(TB10003-1999)围岩分级是根据《工程岩体分级标准》(GB50218-94)结合工程经验得来的,勘察是为设计服务的,所以在地铁工程勘察中,如果还利用地铁勘察规范进行围岩分类,易给设计带来不便。 公路隧道围岩分级将围岩分为6级,给出了主要围岩的工程地质特征、结构特征,和完整性等指标并预测了隧道开挖后可能出现的塌方、滑动、膨胀、挤出、岩爆、突然涌水、及瓦斯突出等失稳的部位和地段,给出了相应的工程措施,

岩石力学参数测试

3.2 侏罗系煤岩层物理力学性质测试 3.2.1试验仪器及原理 本试验采用电子万能压力试验机(图3.24)对侏罗系、石炭系岩石试样进行抗压强度、抗拉强度以及抗剪强度的测定。 (a) 电子万能压力试验机 (b) 单轴抗压强度测试 (c) 抗拉强度测试 (d) 抗剪强度测试 图3.24 岩石力学电子万能压力试验机及试验过程 (1) 岩石抗压强度测定: 单轴抗压强度的测定:将采集的岩块试件放在压力试验机上,按规定的加载速度(0.1mm/min)加载至试件破坏。根据试件破坏时,施加的最大荷载P ,试件横断面A 便可计算出岩石的单轴抗压强度S 0,见式(3.1)。 S 0= P A (3.1) 一般表面单轴抗压强度测定值的分散性比较大,因此,为获得可靠的平均单轴抗压强度值,每组试件的数目至少为3块。 (2) 岩石抗拉强度的测定: 做岩石抗拉试验时,将试件做成圆盘形放在压力机上进行压裂试验,试件受集中荷载的作用,见式(3.2)。

S t = 2P DT π (3.2) 式中:S t ——岩石抗拉强度 MPa ; P ——岩石试件断裂时的最大荷载,KN ; D ——岩石试件直径; T ——岩石试件厚度。 为使抗拉强度值较准确,每种岩石试件数目至少3块。 (3) 岩石抗剪强度测定: 将岩石试件放在两个钢制的倾斜压模之间,然后把夹有试件的压模放在压力实验机上加压。当施加荷载达到某一值时,试件沿预定的剪切面剪断,见式(3.3)。 sin cos n T P A A N P A A τασα? = =? ??? ==?? (3.3) 式中:P ——试件发生剪切破坏时的最大荷载; T ——施加在破坏面上的剪切力; N ——作用在破坏面上的正压力; A ——剪切破坏面的面积; τ——作用在破坏面上的剪应力; n σ——作用在破坏面上的正应力; α——破坏面上的角度。 每组取3块试件,变换不同的破坏角,根据所得的数值,便可在στ-坐标系上画出反映岩石发生剪切破坏的强度曲线。并可求出反映岩石力学性质的另外两个参数:粘聚力c 及内摩察角?。 3.2.2 标准岩样加工 根据需要和所在矿的条件,在晋华宫矿12#煤层2105巷顶板钻取岩样,钻孔长度约22m ,在。根据各段岩心长度统计结果,晋华宫矿顶板岩层的RQD 值为72.4%,围岩质量一般。 岩心取出后,随即贴上标签,用透明保鲜袋包好以防风化,之后装箱,托运到实验室,经切割、打磨、干燥制成标准的岩石试样,岩样制作过程见图3.25。

隧道围岩级别划分与判定

隧道围岩级别划分与判定 隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。 1 国标《锚杆喷射混凝土支护技术规范》围岩分级 1.1围岩分级 围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表1.1规定。 表1.1 围岩分级 注1 围岩按定性分级与定量指标分级有差别时一般应以低者为准。 2 本表声波指标以孔测法测试值为准如果用其他方法测试时可通过对比试验进行换算。 3 层状岩体按单层厚度可划分为 厚层大于0 .5m 中厚层0 .1~0 .5m 薄层小于0 .1m 4 一般条件下确定围岩级别时应以岩石单轴湿饱和抗压强度为准当洞跨小于5m,服务年限小于10 年的工程确定围岩级别时可采用点荷载强度指标代替岩块单轴饱和抗压强度指标可不做岩体声波指标测试 5 测定岩石强度做单轴抗压强度测定后可不做点荷载强度测定。 3公路隧道围岩分级 3.1公路隧道围岩分级 围岩级别可根据调查、勘探、试验等资料、岩石隧道的围岩定性特征、围岩基本质量指标(BQ)或修正的围岩质量指标[BQ]值、土体隧道中的土体类型、

