文档库 最新最全的文档下载
当前位置:文档库 › 239_高等数学(第七版)(下册) 第十二章 无穷级数 总习题十二章节习题参考答案

239_高等数学(第七版)(下册) 第十二章 无穷级数 总习题十二章节习题参考答案

239_高等数学(第七版)(下册) 第十二章 无穷级数 总习题十二章节习题参考答案
239_高等数学(第七版)(下册) 第十二章 无穷级数 总习题十二章节习题参考答案

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

第十二章习题答案

第12章习题答案 1.设T 是一个非平凡树,证明T 中最长基本链的起点和终点的次数为1。 证明:假设P 是T 中最长的基本链,P 的起点或终点的次数不为1,即它的次数至少是2,则至少有一个顶点,令其为u ,与P 的起点或终点邻接。若u 在P 上,则构成圈,与T 是树矛盾,若u 不在P 上,则存在比P 更长的基本链,这与P 是T 中最长的基本链矛盾。因此,非平凡树T 中最长基本链的起点和终点的次数必为1。 2.证明恰好有两个顶点的次数为1的树必为一基本链。 证明:假设T 是任意一个恰好有两个顶点的次数为1的树,如果T 不是一基本链,则至少有一个分支顶点的次数大于2。设T 有n 个顶点,则T 有n-2个分支顶点,n-1条边。根据定理9.1,T 的顶点的次数之和等于T 的边数的2倍,可知 2(n-1)>2+2(n-2) 因此得到2n-2>2n-2,矛盾。故T 必为一基本链。即恰好有两个顶点的次数为1的树必为一基本链。 3.一个树有n 2个顶点次敉为2,n 3个顶点次数为3,…,n k 个顶点次数为k ,问这个树有几片树叶? 解:设这个树为T ,有x 片树叶,则T 有x +n 2+n 3+…+n k -1条边。根据定理9.1,T 的顶点的次数之和等于T 的边数的2倍,有 x +2n 2+3n 3+…+k n k =2(x +n 2+n 3+…+n k -1) 解得 x =n 3+2n 4+3n 5+…+(k-2)n k +2 即这个树有n 3+2n 4+3n 5+…+(k-2)n k +2片树叶。 7.证明在完全二元树中,弧的总数等于2(n t -1),这里n t 是树叶的数目。 证明:设完全二元树T 有n 个顶点,m 条弧。因为它有n t 片树叶,所以除树叶以外的顶点有n -n t 个。由于在完全二元树中,除树叶以外的顶点的引出次数均为2,每片树叶的引出次数均为0,故所有顶点的引出次数之和为2(n -n t ),它等于弧的总数m 。又因为1-=n m , 故有2(n -n t )=1-n ,解得n =2n t -1。因此m=n-1=2(n t -1)。 11. 图12.11给出了一个有序树,试求其对应的位置二元树。 解:把该树顶点标记i u 的下标i 作为序, 利用将有序树转化为位置二元树的算法, 求得其对应的位置二元树如右图所示。 4u 3 u 5 u 7 u 0u 1 u 2 u 6 u 8 u 9 u 10

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

(完整)同济版高等数学下册练习题(附答案)

