文档库 最新最全的文档下载
当前位置:文档库 › 高炉设计 毕业设计

高炉设计 毕业设计

高炉设计 毕业设计
高炉设计 毕业设计

第一章文献综述

1.1 炼铁行业概述

钢铁工业在过去的100多年里进行了快速发展,无论是在设备还是技术上都取得了重大的进步,但也存在这很大的缺陷,比如污染严重,矿石利用率低,严重耗能等等的问题。在近些年里钢铁行业的重要性有了不小的下降,更为严重的是钢铁行业现在已经处于一个微利甚至是负利的产业,所以现在急需要我们的生产工作者更加努力,提高钢铁行业的技术进而扭转这一不利的局面。

我国钢铁工业现状如下[1]:行业集中度低, 生产专业化程度低, 尚不能达到规模经济, 在一定的程度上限制了我国钢业的竞争力,结构不合理,企业平均技术装备水平低,产业升级和任务技术改造非常艰巨。我国钢铁企业不注重新技术新产品的开发利用,和国外一些企业形成了鲜明的对比。钢铁产品质量有待进一步提高。我国钢铁产品的实物质量水平比国外先进水平相比还有一段距离; 我国钢材产品销售服务水平较低。钢材产品销售服务和产品的质量是提高产品竞争力的重要方面; 我国钢铁行业的信息迟缓,企业与企业间相互恶意压价竞争,而且没有一个统一的部门进行指导和规范,导致了现在我们钢铁行业的严重被动局面,加工服务中心基本上处于空白,而且我国的钢铁企业目光仅仅局限于国内,在国际上的竞争力不足,所以现在我国钢铁行业处于一个极为不利的局面,急需要一些措施来改变。

目前我国钢铁业产能过剩,严重超出了需求量,在2008年我国生铁产量已经到达4.6944亿t比去年度增长15. 19%,其增加幅度低于钢产量同期增加幅度,占剧全世界钢铁总产量的49.74%。2007年全国重点钢铁企业产铁3. 69亿t,同去年的产量比增长了13.74%,其他非重点钢铁企业产量1.20亿t,增长19.60%。2008年上半年我国产铁量2.4642亿t,与去年相比增加了 7.89%,但发展势头降低了。预计, 2008年我国钢产量达到5.2亿t,生铁产量将达到4.9亿t。2009年产铁5.43亿吨,占世界总产量的60.53%,2010年前十个月我国铁产4.96亿吨,比上年同期增长8.27%。高炉生产技术取得了很大的的进步,但随之而来的问题也是不少的,如钢铁产能过剩,钢铁质量不达标,钢铁价格过低,钢铁企业间不正当竞争。1980年中国重点企业高炉平均利用系数为1.56吨/(米·日),焦比为539公斤/吨生铁。

1.2 高炉炼铁

1.2.1 高炉炼铁的发展

高炉发源于中国,高炉何时在我国发明,各路专家尚无统一意见.有人推断是公元前8世纪,现在己有出土的铸铁实物,证实了这一推断,是世界上最早掌握冶铁技术少数文明古国之一欧洲出现高炉约在170年以后。20世纪是我国炼铁大发展的一个黄金时期,并成为世界上的炼铁大国。20世纪是中国钢铁工业发展的一个世纪。钢铁业从最开始的小规模生产到现在的衡量一个国家实力象征,走过了100多年的时间,相信在以后的时间里钢铁业也是一个国家不容忽视的实力,而且也会取得更大的进步。

高炉属于圆筒形竖炉,高炉炉型一般分为 5 段[2]:炉腰、炉身、炉喉、炉腹和炉缸。炉缸部分设有铁口、渣口和风口。高炉外面用钢板制成炉壳;里面用耐火砖砌筑内衬为了延长高炉寿命在炉壳与内衬之间设有冷却设备。在钢铁生产时,铁矿石,焦炭,石灰石,生石灰从炉顶装入,热风从高炉下的风口鼓入,在高温下进行一系列的化学反应,生产出铁,此阶段叫做还原反应。铁矿石在高炉中经过还原反应炼成铁,由铁口放出铁水;加入高炉内的熔剂与铁矿石中的杂质相互作用形成炉渣,从渣口排出;从炉顶导出炉内的煤气,经过除尘后,供烧结机、热风炉等作燃料。