密实状态等定性特征,按表3.1确定。当根据岩体基本质量定性划分与(BQ)值确定的级别不一致时,应重新审查定性特征和定量指标计算参数的可靠性,并对它们重新观察、测试。在工程可行性研究和初勘阶段,可采用定性划分的方法或工程类比方法进行围岩级别划分。 表3.1 公路隧道围岩分级 注:本表不适用于特殊条件的围岩分级,如膨胀性围岩、多年冻土等。 3.2围岩分级的主要因素 公路隧道围岩分级的综合评判方法采用两步分级,并按以下顺序进行:(1)根据岩石的坚硬程度和岩体完整程度两个基本因素的定性特征和定量的岩体基本质量指标(BQ),综合进行初步分级。(2)对围岩进行详细定级时,应在岩体基本质量分级基础上,考虑修正因素的影响修正岩体基本质量指标值。(3)按修正后的岩体基本质量指标[BQ],结合岩体的定性特征综合评判,确定围岩的详细分级。 3.2.1岩石坚硬程度 1 岩石坚硬程度可按表3.2.1-1定性划分。 表3.2.1-1 岩石坚硬程度的定性划分 2岩石坚硬程度定量指标用岩石单轴饱和抗压强度(Rc)表达。Rc一般采用实测值,若无实测值时,可采用实测的岩石点荷载强度指数Is(50)的换算值,即按式(3.2.1)计算: Rc= Is(50)0.75 (3.2.1) 3 Rc与岩石坚硬程度定性划分的关系,可按表3.2.1-2确定。 表3.2.1-2 Rc与岩石坚硬程度定性划分的关系 3.2.2岩体完整程度 1岩石完整程度可按表3.2.2-1定性划分。

隧道围岩分类

隧道围岩分级 隧道围岩分级是正确地进行隧道设计与施工的基础。一个较好的、符合地下工程实际情况的围岩分级,能改善地下结构设计,发展新的隧道施工工艺,降低工程造价。 逐渐认识到:隧道的破坏,主要取决于围岩的稳定性,而影响围岩稳定性的因素是多方面的,其中隧道围岩结构特征和完整状态,是影响围岩稳定性的主要因素。隧道围岩体的强度,对隧道的稳定性有着重要的影响,地下水、风化程度也是隧道围岩丧失稳定性的重要原因。 从围岩的稳定性出发,1975年编制了我国“铁路隧道围岩分类”,这个分类由稳定到不稳定共分六类,代替了多年沿用的从岩石坚固性系数来分级的方法。 我国公路隧道围岩分级起步较晚,随着我国经济的发展,公路交通得到较大的发展,大量的公路隧道修建,需要有一个适合我国工期的公路隧道围岩分级,于1990年,根据我国铁路隧道的围岩分级为基础,编制了我国“公路隧道围岩分级”。 从国内外的发展中可以看出,以隧道围岩的稳定性为基础进行分级是总的趋势。但分级指标方面,大多数正在从定性描述、经验判断向定量描述发展。 公路隧道围岩分级 经过长期的隧道工程实践,我国公路隧道以铁路隧道围岩分级的标准为基础,参考了国内外有关围岩分级的成果,提出了适合我国公路隧

道实情的围岩分级标准,下面介绍围岩分级的出发点和依据。 (一)公路隧道围岩分级的出发点 主要考虑了以下几点: 1.强调岩体的地质特征的完整性和稳定性,避免单一的岩石强度指标分级的方法; 2.分级指标应采用定性和定量指标相结合的方式; 3.明确工程目的和内容,并提出相应的措施; 4.分级应简明,便于使用; 5.应考虑吸收其它围岩分级的优点,并尽量和我国其它工程分级一致。 (二)分级的指标和因素 主要考虑了以下几类影响围岩稳定性的因素; 1.岩体的结构特征与完整性 岩体结构的完整状态是影响围岩稳定性的主要因素,当风化作用使岩体结构发生变化,松散、破碎、软硬不一时,应结合因风化作用造成的各种状况,综合考虑确定围岩的结构完整状态;结构面(节理)发育程度应根据结构面特征;地质构造影响程度。 岩体完整程度的等级划分

最新常见岩石力学参数

几种常见岩石力学参数汇总 2010年9月2日 参考资料:《构造地质学》,谢仁海、渠天祥、钱光谟编,2007年第2版,P25-P37。 1.泊松比的变化范围: 2.弹性模量的变化范围:

3.常温常压下强度极限: 4.内摩擦角和内聚力的变化范围: 一、课程名称:中国戏曲介绍课时:2个学时 二、背景分析:戏曲是中国文化的瑰宝,同学们对中国戏曲 还不够了解,不能经常接触戏曲。 三、教学内容:中国戏曲 四、教学目标:初步了解中国戏曲的相关知识,并学会哼唱具有代表性的戏曲,简要说出

他们的起源 五、教学过程: 【引入课程】1、先介绍董永和七仙女的故事,然后放[天仙配],为讲戏曲作铺垫,将同学们带入戏曲的氛围中 【初步了解】1、介绍戏曲相关知识中国戏曲主要是由民间歌舞、说唱和滑稽戏三种不同艺术形式综合而成。它起源于原始歌舞,是一种历史悠久的综合舞台艺术样式。经过汉、唐到宋、金才形成比较完整的戏曲艺术,它由文学、音乐、舞蹈、美术、武术、杂技以及表演艺术综合而成,约有三百六十多个种类。它的特点是将众多艺术形式以一种标准聚合在一起,在共同具有的性质中体现其各自的个性。[1]中国的戏曲与希腊悲剧和喜剧、印度梵剧并称为世界三大古老的戏剧文化,经过长期的发展演变,逐步形成了以“京剧、越剧、黄梅戏、评剧、豫剧”五大戏曲剧种为核心的中华戏曲百花苑。[2-5]中国戏曲剧种种类繁多,据不完全统计,中国各民族地区地戏曲剧种约有三百六十多种,传统剧目数以万计。其它比较著名的戏曲种类有:昆曲、粤剧、淮剧、川剧、秦腔、晋剧、汉剧、河北梆子、河南坠子、湘剧、黄梅戏、湖南花鼓戏等。放[刘海砍樵] 2、戏曲行当 生、旦、净、丑各个行当都有各自的形象内涵和一套不同的程式和规制;每个都行当具有鲜明的造型表现力和形式美。 3、艺术特色 综合性、虚拟性、程式性,是中国戏曲的主要艺术特征。这些特征,凝聚着中国传统文化的美学思想精髓,构成了独特的戏剧观,使中国戏曲在世界戏曲文化的大舞台上闪耀着它的独特的艺术光辉。 4、唱腔 第一种是抒情性唱腔,其特点为速度较缓慢,曲调婉转曲折,字疏腔繁,抒情性强。它宜于表现人物深沉而细腻的内心感情。许多剧种的慢板、大慢板、原板、中板均厉于这-类。放[女驸马] 第二种是叙事性唱腔,其特点为速度中等,曲调较平直简朴,字密腔简,朗诵性强。它常用于交代情节和叙述人物的心情。许多剧种的二六、流水等均属于这一类。放[花木兰] 第三种是戏剧性唱腔,其特点为曲调的进行起伏较大,节奏与速度变化较为强烈,唱词的安排可疏可密。它常用于感情变化强烈和戏剧矛盾冲突激化的场合。各戏剧中的散板、摇板等板式曲调都属于这一类。 5、国五大戏曲剧种