第八章 测 验 题 一、选择题: 1、若a → ,b → 为共线的单位向量,则它们的数量积 a b →→ ?= ( ). (A) 1; (B)-1; (C) 0; (D)cos(,)a b →→ . 向量a b →→?与二向量a → 及b → 的位置关系是( ). 共面; (B)共线; (C) 垂直; (D)斜交 . 3、设向量Q → 与三轴正向夹角依次为,,αβγ,当 cos 0β=时,有( ) ()(); (); ()A Q xoy B Q yoz C Q xoz D Q xoz ⊥r r r r 面; 面面面 5、2 ()αβ→ → ±=( ) (A)22αβ→→±; (B)2 2 2ααββ→→→ →±+; (C)2 2 ααββ→→→ →±+; (D)2 2 2ααββ→→→ →±+. 6、设平面方程为0Bx Cz D ++=,且,,0B C D ≠, 则 平面( ). (A) 平行于轴;x ;(B) y 平行于轴; (C) y 经过轴;(D) 经过轴y . 7、设直线方程为111122 00A x B y C z D B y D +++=??+=?且 111122,,,,,0A B C D B D ≠,则直线( ). (A) 过原点; (B)x 平行于轴; (C)y 平行于轴; (D)x 平行于轴. 8、曲面2 50z xy yz x +--=与直线5 13 x y -=- 10 7 z -= 的交点是( ). (A)(1,2,3),(2,1,4)--;(B)(1,2,3); (C)(2,3,4); (D)(2,1,4).-- 9、已知球面经过(0,3,1)-且与xoy 面交成圆周 22160 x y z ?+=?=?,则此球面的方程是( ). (A)2 2 2 6160x y z z ++++=; (B)222 160x y z z ++-=; (C)2 2 2 6160x y z z ++-+=; (D)2 2 2 6160x y z z +++-=. 10、下列方程中所示曲面是双叶旋转双曲面的是( ). (A)2 2 2 1x y z ++=; (B)22 4x y z +=; (C)22 2 14y x z -+=; (D)2221916 x y z +-=-. 二、已知向量,a b r r 的夹角等于3 π ,且2,5a b →→==,求 (2)(3)a b a b →→→→ -?+ . 三、求向量{4,3,4}a → =-在向量{2,2,1}b → =上的投影 . 四、设平行四边形二边为向量 {1,3,1};{2,1,3}a b → → =-=-{}2,1,3b =-,求其面积 . 五、已知,,a b →→ 为两非零不共线向量,求证: ()()a b a b →→→→-?+2()a b →→ =?. 六、一动点与点(1,0,0)M 的距离是它到平面4x =的距离的一半,试求该动点轨迹曲面与yoz 面的交线方程 . 七、求直线L :31258x t y t z t =-?? =-+??=+? 在三个坐标面上及平面 π380x y z -++=上的投影方程 . 八、求通过直线 122 232 x y z -+-==-且垂直于平面3250x y z +--=的平面方程 .

高等数学第七版下册复习纲要

第七章:微分方程 一、微分方程的相关概念 1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶. 2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解. 通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解. 3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解; 也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式:dx x f dy y g )()(= . (2). 方程的解法:分离变量法 (3). 求解步骤 ①. 分离变量,将方程写成dx x f dy y g )()(=的形式; ②. 两端积分: ??=dx x f dy y g )()(,得隐式通解C x F y G +=)()(; ③. 将隐函数显化. 2. 齐次方程及其解法 (1).方程的形式: ?? ? ??=x y dx dy ?. (2).方程的解法:变量替换法 (3). 求解步骤 ①.引进新变量x y u = ,有ux y =及dx du x u dx dy +=; ②.代入原方程得:)(u dx du x u ?=+; ③.分离变量后求解,即解方程x dx u u du =-)(?; ④.变量还原,即再用 x y 代替u . 3. 一阶线性微分方程及其解法 (1).方程的形式: )()(x Q y x P dx dy =+. 一阶齐次线性微分方程:0)(=+y x P dx dy . 一阶非齐次线性微分方程: 0)()(≠=+x Q y x P dx dy .

高等数学同济第七版下册课后答案

1.设 u =a -b +2c , v =-a +3b -c .试用 a , b , c 表示 2u -3v . 解 2u -3v =2( a -b +2c ) -3( -a +3b -c ) =5a -11b +7c . 2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形 . 证 如图 8-1,设四边形 ABCD 中 AC 与 BD 交于 M ,已知 AM =MC , DM MB . 故 AB AM MB MC DM DC . 即 AB// DC AB |=| DC |,因此四边形 ABCD 3.把△ ABC 的 BC 边五等分,设分点依次为 D 1, D 2, D 3, D 4 ,再把各 分点与点 A 连接 .试以 AB =c, BC=a 表向量 D 1A , D 2A , D 3A , D A . 4 证 如图 8-2,根据题意知 1 5 1 5 1 5 BD 1 D 1D 2 D 2D 3 a, a, a, 1 5 D 3D 4 a, 1 故 D 1A =-( 1) =- a- c AB BD 5