1.2.2 高炉炼铁的技术进步

高炉炼铁的技术进步在于铁的精炼技术,如:品味强度的提高、粒度的变小、成分的相对稳定。精料技术的核心是要提高入炉矿品位。高炉炼铁,随着铁矿石的品味提高、焦比的下降,进而提高了产量,提高了钢铁企业的利润率。我国矿品位的提高主要是使用高品位进口矿比例增加的结果。一般进口矿的品位在64 %以上。我国铁矿石的进口量逐年的增加,一般来说是从澳大利亚等一些铁矿石打过进口,这些进口的铁矿石量占我国铁矿石总量的32 %以上。进口的铁矿石提高了我国的铁产质量,有一些好处,但随之而来的问题是严重依赖国外的矿石对我国钢铁业十分不利。

高炉炼铁的技术进步主要在[3]:降低燃料比、提高喷煤比、提高风温、加强能量回收等方面。高炉炼铁在铁生产里面占据了重要的位置,对铁生产有很大的影响。高炉炼铁需按照目前存在的问题, 继续搞好技术改造工作和结构调整; 为进一步取得高炉的低消耗高效率, 搞好二次能源回收和节能利用工作, 高炉精料工作以及高炉的长寿化以及高效化。我国的钢铁从业人员应当更加努力,提高我国钢铁业的竞争力。

1.3高炉喷煤系统

1.3.1高炉喷煤的过去与发展

高炉喷煤在高炉炼铁过程中占据着很大的比例,高炉喷煤的技术进步能进一步的提高铁矿石和焦炭的利用率,高炉喷煤的技术进步趋势是提高喷煤、降低焦比。高炉喷煤是炼铁过程的一个重要环节,它的好坏与否关系着整个炼铁生产的好坏。这其中就包括对繁琐的阀门调节控制由手动模式改为PlD自动控制,对喷吹量的数值累计采用流量监测与重量模糊控制相结合的方式等等。

高炉喷煤技术始于1840年S.M. Banks[4]关于喷吹焦炭和无烟煤的设想,世界最早的工业技术应用即是根据这一设想在法国博洛涅附近的马恩省炼铁厂于1840~1845年间实现的[4]。但在以后的时间里,高炉喷煤的发展极为的缓慢,甚至停顿,直到60年代才又开始进行一系列的喷煤实验,再后来高炉喷煤才开始了一些发展,取得了许多的技术进步,而且这些进步都应用在了实际的炼铁过程中,提高了炼铁的利用率,为高炉炼铁的快速发展做出了很大的贡献。

世界范围的高喷煤比指标大部分在20世纪90年代中后期产生。英国的钢铁企业的一套喷煤设备率先的取得了较高的喷煤比,但是世界范围内的喷煤比记录是由日本的一家钢铁企业创造的。

1.3.2 我国高炉喷煤技术的发展

我国高炉喷煤大致经历了4个阶段[5]:

(1)无氧喷吹煤粉我国早期喷煤大多是无氧喷吹无烟煤,与无烟煤相比,烟煤具有可磨性好、资源广泛、燃烧性能好、价格低廉等优点。

(2)富氧喷吹技术富氧鼓风可以提高理论燃烧温度,提高煤粉燃烧率,改善高炉透气性。

(3)氧煤喷吹技术氧煤喷枪技术的出现使喷吹进一步提高了煤粉的燃烧率,大幅度提高煤粉利用率。在我国几乎停滞的十几年中,国外的高炉喷煤技术有了巨大的进步,氧煤喷枪喷煤技术已经非常成熟且进行了推广和普及。