隧道围岩分级及其应用

第三节 s 隧道围岩分级及其应用 隧道围岩分级是正确进行隧道设计与施工的基础。一个合理的、符合地下工程实际情况的围岩分级,对于改善地下结构设计、发展新的隧道施工工艺、降低工程造价、多快好省地修建隧道有着十分重要的意义。 近年来,由于各种类型地下工程的大量修建,隧道围岩分级的研究也得到了很大的发展,出现了各种各样不同的围岩分类;但都是为一定的工程目的服务的。如提供选择施工方法的根据和开挖的难易程度,确定结构上的荷载或给出隧道临时支撑与衬砌结构的类型和参考尺寸等。 人们对围岩及其自然规律的认识是不断深化的,因此,对围岩分类也有一个发展过程。在早期,从国外情况来看,如日本,最初主要借用适合于土石方工程的“国铁土石分类”来进行隧道的设计与施工,主要是根据开挖岩(土)体的难易程度(强度)来划分的。前苏联在很长的时期内采用以岩石的坚固性来分类,采用一个综合注的指标f值,称为岩石坚固性系数。理论上坚固性是岩体抵抗任何外力作用及其造成破坏的能力,不同于强度和硬度,而实际上只反映岩石抗压强度的性能,很少考虏岩体的构造特征。在英、美等国,主要沿用泰沙基(K,Terzaghi)提出的分级法,其中考虑到一些岩体的构造和岩性等影响,比较好地反映隧道围岩的稳定状况。目前美国也有用岩石质量指标(RQD)或隧道围岩在不支护条件下,暂时稳定的时间作为分级依据。 我国五十年代初期,铁路隧道围岩分级,基本上是沿用解放前的以岩石极限抗压强度与岩石天然容重为基础,这种分级仅运用上石方工程的土石分级法,没有适合隧道围岩的专门分类,只是把隧道围岩分为坚石、次坚石、松石及土质四类。以后,借用苏联的岩石坚固系数进行分类,即通常所谓的普氏系数(f值)。在长期大量的地下工程实践中发现:这种单纯以岩石坚固性(主要是强度)指标为基础的分类方法,不能全面反映隧道围岩的实际状态。逐渐认识到:隧道的破坏,主要取决于围岩的稳定性,而影响围岩稳定性的因素是多方面的,其中隧道围岩结构特征和完整状态,是影响围岩稳定性的主要因素。隧道围岩体的强度,对隧道的稳定性有着重要的影响,地下水、风化程度也是隧道围岩丧失稳定性的重要原因。 从围岩的稳定性出发,1975年编制了我国“铁路隧道围岩分类”,这个分类由稳定到不稳定共分六类,代替了多年沿用的从岩石坚固性系数来分级的方法。 我国公路隧道围岩分级起步较晚,随着我国经济的发展,公路交通得到较大的发展,大量的公路隧道修建,需要有一个适合我国工期的公路隧道围岩分级,于1990年,根据我国铁路隧道的围岩分级为基础,编制了我国“公路隧道围岩分级”。 从国外围岩分级的发展趋势看,围岩分级主要以隧道稳定性分级为主,且从对岩石的分级逐渐演变到对岩体的分级;从按单参数分级转变到按多参数分级,并逐渐向多参数组成的综合指标法演变;从经验性很强的分级逐步过渡到半经验、半定量分级和定量化分级,并将围岩分级与岩体力学的发展相联系,随着岩体力学的发展,这一趋势更为明显。在多参数综合分级法中,基本采用和差法或积商法。围岩分级方法是随着地质勘查方法的进步而快速发展的。围岩分级方法与隧道结构设计标准化、施工方法规范化的联系越来越密切。土质围岩分级方法逐步与岩质围岩分级方法分离,将会形成专门土质围岩分级方法。 从国内围岩分级的发展趋势看,从1975年以后,我国隧道围岩分级方法的发展基本与国际同步,主要以隧道稳定性进行分级,并在已颁布的国标和部标中体现了这一成果。此外,我国隧道围岩分级中更加重视施工阶段围岩级别的修正,即根据施工阶段获得的围岩分级信息对设计阶段的预分级进行修正。我国隧道围岩分级方法主要采用两个步骤:第一步以基本指标进行基本分级;第二步用修正指标对基本级别进行修正,最终获得修正后的围岩级别。