2 D 2A =-( AB BD 2)D 3A =-( AB BD 3)=- a- c 5 3 =- a- c 5 4 D A =-( AB BD 4) =- a- c. 4 5 4.已知两点 M 1( 0, 1, 2)和 M 2( 1, -1, 0) . 试用坐标表示式表示 向量 M 1M 2及 -2M 1M 2 . M 1M 2 =( 1-0, -1-1, 0-2) =( 1, -2, -2) . 解 -2M 1M 2 =-2( 1, -2, -2) =( -2, 4, 4) . 5.求平行于向量 a =( 6, 7, -6)的单位向量 . a 解向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 6 7 6 , , 11 11 11 ( 6, 7, -6)= , = a 11 其中 a 62 72 ( 6)2 11. 6.在空间直角坐标系中,指出下列各点在哪个卦限? A ( 1, -2, 3), B ( 2, 3, -4), C ( 2, -3, -4) , D ( -2, -3, 1) . 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点 在第三卦限 . 7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各 点的位置: A ( 3, 4, 0), B ( 0, 4, 3), C ( 3, 0, 0), D ( 0,

高等数学下册第十二章习题答案详解

高等数学下册第十二章习题答案详解 1.写出下列级数的一般项: (1)1111357 ++++ ; 2 242468 x x +++????; (3) 3579 3579 a a a a -+-+. 解:(1)1 21 n U n = -; (2)()2 !! 2n n x U n = ; (3)() 21 1 121 n n n a U n ++=-+; 2.求下列级数的和: (1) 23 111555+++; (2) 1 1 (1)(2) n n n n ∞=++∑; (3) 1 n ∞ =∑. 解:(1) 因为21115551115511511145n n n n S = +++????-?? ???? ?=-????=-?? ????? 从而1lim 4n n S →∞ = ,即级数的和为14 . (2)()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++??

从而()()()()()()()()()()()()()()1111121121223111111 1211n S x x x x x x x x x n x n x n x n x x x n x n ? -+-= +++++++?? + + - ? +-++++? ?? -= ?++++? ? 因此( ) 1lim 21n n S x x →∞ = +,故级数的和为 () 1 21x x + (3) 因为 n U = - 从而 ( 11n S n =-+-+-++-+=-= 所以lim 1n n S →∞ =1 3.判定下列级数的敛散性: (1) 1 n ∞ =∑; (2)1111 166111116 (54)(51) n n + +++ + ???-+; (3) 231232222(1)3333n n n --+-+-+; (4)1155 n ++. 解:(1) (11 n S n =++++= 从而lim n n S →∞ =+∞,故级数发散. (2) 111111 1115661111165451111551n S n n n ?? = -+-+-++ - ?-+?? ??=- ?+?? 从而1lim 5 n n S →∞= ,故原级数收敛,其和为15. (3)此级数为2 3 q =-的等比级数,且|q |<1,故级数收敛.

数学分析课本(华师大三版)-习题集与答案解析第十二章

第十二章 数项级数 证明题 1 . 证明下列级数的收敛性 ,并求其和 : (4) ( n 2 2 n 1 n); 2n 2. 证明:若级数 u n 发散,则 Cu n 也发散(c ≠0). 3. 证明 :若数列 {a n }收敛于 a,则级数 (a n a n 1) a 1-a . (1) 1 1 1 (3) 1 n(n 1)(n 2) 2n 1 (5) (5n 4)(5n 1) 1.6 6.11 11.16 (2)

4 .证明: 若数列{b n}有lim b n ,则 n (1)级数(b n 1 b n)发散; 1 1 1 (2)当b n≠0 时,级数 n b n 1 b1 5. 证明级数u n 收敛的充要条件是:任给正数ε ,有某自然数N, 对一切n>N 总有 |u N+u n+1+?+u n|< ε 6. 设u n、v n 为正项级数,且存在正数N0,对一切n>N 0,有 u n 1 v n 1 u n v n 7. 设正项级数a n 收敛,证明级数a2n 也收敛;试问反之是否成立? 8. 设a n≥0,且数列{na n}有界,证明级数a2n收敛.