(4)引进国外喷煤技术在我国经济允许的条件下,适当引进些国外的高新技术为我们的经济建设发挥作用,能起到事半功倍的效果。

1.3.3高炉喷煤技术展望

在高炉炼铁,高炉喷煤技术不断取得技术进步的状况下,高炉喷煤的发展方向主要是在煤粉预热、风口前煤粉燃烧状况研究,在这种情况下,高炉喷煤是增大喷煤比,降低焦比扩大制粉能力来提高喷煤的效率及利用率,进而改善喷煤环境、炉缸透气性保证均匀且安全的喷煤是高炉喷煤的下一个重点研究方向。

1.4 高炉喷煤系统设备

高炉喷煤工艺系统主要由煤粉输送、原煤贮运、煤粉制备、煤粉喷吹、干燥气体制备和供气动力系统组成。

1.4.1 煤粉的制备

煤粉制备包括原煤装卸、贮运、磨煤、干燥和煤粉收集等。煤粉制备工艺流程见图1-1。原煤由厂外运来后卸入原煤槽,经皮带运输机、除铁器、锤式破碎机进行初级破碎运到煤粉车间的原煤仓。再用圆盘给料机加入到球磨机中,并用引风机引200℃左右的烟气(或热风)吹入球磨机,热风一方面作为干燥剂,将煤粉干燥;细粉管上安有锁气器(图1-2) ,其功能是密封卸煤,当有煤粉下落时,靠飞粉的重力压开阀板,没有煤粉时自行关闭,防止漏气。煤粉,经排煤机加压,进入布袋收尘器。布袋收尘器下部有圆筒形阀,细粉通过它落入细粉仓。从布袋收尘器排出的风由排气管放散到大气中。

图1-1 煤粉制备工艺流程

图1-2 磨矿分级流程改造

煤粉制备的主要设备是磨煤机,选择它的依据是煤的可磨性系数。该系数可用下式表示:煤的可磨性系数=标准煤磨到一定细度的耗电量÷试验煤磨到相同细度的耗电量比球磨机具有更多的优势,尤其是用于喷吹烟煤的高炉。一般新磨好的煤粉水分约为1%,温度60~80oC,煤粉粒度小于180网目(0.088mm)占80%以上。

1.4.2 煤粉的输送

从媒粉仓列高炉附近的喷吹罐.从喷煤罐到风口.煤粉都用气动运输。有两种方式,一是用带有压力的喷吹罐提供压差使煤粉运动,给煤量是粉煤料柱上下压力差的函数,煤粉进入混合器后用压缩空气向外输送,这种方法不设转动机械设备,常用于向高炉喷吹。

图1-3 输粉系统工艺流程图

混合器是仓式泵的出口,可以采用焊接件或铸件。

生产中经常用以下办法调节喷煤量:

(1)调节喷吹罐上方的旋塞阀开启角度。

(2)适当提高喷吹罐压力。但不宜过高,否则耗气量增加并且不安全。

(3)适当减小混合器喷嘴压力(即喷吹压力)。喷吹压力愈高,风量逾大,喷吹量及浓度愈小,而且消耗的空气量大,操作不稳定;喷吹压力过小,则不能满足气动输送的要求,容易堵塞管道。

混合器的喷射能力主要与其入口直径有关。

Q=KπD2/4

式中Q——混合器喷射能力,m3/h;

D——混合器入口直径,cm;

K——系数,即每平方厘米混合器入口面积每小时通过的煤粉量,m3/(h*cm 2);

螺旋输送泵(图1-5)是常压喷吹系统中广泛采用的设备。当煤粉制备车间与喷吹装置距离较远时,它是用管道输送煤粉的主要设备。

其工作原理是煤粉在重力作用下,由煤粉仓(或喷吹罐)底部阀门进入料箱,由电动机

带动螺旋杆旋转,将煤粉压入混合室,借助于通入混合室的压缩空气将煤粉送出,可以用转速来调节给煤量,也可以防止压缩空气倒流进入煤粉仓。

图1-5 螺旋泵构造示意

螺旋泵分进料箱、螺旋轴、混合室三大部分。煤粉在螺旋泵中,由于螺距逐渐变小而被压紧,压缩比即最大螺距与最小螺距之比1.4~1.6比较合适,过小容易出现倒风现象,过大电动机过载。喷嘴的安装位置要合适,以保证混合室内不积灰、不堵塞。螺杆尾部安装有效的双面机械密封单向阀压盖依靠重锤作用随给料量而摆动,当螺旋没有煤粉供给时,压盖依靠重锤作用而自行关闭。