岩体力学参数确定的方法

岩体力学参数的确定方法 在岩石工程实践中,首先需要了解其研究对象———工程岩体的力学特性,确定其特性参数。力学参数的合理确定在岩石力学的研究和发展过程中始终是难题之一。在应用工程力学领域, 如果原封不动地借用经典理论力学的连续性假设和定义,会出现理解上的毛病。必须考虑假设的合理使用范围和各物理量的适用定义。本文就地下岩体工程根据侧重的点不同对岩体参数的确定方法进行探讨。 一.传统岩体参数的确定方法 地下巷道、硐室开挖后,围岩产生应力重分异作用,径向应力减少,切向应力增加,并且随着工程不断推进,岩体应力状态不断改变。巷道、硐室围岩处于“三高一扰动”条件下,岩体表现的力学特性是破坏条件下的稳定失稳再平衡过程。围岩体处于一种拉压相间出现的复杂应力状态。该类工程岩体的力学参数的确定要进行岩体的卸荷试验研究,且要依据现场工程实际条件进行卸荷条件下的应力、渗流与温度三场耦合试验研究。需要进行循环加卸载条件下的岩体力学特性研究,进而获得岩体的力学参数特征。 确定地下巷道、硐室工程岩体力学参数的方法为: (1)三轴应力状态下的卸荷三场耦合力学试验,获得有关参数; (2)进行岩体流变特性试验研究,获得有关岩体的流变参数。 目前在该领域要进行大量的工作,包括设备仪器的研制等,同时还要利用新的计算机技术才会实现。 二.建立力学模型确定岩体力学参数

建立工程岩体力学参数模型主要是解决复杂岩体力学参数确定的问题。要确定复杂岩体的力学参数需要把工程岩体看作具有连续性的模型,运用确定岩体力学参数的新方法,对含层状斜节理的岩体建立力学模型进行力学实验,从而确定了该岩体的各项基本力学参数值。 1.工程岩体力学参数模型 目前对岩石的力学属性及其划分基本有两种观点:一种观点认为岩石本身是一个连续的、没有各向异性的材料,另一种意见认为岩石由多晶体系组成,并存在空洞和裂纹等缺陷,使得岩体本身结构表现出各向异性和不连续性。一般情况下岩体被视为非连续介质,但在一定条件下仍满足连续介质力学的基本假定。因此给定工程岩体的连续性假设:假定整个物体的体积都被组成这个物体的物质微元所充满,没有任何空隙。物质微元是有大小的,物质微元的尺寸决定于所研究的工程物体的尺寸。这样就存在一个用连续体理论来研究非连续体的问题。 2.工程岩体力学参数 为确定工程岩体的力学参数,需要通过井下工程地质调查,根据岩体所含结构面的不同及结构体特性的差异,选取具有代表性的不同尺寸的岩块和结构面,然后进行一系列室内力学实验和数值模拟实验。具体步骤如下: (1) 通过井下工程调查,确定结构面的空间分布模式,抽象工程岩体结构模型;并在现场采集有代表性的完整岩块和软弱结构面试

隧道围岩分级

铁路隧道围岩分级 一、铁路隧道围岩分级类型 根据《铁路隧道工程施工技术指南》铁路隧道围岩分级判定的内容将不同岩石性质和岩体结构的隧道围岩分为Ⅰ~Ⅵ六个基本级别。 铁路隧道围岩分级表

注:表中“围岩级别”和“围岩主要工程地质条件”栏,不包括膨胀性围岩、多年冻土等特殊岩土。

二、围岩级别判定的一般步骤 1、收集整理隧道场地的区域地质资料,分析研究设计图纸上详细的地勘报告,明确隧区主要的岩层、岩性、岩体构造、不良地质以及水文地质条件。特别是要详细研究不良构造体和不良地质作用对隧道区围岩的岩石强度、岩体完整性的影响。从整体上把握该区域工程地质条件。 2、按照编制的实施性超前地质预报组织进行隧道掌子面前方地质预测预报,并根据真实的预报结论分析判断掌子面前方的围岩情况。一方面根据预报结论初步判断围岩基本分级的级别,并将其与设计时提供的围岩分级进行比对,另一方面作为围岩级别和支护方案变更的依据之一。 3、实时记录掌子面地质素描表和围岩级别判定卡中的内容,特别是要客观填写掌子面围岩的岩性指标、岩体完整性情况和地下水状况,这些指标均是作为围岩基本分级的理论依据。如果难以明确围岩的地质条件,可通过实验和理论计算来确定围岩的各项力学性能和构造特点,来加以判断围岩级别。 4、根据得出的围岩岩性特征、构造特征以及其它相关资料并按照隧道围岩分级的标准进行围岩级别的判定。 三、围岩判定主要依据 1、岩石的坚硬程度 ①从定性划分 硬质岩包括坚硬岩和较硬岩,软质岩包括较软岩、软岩和及软岩。