9. 设正项级数 u n 收敛,证明级数 u n u n 1 也收敛 . (2) 若 n>N 0 时有 C n ≤0, 且 lim 1 b k ,则级数 a n n1 10. 证明下列极限 11. 设 {a n }为递减正项数列 ,证明 :级数 a n 与 2m a 2m 同时 n1 m 0 收敛或同时发散 a 12. 设 a n >0, b n >0, C n =b n n b n+1,证明: a n 1 N 0及常数 K,当 n>N 0 时,有 C n ≥k>0, 则级数 a n 收敛 ; n1 n (1) l n im (n n !) 0; (2) lim (2n!) n! n a n! 0(a 1). (1) 若存在某自然数

高等数学同济第七版上册知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一.函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠0,称f(x)与g(x)是同阶无穷小。 (3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x) 2.常见的等价无穷小 当x →0时 sin x ~x ,tan x ~x ,x arcsin ~x ,x arccos ~x , 1?cos x ~2/2^x ,x e ?1~x ,)1ln(x +~x ,1)1(-+αx ~x α 二.求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x )≤f (x )≤h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 5.洛必达法则 定理1设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;

(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)() (lim 0x F x f x x ''→为无穷大时,) () (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) () (lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞ 型的洛必达法则,对于∞→x 时未定式∞ ∞ 型同样适用. 使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00 ”和“∞ ∞ ”型的未定式,其它的未定式须先化简变形成“0 ”或“ ∞ ∞ ”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则; (3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限 基本公式)() ()(lim 0'000x f x x f x x f x =?-?+→?(如果存在) 7.利用定积分定义求极限 基本格式?∑==∞→1 1)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类 函数的间断点分为两类: (1)第一类间断点 设0x 是函数y =f (x )的间断点。如果f (x )在间断点0x 处的左、右极限都存在,则称0x 是f (x )的第一类间断点。左右极限存在且相同但不等于该点的函数值为可去间断点。左右极限不存在为跳跃间断点。第一类间断点包括可去间断点和跳跃间断点。 (2)第二类间断点 第一类间断点以外的其他间断点统称为第二类间断点。常见的第二类间断点有无穷间断点和振荡间断点。 四.闭区间上连续函数的性质 ) () (lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→

山东建筑大学高数下学期作业第章12作业和练习题答案

第十二章 微分方程 1、指出下列各题中的函数是否为所给微分方程的解: (1)2"2'0,x y y y y x e -+==; 不是 (2)12121212"()'0,x x xy y y y C e C e λλλλλλ-++==+; 不是 (3)2 ()"''2'0,ln().xy x y xy yy y y xy -++-== 是 2、给定一阶微分方程 2dy x dx =, (1)求出它的通解; 解:方程两端积分得通解为 2 y x C =+ (2)求通过点(1,4)的特解; 解:将1 4x y ==带入通解解得 3C =,故所求特解为 23y x =+ (3)求出与直线23y x =+相切的解; 解:设切点为00(,)x y ,则有0002223x y x =?? =+?,解得00 1 5x y =??=?,带入通解解得 4C =, 故所求特解为 2 4y x =+ (4)求出满足条件1 2ydx =? 的解。 解:由 1 20 2x Cdx +=? 得53C =, 故所求特解为 2 53 y x =+ 3、 写出下列条件确定的曲线所满足的微分方程: (1) 曲线在点(,)x y 处的切线斜率等于该点横坐标的平方; 解:由已知得方程为 2dy x dx = (2) 曲线上点(,)P x y 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分。 解:由已知Q 点的坐标为(,0)x -, 所以 1 2' y x y =-,整理得方程为 '20y y x += 4、 求下列微分方程的解: (1)'ln 0xy y y -=;