与仓式泵相比,螺旋泵的特点是:体积小,设备较简单,不用压力贮煤罐,故较安全。但由于需要机械传动,维护量大、耗电大,且输送压力不高,不适于高压操作的高炉使用。而仓式泵由于无机械传动,故工作时噪声小,输送量和输送能力大,能耗较小。但体积较螺旋泵大,多适用于高压操作的高炉。

1.4.3 煤粉的喷吹

喷吹装置包括集煤管、贮煤罐、喷吹罐、输送系统及喷枪。按喷吹罐工作压力可分为常压喷吹装置和高压喷吹装置两种:

(1)常压喷吹装置。喷吹用的煤粉管处于常压状态下。由煤粉罐未充压,所以输煤泵出口压力不允许过高,否则容易向煤粉罐倒风。通常,操作压力为0.13~0.15MPa,煤粉浓度为8~15kg/kg。常压喷吹装置设备简单,安全性较好,故常用于中小型高炉。

(2)高压喷吹装置。喷吹罐一直在高压状态下工作(0.3~0.4MPa)按仓式泵的原理向高炉喷吹煤粉,常用于大中型高压操作的高炉上。我国的高压喷吹设备大致有双罐重叠双系列和三罐重叠单系列两种形式:

图1-6两罐重叠双系列系统图1-7 三罐重叠单系列系统

1)双罐重叠双系列。其贮煤罐和喷吹罐上下相连[6],贮煤和喷吹作业交替进行,贮煤时下钟阀关闭上钟阀打开,贮煤罐和煤粉回收系统连通,处于常压状态,以便接受煤粉。罐内煤粉装满后,停止输煤,上钟阀关闭。向高炉喷吹煤粉时,先向贮煤罐充压,使下钟阀上下均压,再打开下钟阀向高炉输煤。罐内煤粉喷吹完后,进行泄压,装煤。为了保证下煤畅通,在贮煤罐的下部安装有纺锤形的导料器,料满和料空的信号由安装在罐体外上部和下部的Co60放射源和计数器发出,有的用电子秤压头连续发出料重信号。如图1-6。

2)三罐重叠单系列。是在贮煤罐上又加上一个收集罐,收集罐、贮煤罐和喷吹罐上下重叠起来,收集罐处于常压状态。如图1-7。

喷吹罐有效容积一般按向高炉持续半小时的喷吹量来设计,即换罐周期为半小时,

必须大于贮煤罐装一次煤的时间和泄气等辅助时间之和。其有效容积是指在规定的最高与最低料面之间的容积,在最低料面之下需保留2~3t煤粉,最高料面离顶部球面转折处为800~1000mm。

贮煤罐有效容积一般为喷吹罐有效容积的1.1~1.2倍,贮煤罐的最低料面应在钟阀以上。贮煤罐有效容积过大,对调剂缓冲有利,但容易产生带粉关闭现象,对关下钟阀不利。

收集罐的有效容积应保证(在上钟阀关闭时,即由贮煤罐向喷吹罐加煤粉时)贮存送来的煤粉。

分配器是煤粉喷吹装置中的重要设备,其分配是否均匀,对稳定高炉炉况,提高煤粉喷吹量,改善高炉技术经济指标起着重要作用。目前常用的分配器是瓶式分配器,煤粉混合物由下部垂直进入瓶式分配器中,再从侧面水平分流,因垂直进入可以免受重力影响而产生偏析,煤粉在横断面上的分布只受气流速度的影响,由于横断面上的等速线是同心圆,在相同扇形面积内的煤粉量理应相等,实践证明也是比较均匀。也有的高炉采用空心锥形分配器。

把煤粉从直吹管(或风口)吹入炉内的设备为喷枪。煤粉从喷吹罐下的混合器经分配器进入喷煤支管,再用一段胶皮管与喷枪相连,这样既容易插枪,又可在热风倒流时只烧断胶皮管,不会倒流进入煤粉罐。