坚硬岩: 锤击声清脆,有回弹,震手,难击碎,基本无吸水反应。代表性岩石如未风化~微风化花岗岩、闪长岩、辉绿岩、玄武岩、安山岩、片麻岩、石英岩、石英砂岩、硅质砾岩、硅质石灰岩等。 较硬岩: 锤击声较清脆,有轻微回弹,稍震手,较难击碎,有轻微吸水反应。代表性岩石有1、微风化的坚硬岩石;2、未风化的大理岩、板岩、石灰岩、白云岩、钙质砂岩等。 较软岩: 锤击声不清脆,无回弹,轻易击碎,浸水后指甲可刻出印痕。代表性岩石如1、中风化~强风化的坚硬岩或较硬岩;2、未风化微风化的凝灰岩、千枚岩、泥灰岩、砂质泥岩等。 软岩: 锤击声哑,无回弹,有较深凹痕,浸水后手可捏碎,辧开。代表性岩石有1、强风化的坚硬岩或较硬岩;2、中风化~强风化的较软岩;3、未风化~微风化的页岩、泥岩、泥质砂岩等。 极软岩: 锤击声哑,无回弹,有较深凹痕,浸水后手可捏成团。代表性岩石有1、全风化的各种岩石;2、各种半成岩。 ②从定量划分 根据岩石饱和单轴抗压强度确定岩石的坚硬程度

隧道力学-围岩特征曲线

西南交通大学 隧道力学(作业) Flac3d求解围岩特征曲线 年级: 学号: 姓名: 专业: 2011 年 11 月

目录 第1章 ..................................................................................................................................... 问题分析 .. (1) 1.1 围岩特征曲线定义 (1) 1.2 求解方法 (1) 第2章建模及计算 (1) 2.1 模型建立 (1) 2.2 命令流及解释 (2) 第3章计算结果及分析 (5) 3.1 数据处理 (5) 3.2 围岩特征曲线绘制 (5) 3.3 结果分析 (6) 参考文献 (7)

FLAC3D求解围岩特征曲线 第1章问题分析 1.1 围岩特征曲线定义 围岩的特征曲线,亦称为围岩的支护需求曲线。它形象的表明围岩在洞室周边所需提供的支护阻力及与其周边位移的关系。 1.2 求解方法 同一围岩级别下,相同隧道埋深情况下,通过改变衬砌的强度(修改体积模量及剪切模量)分别求解相应强度下隧道收敛平衡时的拱顶竖直位移和应力,根据所得数据绘制该围岩级别下相应埋深的围岩特征曲线。 第2章建模及计算 2.1 模型建立 图2.1-1

如图2.1-1,圆形隧道外径为6m ,衬砌厚度为0.2m ,考虑隧道影响范围,模型宽度为30m ,高度为30m 。V 级围岩和Ⅳ级围岩通过定义材料的相关参数来建模;根据 h σγ=计算出相应埋深(即50m 、100m 、150m )下产生的应力,将应力分别作用于模型上来建模求解。 2.2 命令流及解释 以V 级围岩150m 埋深为例,其命令流如下: ;绘制5级围岩150m 特性曲线,改变衬砌的E 进行计算 new ;建立模型,取圆形隧道半径为2.9米,衬砌厚度为0.1米, gen zone radcylinder p0 0 0 0 & p1 15 0 0 & p2 0 1 0 & p3 0 0 15 & p4 15 1 0 & p5 0 1 15 & p6 15 0 15 & p7 15 1 15 & p8 3 0 0 & p9 0 0 3 & p10 3 1 0 & p11 0 1 3 & size 5 1 8 11 & ratio 1 1 1 1.2 & group outsiderock;定义围岩分块 gen zone cshell p0 0 0 0 & p1 3 0 0 & p2 0 1 0 &

隧道围岩类别划分与判定

隧道围岩类别划分与判 定 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

隧道围岩级别划分与判定隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。 国内外现在的围岩分级方法有定性、定量、定性与定量相结合3种方法,且多以前两种方法为主。定性分级的做法是,在现场对影响岩体质量的诸因素进行定性描述、鉴别、判断,或对主要因素作出评判、打分,有的还引入分量化指标进行综合分级。以定性为主的分级方法,如现行的公路、铁路隧道围岩分级等方法经验的成分较大,有一定人为因素和不确定性,在使用中,往往存在不一致,随勘察人员的认识和经验的差别,对同一围岩作出级别不同的判断。采用定性分级的围岩级别,常常出现与实际差别1~影响围岩稳定的因素多种多样,主要是岩石的物理力学性质、构造发育情况、承受的荷载(工程荷载和初始应力)、应力变形状态、几何边界条件、水的赋存状态等。这些因素中,岩体的物理力学性质和构造发育情况是独立于各种工作类型的,反映出了岩体的基本特性,在岩体的各项物理力学性质中,对稳定性关系最大的是岩石坚硬程度,岩体的构造发育状态、岩体的不连续性、节理化程度所反映的岩体完整性是地质体的又一基本属性。国内外多数围岩分级都将岩石坚硬程度和岩体的完整程度作为岩体基本质量分级的两个基本因素。 1 国标《锚杆喷射混凝土支护技术规范》围岩分级 围岩分级 围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表规定。 表围岩分级

注1 围岩按定性分级与定量指标分级有差别时一般应以低者为准。 2 本表声波指标以孔测法测试值为准如果用其他方法测试时可通过对比试验进行换算。 3 层状岩体按单层厚度可划分为 厚层大于0 5m 中厚层0 1~0 5m 薄层小于0 1m 4 一般条件下确定围岩级别时应以岩石单轴湿饱和抗压强度为准当洞跨小于5m,服务年限小于10 年的工程确定围岩级别时可采用点荷载 强度指标代替岩块单轴饱和抗压强度指标可不做岩体声波指标测试 5 测定岩石强度做单轴抗压强度测定后可不做点荷载强度测定。 围岩分级的主要影响因素 用岩体完整性系数K表示,K可按下式计算: Kv=(V pm /V pr )2()