解:分离变量得 ln dy dx y y x =,两端积分得 1ln ln ln ln y x C =+, 整理得cx y e =,1()C C =± (2)2 ''(')y xy a y y -=+; 解:分离变量得 21dy dx ay x a =--,两端积分得 11 ln 1x a C ay -=---+ 整理得1 ln 1y a x a C = --+,1()C aC =- (3)2 31dy y dx xy x y +=+; 解:分离变量得 221(1) ydy dx y x x =++, 两端积分得 22111 ln(1)ln ln(1)ln 22 y x x C +=-++, 整理得2 2 2 (1)(1)x y Cx ++=,2 1C C =,即2 2 2 11Cx y x = -+ (4)230x y dy e dx y ++=; 解:方程变形为 2 3y x dy e e dx y =-, 分离变量得 23x y ydy e dx e =-, 两端积分得 2311123y x e e C -=+,化简得 2312 ,(2)3 y x e e C C C -=+= (5)2 (1)0,1x y dx x dy y =++==。 解:分离变量得 21dy dx y x =-+,两端积分得通解为 1ln 1x C y =++,将0 1x y == 带入通解得1C =,故所求特解为 1 ln 11 y x = ++ 5、 一曲线通过点(2,3),它在两坐标轴的任一切线段均被切点所平分,求这曲线方程。 解:由已知的微分方程为2'3x y y x y =? =-? ? ?=? ,

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

高等数学第十二章答案 同济五版12-7.

1 下列函数组在其定义区间内哪些是线性无关的? (1x x2 解因为不恒为常数所以x x2是线性无关的 (2x 2x 解因为所以x 2x是线性相关的 (3e2x 3e2x 解因为所以e2x 3e2x是线性相关的 (4ex ex 解因为不恒为常数所以ex ex是线性无关的 (5cos2x sin2x 解因为不恒为常数所以cos2x sin2x是线性无关的 (6 解因为不恒为常数所以是线性无关的 (7sin2x cos x sin x 解因为所以sin2x cos x sin x是线性相关的 (8ex cos2x ex sin2x 解因为不恒为常数所以ex cos2x ex sin2x是 线性无关的

解因为不恒为常数所以ln x x ln x是线性无关的 (10eax ebx(ab 解因为不恒为常数所以eax ebx是线性无关的 2 验证y1cos x及y2sin x都是方程y2y0的解并写 出该方程的通解 解因为 y12y12cos x2cos x0 y22y22sin x2sin x0 并且不恒为常数所以y1cos x与y2sin x是方程的 线性无关解从而方程的通解为yC1cos xC2sin x 提示y1 sin x y12cos x y2 cos x y12sin x 3 验证及都是方程y4xy(4x22y0的解 并写出该方程的通解 解因为 并且不恒为常数所以与是方程的线性无关解从而方程的通解为 提示

4 验证 (1(C1、C2是任意常数是方程 y3y2ye5x 的通解 解令y1e x y2e2x 因为 y13y12y1e x3e x2e x0 y23y22y24e2x3(2e2x2e2x0 且不恒为常数所以y1与y2是齐次方程y3y2y0的线性无关解从而YC1e x C2e2x是齐次方程的通解 又因为 所以y*是方程y3y2ye5x的特解 因此是方程y3y2ye5x的通解 (2(C1、C2是任意常数是方程y9yx cos x的通解 解令y1cos3x y2sin3x因为 y19y19cos3x9cos3x0 y29y29sin3x9sin3x0

高等数学同济第七版7版下册习题 全解

数,故 /, =Jj( x2 + y1)3d(j =2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 )JJ/( x,y)clcr = JJ/( x,y)drr +jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个 I) b\ lh 尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

高数习题集(附答案)

第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+= x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