喷枪本身一般为内径12~15mm的普通冷拔无缝钢管或耐热钢管。喷枪一般斜插在直吹管上,交角为13o~14o(图1-8)。

图1-8 喷枪及其插入装置

第二章炼铁工艺计算及主要参数选择

2.1 原始数据整理计算

2.1.1 原料成分见表2.1

表2.1 矿石成分

成分TFe Mn P S FeO CaO SiO2

烧结矿53.36 0.660 0.06 0.023 0.000 11.66 6.600 球团矿61.47 0.080 0.00 0.004 1.290 0.060 9.220 锰矿 4.830 36.08 0.03 0.000 0.000 0.000 22.86 石灰石0.274 0.078 0.000 0.000 0.000 55.30 0.365 硅石 1.082 0.000 0.000 0.000 0.000 0.180 95.30 附表1

MgO Al2O3Ti

1.920 3.190 0.140

1.330 0.620 0.000

0.000 2.320 0.000

0.100 0.100 0.000

2.820 2.820 0.000

2.1.2 燃料成分见表

2.2 配料计算

2.1.1 冶炼条件确定

(1)冶炼制钢铁,规定生铁成分[Si]=0.7% ;[S]=0.03%。

(2)假设炼铁焦比K=400 kg ;煤比 M=120 kg [7]。

=0.45 ;氢的利用率=35%。

(3)选取铁的直接还原度r

d

=1.02。

(4)规定炉渣的碱度R=CaO/SiO

2

(5)热风温度为1250℃

(6)高炉使用冷烧结矿,炉顶温度为200℃

(5)元素在生铁、炉渣与煤气中的分配率见下表:

表2.4 常见元素分配率(%)

原料Fe Mn P S V

生铁0.998 0.400 1.000 0.800 炉渣0.002 0.600 -0.200 煤气---0.05 -

表2.5 生铁成分(%)

成分Si Mn S P C Fe Σ

% 0.7 0.03 0.03 0.090 3.86 95.29 100.00 2.2.2 吨铁矿石用量计算

燃料带入铁量Fe

f

=400×(0.0076×56/72+0.0005×56/88)+120×0.0061×56/72

Fe

f

=2.48+0.569=3.057kg

矿石用量A

焦炭带入的Fe=450(0.007656×56/72+0.0005×56/88)=2.49 Kg

煤粉带入的Fe=120×0.0061×56/72=0.57 Kg

进入渣中的Fe=952.9×0.002/0.998=1.91 Kg

需混合矿供应的Fe=952.9-2.49-0.57+1.91=951.75 Kg

矿石量A=951.75/0.488=1950.3 Kg

2.2.3生铁成分计算 [

](1)(%)/10

f Fe A TFe Fe η=?+?

= (1950.3×48.8%+3.06)×0.997/10 =95.19(%)

[]62

(0.01/10142

P A P K =?+??矿

) =(1950.3×0.04%+400×0.001×62/142)/10 =0.1(%)

[]2/10Mn A Mn η=??()

=(1950.3×0.472%+320×0.022%×55/71) ×0.5/10 =0.46(%)

[][][][][][]100()C Fe P Mn Si S =-++++

=100-(95.19+0.1+0.46+0.700+0.030) =3.52(%)

表2.5 生铁成分(%)

成分 Si Mn S P C Fe Σ %

0.7

0.46

0.03

0.1

3.52

95.19

100.00

2.2.4 石灰石用量计算

混合矿带入CaO=1950.3×0.09334=182.04 Kg 焦炭带入CaO=450×0.0072=3.24 Kg 煤粉带入CaO=120×0.0049=0.59 Kg 共带入CaO=182.04+3.24+0.59=185.87 Kg 混合矿带入SiO 2=1950.3×0.06202=120.96Kg 焦炭带入SiO 2=450×0.058=26.1 Kg 煤粉带入SiO 2=120×0.0485=5.82 Kg 共带入SiO 2=120.96+26.1+5.82=152.88 Kg 还原Si 消耗SiO 2=5×60/28=10.7 Kg