隧道现场围岩类别判断(全)

3-1-1隧道围岩级别划分与判定 隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。 国内外现在的围岩分级方法有定性、定量、定性与定量相结合3种方法,且多以前两种方法为主。定性分级的做法是,在现场对影响岩体质量的诸因素进行定性描述、鉴别、判断,或对主要因素作出评判、打分,有的还引入分量化指标进行综合分级。以定性为主的分级方法,如现行的公路、铁路隧道围岩分级等方法经验的成分较大,有一定人为因素和不确定性,在使用中,往往存在不一致,随勘察人员的认识和经验的差别,对同一围岩作出级别不同的判断。采用定性分级的围岩级别,常常出现与实际差别1~2级的情况。定量分级的做法是根据对岩体性质进行测试的数据或对各参数打分,经计算获得岩体质量指标,并以该指标值进行分级。如国外的Q分级,的地质力学(MRM)分级、Dree的RQD值分级等方法。但由于岩体性质和赋存条件十分复杂,分级时仅用少数参数和某个数学公式难以全面准确地概括所有情况,而且参数测试数量有限,数据的代表性和抽样的代表性均存在一定的局限,实施时难度较大。 影响围岩稳定的因素多种多样,主要是岩石的物理力学性质、构造发育情况、承受的荷载(工程荷载和初始应力)、应力变形状态、几何边界条件、水的赋存状态等。这些因素中,岩体的物理力学性质和构造发育情况是独立于各种工作类型的,反映出了岩体的基本特性,在岩体的各项物理力学性质中,对稳定性关系最大的是岩石坚硬程度,岩体的构造发育状态、岩体的不连续性、节理化程度所反映的岩体完整性是地质体的又一基本属性。国内外多数围岩分级都将岩石坚硬程度和岩体的完整程度作为岩体基本质量分级的两个基本因素。 1 国标《锚杆喷射混凝土支护技术规范》围岩分级 围岩分级 围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表规定。

隧道围岩分级

一、地铁勘察规范报批稿隧道围岩分级 附录F 隧道围岩分级

注:表中“围岩级别”和“围岩主要工程地质条件”栏,不包括膨胀性围岩、多年冻土等特殊岩土。

二、铁路勘察规范报批稿隧道围岩分级 4.3.2 铁路隧道工程地质勘察的重要内容之一是根据隧道围岩的岩体或土体特征、岩石的坚硬程度、岩体的完整程度、风化程度等地质条件,考虑地下水、高地应力的影响,围岩的纵波速度,隧道的埋藏深度等因素后,综合评价隧道的围岩分级。根据现行《铁路隧道设计规范》(TB10003-2005)第3.2.7条的规定,围岩级别的确定应符合表3.2.7(即说明

注:1 表中“围岩级别”和“围岩主要工程地质条件”栏,不包括膨胀性围岩、多年冻土等特殊岩土; 2 层状岩层的层厚划分:巨厚层:层厚大于1.0m;厚层:层厚大于0.5m,且小于等于1.0m;中厚层:厚度大于0.1m,且小于等于0.5m;薄层:厚度小于0.1m。 《铁路隧道设计规范》(TB10003-2005)附录A“铁路隧道围岩基本分级”作如下规定:关于围岩基本分级: 1 分级因素及其确定方法应符合下列规定: 1)围岩基本分级应由岩石坚硬程度和岩体完整程度两个因素确定; 2)岩石坚硬程度和岩体完整程度,应采用定性划分和定量指标两种方法综合确定。 2 岩石坚硬程度可按说明表4.3.2-2划分。 说明表4.3.2-2 岩石坚硬程度的划分

说明表4.3.2-3 岩体完整程度的划分 说明表4.3.2-4 围岩基本分级

关于围岩分级修正 隧道围岩级别的修正应符合下列规定: 1 围岩级别应在围岩基本分级的基础上,结合隧道工程的特点,考虑地下水状态、初始地应力状态等必要的因素进行修正。 2 地下水状态的分级宜按说明表4.3.2-5确定。 3 地下水对围岩级别的修正,宜按说明表4.3.2-6进行。 说明表4.3.2-6 地下水影响的修正 4 围岩初始地应力状态,当无实测资料时,可根据隧道工程埋深、地貌、地形、地质、构造运动史、主要构造线与开挖过程中出现的岩爆、岩芯饼化等特殊地质现象,按说明表4.3.2-7评估。 注:R c为岩石单轴饱和抗压强度(MPa);σmax为最大地应力值(MPa)。 5 初始地应力对围岩级别的修正宜按说明表4.3.2-8进行。 说明表4.3.2-8 初始地应力影响的修正