§2 初等函数 必作习题 P31-33 1,8,9,10,16,17 必交习题 一、 设)(x f 的定义域是]1,0[,求下列函数的定义域: (1))(x e f ; (2))(ln x f ; (3))(arcsin x f ; (4))(cos x f 。 二、(1)设)1ln()(2x x x f +=,求)(x e f -; (2)设23)1(2+-=+x x x f ,求)(x f ; (3)设x x f -= 11)(,求)]([x f f ,})(1{x f f 。)1,0(≠≠x x

三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。 四、设???>+≤-=0, 20, 2)(x x x x x f ,???>-≤=0, 0,)(2x x x x x g ,求)]([x g f 。

高等数学-课后习题答案第十二章

习题十二 1.写出下列级数的一般项: (1) 1111357++++L ; (2) 2242468 x x ++++????L ; (3)3579 3 579a a a a -+-+L ; 解:(1) 1 21n U n = -; (2) ()2 !!2n n x U n = ; (3) () 21 1 121n n n a U n ++=-+; 2.求下列级数的和: (1) ()()() 1 1 11n x n x n x n ∞ =+-+++∑; (2) 1 n ∞ =∑; (3)2311155 5+++L ; 解:(1) ()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++?? 从而 ()()()()()()() ()()()()()()()11111211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ? -+-= +++++++?? ++- ?+-++++??? -= ?++++??L 因此 ()1lim 21n n S x x →∞=+,故级数的和为()1 21x x + (2) 因为 n U =-

从而 11n S =-+-+-++-=-=+-L 所以lim 1n n S →∞ = 1 (3)因为 21115551115511511145n n n n S =+++????-?? ???? ?=-????=-?? ?????L 从而 1lim 4n n S →∞= ,即级数的和为14. 3.判定下列级数的敛散性: (1) 1 n ∞ =∑; (2) ()() 11111661111165451n n +++++???-+L L ; (3) ()231332222133 33n n n --+-++-L L ; (4)15+++L L ; 解: (1) 1 n S =+++=L 从而lim n n S →∞ =+∞ ,故级数发散. (2) 1111111115661111165451111551n S n n n ??=-+-+-++- ? -+????=- ?+??L 从而 1lim 5n n S →∞=,故原级数收敛,其和为1 5. (3)此级数为23q =- 的等比级数,且|q |<1,故级数收敛. (4) ∵n U =lim 10n n U →∞=≠,故级数发散.

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

高等数学同济第七版7版下册习题全解

第十章重积分9 5 y 2 D2 -1 O i T -2 图 10 - 1 数,故 /, = Jj( x 2 + y 1 ) 3 d(j = 2jj ( x2 + y 1 )3 dcr. fh i)i 又由于 D 3关于 ; t 轴对称,被积函数 ( / + r2) 3关于 y 是偶函数,故jj( x2 + j2 ) 3dcr = 2j( x2+ y2) 3 da =2/ 2 . Dy 1): 从而得 /, = 4/ 2 . ( 2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于 ^ 轴对称,而被积函数 / ( x, y) 关于 y 是奇函数,即 fix, -y) = -f(x,y) , PJ jf/ ( x, y)da = 0; D 如果积分区域 D 关于: K 轴对称,而被积函数 / ( x, y) 关于: c 是奇函数,即 / ( ~x, y) = - / ( 太, y) ,则 = 0. D ? 3. 利用二重积分定义证明: ( 1 ) jj da = ( 其 中 ( 7 为的面积 ) ; IJ (2) JJ/c/( X , y) drr = Aj | y’ (

A: , y) do■ ( 其 中 A :为常数 ) ; o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中/) = /)! U /) 2,, A 为两个 I) b \ lh 尤公共内点的 WK 域 . 证 ( 丨 ) 由于被 枳函数. / U, y) = 1 , 故山 二 t 积分定义得n "

9 6 一、 《高等数学》 (第七版 )下册习题全解 jj'ltr = Hm y^/( ,rji) A

相关文档
相关文档 最新文档