石灰石用量={(∑SiO 2料-10.7)×1000-∑CaO}/ CaO 有效

={(152.88-10.7) ×1.03-185.87}/(0.553-0.00365×1.03)

=-71.8

由以上可知需配加硅矿作溶剂, 则硅石用量

硅矿有效溶剂性 SiO

2有效

=95.30-0.18/1.03=95.13(%)

硅矿的用量

Ψ=(185.87-152.88 ×1.03)/95.13%=29.86 Kg

2.2.5 渣量及炉渣成分分析

燃料带入的各种炉渣组分的数量为

∑CaO=185.87+29.86×0.0018=186.41kg

∑SiO

2

=152.88-10.7+29.86×0.953=181.34kg

∑MgO=1950.3×0.01669+450×0.001+120× 0.002+29.86×0.0008 =33.49kg

∑Al

2O

3

=1950.3×0.02614+450×0.0482+120×0.0458+29.86×0.001 =78.20kg

渣中MnO量=1950.3×0.00536×0.5×71/55=6.75 kg

渣中FeO量=1.91×72/56=2.46kg

1t生铁炉料带入的硫量:(硫负荷)

∑S=1950.3×0.000188+450×0.0062+120×0.0033=3.55 kg 进入生铁的硫量=10×0.03=0.3kg

进入煤气的硫量=3.55×0.05=0.18kg

进入渣中的硫量=3.55-0.3-0.18=3.07㎏

表2.7 炉渣组成表

项目CaO MgO SiO2Al2O3MnO FeO S/2 ∑

数量Kg 186.41 33.49 181.34 78.20 33.49 2.46 1.54 516.93

成分%

36.06 6.48 35.08 15.13 6.48 0.48 0.30 100.00

注:渣中S以CaS形式存在,计算中的Ca全部按CaO形式处理,氧相对原子质量为16,S相对原子质量为32,相当已计入S/2,故表中再计入S/2。

炉渣性能校核

炉渣实际碱度=186.41/181.34=1.03

炉渣脱硫之硫的分配系数:L

s

=2×0.35/0.03=23.3

查阅炉渣相可知,该炉渣熔化温度为1300℃

黏度:1500℃时2.5 泊; 1400℃时4泊

由炉渣成分性能校核可以看出,这种炉渣是能够符合高炉冶炼要求

2.3 物料平衡计算

对于炼铁设计的工艺计算,直接还原度R

d

及氢的利用率等指标是已知的,它们在前

面已给出,这里还假定入炉碳量的1%与氢反应生成CH

4

。鼓风湿度

?=0.015。

2.3.1 鼓风量计算

每吨生铁的各项耗碳量是:燃料带入的可燃碳量C

f

C

f

=450×0.849+120×0.7803

=475.7kg

生铁渗碳 Cc=10×3.52=35.20kg

还原Mn消耗的碳量=4.6×12/55=1.00 Kg

还原Si消耗的碳量=7×24/28=6.00 Kg

还原P消耗的碳量=1×60/62=0.97 Kg

还原铁的消耗碳C

dfe

C

dfe

=951.9×0.45×12/56=91.79kg

直接还原共消耗碳=1.00+6.00+0.97+91.79=99.76 Kg

风口前燃烧碳量:

C

b

=475.7-35.2-99.76=340.74 kg

风口碳量所占比例为

C b /C

f

=340.74/475.7

=71.6%

鼓风含氧量(鼓风富氧率为w=1%,氧气浓度α=99%)

O

2b

=21%×(1-0.015)+0.5×0.015=21.44%

风口前燃烧碳素所需的氧量=(340.74/24) ×22.4=318.02 Kg 煤粉可供给氧量=120×(0.0592/32+0.004/36)×22.4=5.27 m3每吨生铁的鼓风质量