围岩力学机理

1 巷道变形力学机理 巷道未开挖时,周围岩体处于原岩应力状态,原岩应力在一定时期内是相对平衡的。当在原岩内进行开挖后,巷道周围一定范围内岩体的原岩应力遭到破坏,导致应力重分布,引起巷道周围岩体的变形、位移、甚至破坏。由于开挖而引起的围岩或支护结构上的力学效应统称为广义的围岩压力。围岩压力的大小不仅与岩体的初始应力状态有关,岩体的物理力学性质和岩体结构有关,还与工程性质、支护结构及支护时间有关。 当围岩的二次应力不超过围岩的弹性极限时围岩压力将全部有围岩自身来承担。当二次应力超过围岩的强度极限时,就必须采取措施以保证巷道稳定。此时,围岩压力由围岩与支护结构共同承担。围岩压力就其表现形式分为松动压力、变形压力、膨胀压力、冲击压力等。 1.1 松动压力 由于开挖而引起围岩松动或坍塌的岩体以重力形式直接作用在支护结构上的压力是松动压力。其多数情况下出现在巷道的顶板和侧帮,表现为顶板压力比较大,侧帮压力比较小。松动压力是因为围岩个别岩体的滑动、或者由于支护不及时导致松散围岩的冒顶或片帮,以及在节理发育的裂隙岩体中,围岩某些部位沿软弱结构面发生剪切破坏或受拉破坏等导致局部滑动引起的。松动压力有以下特点:不连续、难预测,突发性[7-8]。

1.2 变形压力 开挖必然引起围岩变形,支护结构为抵抗围岩变形而承受的压力称为变形压力。变形压力多数是因为应力重新分布后产生的二次应力很大,超过围岩的强度极限时,导致一些围岩产生变形,进入塑性阶段。当岩体强度比较较高时,在无支护状态下,塑性区将渐渐扩大到一定区域就不再扩大。煤层巷道中,由于煤体强度小,过大的塑性变形会导致塑性区进入破裂阶段,进而导致巷道失稳。 形变压力与围岩变形和支护结构有关,支护结构与支护刚度有关;围岩变形与支护的施筑时间有关。所以形变压力是支护结构特性和时间的曲线。如图2.1所示。 图2.1 围岩与支护共同作用特性 分析图中曲线可知,巷道刚开挖成型时围岩变形迅速,随着时间的推移,变化速率减慢。如果支护非常早时,支护结构上压力越大,对材料要求比较高。如果支护比较晚,支护结构难以控制围岩变形,围岩会超出其塑性阶段,进入破坏阶段以致围岩破坏,此时支护的意

TBM刀具设计中围岩力学参数的选择

第20卷第2期岩石力学与工程学报20(2):230~234 2001年3月Chine se Jour nal of Rock Mechanics and Engineer ing Mar ch,2001 TBM刀具设计中围岩力学参数的选择* 徐则民黄润秋张倬元 (成都理工学院工程地质研究所成都610059) 摘要围岩力学特性是隧道掘进机)))TBM刀具设计中必须考虑的重要因素,而且这一因素也直接关系到TBM的总体设计及选用TBM施工的可行性。选择以单轴抗压强度为核心的参数系统作为刀具设计依据是不完善的。TBM 掘进过程中,刀具正下方因承受纵向压力而下陷,刀具两侧附近岩石由于受到平行掌子面的挤压而隆起。岩石下陷和隆起的同时,其内部出现张性或张剪性破裂面。当相临刀具诱发的隆起区重叠时,岩石便以碎块的形式脱离掌子面。在刀具荷载作用下,掌子面上两点之间的相对位移越大,对掘进越有利,而不同点之间的相对位移受岩石泊松比L和弹性模量E的控制。较大的L、较小的E对TBM掘进是有利的。除了单轴抗压强度外,刀具设计还应综合考虑变形参数L和E。 关键词TBM,刀具设计,围岩力学参数,单轴抗压强度,泊松比,弹性模量 分类号TU451文献标识码A文章编号100026915(2001)022******* 1引言 由装有刀具的刀盘、刀盘旋转驱动装置和刀盘纵向推进装置组成的掘进系统是庞大的工厂化TBM 综合体中最重要的部分,而掘进系统中的刀具,也称为盘形(碟形)刀具(刀圈、滚刀),作为TBM的破岩工具,则是TBM中最重要、最关键的部件。TBM是否可以充分发挥其高效能、低成本的优势,很大程度上取决于刀具的质量以及其是否符合所掘进的隧道。 目前的TBM一般都由厂商根据甲方提供或由厂商亲自测定的围岩参数为甲方特制,设计中考虑的围岩参数包括岩石强度(抗压、抗拉和剪切强度)和耐摩性能等。尽管有多个指标,但在刀具设计中,甚至是在比较T BM的掘进业绩或在T BM与钻爆法之间作出选择时,最常考虑的因素一般都是单轴抗压强度[1~3],有时加上一个反映岩石耐磨性能的石英含量[4~6]。 单轴抗压强度(UCS)是在无围压(R2=R3=0)而单向加压(R1)情况下获得的一个岩石强度参数,岩石的破坏方式为张裂、剪裂或张2剪复合型破裂。如果以岩石的单轴抗压强度为依据设计刀具,那么刀具破岩的理想条件是掌子面上有走向平行隧道轴向的节理发育,即隧道轴线方向存在由节理构成的一系列临空面。节理之间的岩块,在刀具荷载的作用下,形成张性或张剪性裂隙,并向临空面方向膨胀。所有刀具共同作用的结果是在刀具以下一定深度范围内的岩石,在既有节理的基础上,形成密集的裂隙带,并逐渐脱离掌子面。 掌子面上发育与隧道轴线走向一致的节理系统的情况是存在的,但几率却是不大的。如果既有节理系统与隧道轴线大角度相交、无节理或节理的开度很差,那么靠单轴压缩来破岩就很困难了,而这种情况在大埋深特长隧道中又是很常见的。因此,以岩石单轴抗压强度作为TBM刀具设计的主要依据是不完善的。 西康铁路秦岭特长隧道所用的TB880E型TBM 是德国Wirth公司专门为秦岭隧道特制的,TBM及刀具设计的主要依据是UCS和石英含量。根据设计和招标文件,秦岭北口第一段,即4.2km的片麻岩段岩石的抗压强度为78~137MPa、石英含量为20%~30%;Wirth公司保证在该区段内刀具的使用寿命达到180h,刀具消耗控制在439把以内。同时,中德T BM采购合同还规定,当岩石抗压强度为100 ~180MPa时,掘进速度为3.5m/h,在325MPa 时,掘进速度不小于1m/h。 1999年11月29日收到初稿,2000年2月17日收到修改稿。 *国家杰出青年科学基金(49525204)资助项目。 作者徐则民简介:男,37岁,博士,1988年毕业于长春地质学院水工系水文地质工程地质专业,现为教授,主要从事交通工程病害方面的研究工作。

巷道围岩力学

1 本规范是专门针对潞安矿区现有生产矿井所开采的3#煤层的地质与生产条件而编制的,旨在促进 潞安矿区煤巷锚杆支护技术健康发展,为矿井实现安全高效创造良好条件。 1.2 根据《潞安矿区巷道围岩地质力学测试与分类研究报告》和《潞安矿区煤巷锚杆支护成套技术研究》的结论,在潞安矿区的煤巷中可以并应积极推广应用锚杆支护技术。指导思想是:解放思想,实事求是,因地制宜,积极推广应用。工作原则是:以科学的理论依据为指导,以严谨的态度抓好设计、施工和管理。 1.3 本规范适用于潞安矿区以锚杆支护作为主要手段的煤巷,包括:(1) 回采巷道(运输巷,回风巷,开切眼,瓦排巷等);(2) 采区集中巷;(3) 煤层大巷;(4) 各类煤巷交岔点和峒室。1.4 在进行煤巷锚杆支护设计前,必须有全面、准确、可靠的巷道围岩地质力学参数,包括地应力的大小和方向、围岩强度、围岩结构等。否则,不能进行锚杆支护设计。 1.5 煤巷锚杆支护设计采用动态信息设计法。设计是一个动态过程,充分利用每个过程提供的信息。设计应严格按五个步骤进行,即巷道调查和地质力学评估、初始设计、井下施工与监测、信息反馈分析和修正设计、日常监测。1.6 煤巷锚杆支护材料的尺寸规格、力学性能与产品质量必须满足锚 杆支护设计的要求,并符合煤矿安全有关规定。否则,不能下井使用。 1.7 煤巷锚杆支护施工应严格按照设计和作业规程要求进行,确保施工质量。1.8 与煤巷锚杆支护技术有关的各级管理和技术人员,以及操作工人,都应进行锚杆支护技术培训。1.9 本规范未涉及的煤巷锚杆支护技术问题,应按煤炭行业有关规定执行。 第二章巷道围岩地质力学评估与现场调查 2.1 巷道围岩地质力学评估与现场调查是煤巷锚杆支护设计的基础依据和先决条件,必须在进行支护设计之前完成。 2.2 地质力学评估与现场调查首先应确定评估与调查的区域,考虑巷道服务期间影响支护系统的所有因素,随后的锚杆支护设计应该限定在这个区域内。 2.3 地质力学评估与现场调查主要包括以下内容(1) 巷道围岩岩性与强度煤层厚度、倾角和强度;顶、底板各岩层的岩性、厚度、倾角和强度。(2) 围岩结构与地质构造巷道围岩内节理、裂隙等不连续面的分布,对围岩完整性的影响;巷道附近较大断层、褶曲等地质构造与巷道的位置关系,以及对巷道围岩稳定性的影响程度。 (3) 地应力巷道原岩应力的大小和方向,与巷道轴线的夹角;巷道周围采动状况,以及采动对巷道围岩 应力的影响程度。(4) 环境影响巷道水文地质条 件,涌水量,瓦斯涌出量,对围岩强度的影响程度,围岩的风化特性等。 (5) 锚杆锚固力用井下施工中要采用的锚杆,以端部锚固的方式,在顶板和两帮设计锚固长度范围内进行拉拔试验,锚固力满足设计要求时,方能在井下使用。 2.4 巷道围岩地质力学参数,包括地应力、围岩强度和围岩结构应采用先进的测试方法进行测试。目前根据国内外的技术水平和科研成果,应采用下列井下实测的方法确定。 (1) 地应力可采用水压致裂法或应力解除法测量。 (2) 巷道围岩强度可采用井下围岩强度测定装置直接在钻孔中测量,也可在井下巷道中取岩芯,在实验室制成岩样进行测量。 (3) 围岩结构应采用巷道表面观察,钻孔取芯测量和钻孔窥视相结合的方法进行。 2.5 巷道围岩地质力学参数有一定的适用范围。当在一个地点获取的参数用于同一煤层的其它地点时,应进行充分的现场调研,以保证两地点条件的相似性。 2.6 当巷道围岩岩性、结构和应力条件发生较大变化时,如遇到大型

相关文档
相关文档 最新文档