V风=(318.02-5.27)/0.2144=1458.72 m3

2.3.2 煤气组成及煤气量计算

(1) H

2

鼓风湿分分解的氢=1458.72×0.015=21.88 m3

焦炭挥发分及有机H

2

量=450×(0.0062+0.0054)×22.4/2=58.46 m3

煤粉分解出H

2

=120×(0.035+0.004×2/18) ×22.4/2=47.64 m3

入炉总H

2

量=21.88+58.46+47.64=127.98 m3

在喷吹条件下有40% H

2参加还原,因此参加还原的H

2

量为

127.98×0.4=51.19 m3

进入煤气的H

2

量=127.98-51.19=76.79 m3

(2)CO

2

由Fe2O3还原成FeO所生产的CO

2

=1950.3×0.762×22.4/160=208.05 m3

由MnO

2还原成MnO所生产的CO

2

=1950.3×0.01×22.4/87=5.02 m3

由FeO还原成Fe生成的CO

2

=951.9×0.55×22.4/56=209.42 m3

另外,H

2参加还原反应,相当于同体积的CO所参加的反应,所以CO

2

生成量中应

减去51.19 m3

间接还原生成CO

2

量=208.05+5.02+209.42-51.19=371.3 m3

焦炭挥发分CO

2

量=450×0.0017×22.4/44=0.39 m3

混合矿分解出CO

2

量=1950.3×0.0023×22.4/44=2.28 m3

煤气中的CO

2

总量

V

CO2

=371.3+0.39+2.28=374.57 m3

(3)CO

风口前燃烧碳生成的

CO=340.74×22.4/12=636.05m3

各元素直接还原生成的CO=99.76×22.4/12=186.22m3

焦炭挥发生成的CO=450×0.0056×22.4/28=2.02m3

间接还原消耗CO=371.3 m3

扣除间接还原消耗的CO后,进入煤气中的总量为

Vco=636.05+186.22+2.02-371.3=452.99 m3

(4N

2

鼓风带入的N

2

=1458.72×(1-0.015) ×0.79=1135.10 m3

焦碳带入的N 2=450×0.0063×22.4/28=2.27 m 3 煤粉带入的N 2=120×0.0109×22.4/28=1.05 m 3 煤气中N 2总量 V N2=1135.10+2.27+1.05=1138.42 m 3 将上列 计算结果列表,求出煤气(干)总量及煤气成分

表2.8 煤气成分表

煤气量与鼓风量的体积比为 V g/V b =2042.7/1458.72=1.40

1 m 3鼓风量=1.12g/ m 3 1 m 3煤粉量=1.337 Kg/ m 3

全部鼓风量=1458.72×1.2=1750.46Kg 全部煤气量=2042.8×1.337=2731.22Kg

(6)煤气中水量计算

还原生成的水=51.19×18/22.4=41.13 Kg 炉料带入的水分=450×0.07=31.5 Kg 进入煤气的水总量=41.13+31.5=72.63 Kg

2.3.3 考虑炉料的机械损失后实际入炉量

矿石量=1950.3×1.03=2008.8 Kg 焦碳量=450×1.068=480.6 Kg 硅石量=29.86×1.01=30.16 kg 因此,机械损失(含炉尘)量为 2519.56-2430.16-31.5=57.9 Kg

2.3.4 物料平衡表

项目 CO 2 CO H 2 N 2 Σ 体积/m 3 374.57 452.99 76.79 1138.42 2042.8 含量/%

18.34

22.17

3.76

55.73

100.00

表2.9 物料平衡表(%)

2.4 热平衡计算

2.4.1 热收入

1) 碳素氧化放热。

由C氧化成1 m3的CO

放出的热量=17887 KJ/ m3

2

由C氧化成1 m3的CO放出的热量=5245 KJ/ m3

碳素氧化热=371.3×17887+(452.99-2.02)×5245=9006781 KJ

2) 鼓风带入的热量

查表可知1100℃时[8],干空气热焓375.1kcal/m3,水蒸气热焓457.6kcal/m3,每吨生铁的风量为1458.72m3,喷吹煤粉用的压缩空气数量很少[大约15~30kg/kg(空气)]这里就不予考虑了,因而鼓风带入的物理热为:

=4.18×1458.72×[375.1×(1-0.015)+457.6×0.015]

Q

S2

=2294699 KJ

3) 成渣热(由硅矿及生矿带入的CaO、MgO计算)

炉料中以碳酸盐形态冲在的CaO和MgO,在高炉内生成钙铝硅酸盐时,每千克放热=270×4.184=1130 KJ

混合矿中CaO量=1950.3×0.015×56/44=37.23 Kg

熔剂中(CaO+MgO)=29.86×(0.553+0.0008)=16.54 Kg 成渣热=(37.23+16.54)×1130=60760 KJ

4)混合矿带入的物理热(用冷矿时无此项)。

5) H

2

氧化放热=2581×4.184×51.19=552400 KJ

以上各项收入总计为:

Q S =Q

S1

+Q

S2

+Q

S3

+Q

S4

=9006781+2294699+60760+552400

=11914640 KJ

2.4.2 热支出

(1)氧化物分解耗热

烧结矿中硅酸铁形态存在的FeO量为

FeO′

(硅)

=450×0.0076+120×0.0061=4.152 Kg 2.46 Kg入渣

剩余FeO′

(硅)

=4.152-2.46=1.69 Kg

以Fe

3O

4

形态存在的Feo量则为

FeO

(四氧化三铁)

=1950.3×0.00129=2.52 kg

以Fe

3O

4

形态存在的Fe

2

O

3

量为

Fe

2O

3磁)

=2.25×(160/72)=5 kg

因此,Fe

2O

3自由)

=1950.3×0.6942-5=1348.90 Kg

FeO

(硅酸铁)

分解热=1.69×4072=6881.68 KJ

Fe

3O

4

分解热=7.52×4796=35765 KJ

Fe

2O

3

分解热=1378.9×5149=7099956 KJ

因此,铁氧化物分解耗热

Q

d1.1

=7099956+6882+35765=7142603 KJ

其他氧化物分解耗热

Q

d1.2

=6621+1950.3×0.0001×1395+5×30267+0.9×35731=190386 KJ

则还原总耗热Q

d1

= Qd1.1+Qd1.2=7332989 KJ

(2)脱硫耗热 Q

d2

=2×1.52×6056=18410 KJ

(3)水分解耗热:

Q

d3

=31.35×10799=230557 KJ

(4)游离水蒸发耗热:

Q

=450×0.07×2594=81711 KJ

d4

=120×1255=150600 KJ

(5)喷吹煤粉分解耗热:Q

d5

(6)铁水带走热量:Q

=1000×1130=1130000 KJ

d6

=516.93×1715=886535 KJ

(7)炉渣带走热量:Q

d7

(8)煤气带走热

当炉顶温度为200℃时,查表可知各项气体组分的比热容 KJ/( m3·℃)

表2.10气体热焓(200℃)

CO2CO H2N2H2O

1.796 1.310 1.302 1.302 1.516

干煤气带走的热量:

=2017.7×200×1.3999=564915 KJ

Q

d8.1

煤气中水蒸气带走热量:

=50.72×22.4/18×1.516×100=9568 KJ

Q

d8.2

(9)炉尘带走的热量

Q

=63.31×200×0.837=10598 KJ

d8.3

因此,煤气带走热量为:

=564915+9568+10598=585081 KJ

Q

d8

10热损失

=

上列9支出总和为Φ

d

7332989+18410+230557+81711+150600+1130000+886535+585081=10415883 高炉热损失

Φ(失)=Φs-Φd=11914640-10415883=1498757

2.4.3 编制热平衡表

高炉本体设计

高炉炼铁综合计算及高炉本体设计

目录 前言3 摘要错误!未定义书签。 第一章高炉炼铁综合计算4 原始条件4 工艺计算6 配料计算6 物料平衡10 热平衡计算15 热平衡表18 m的高炉本体设计 19第二章有效容积12753 技术经济指标确定19 高炉内型尺寸计算19 炉衬材质及厚度22 炉底衬砖的设计22 炉腹、炉腰及炉身下部的砌筑22 炉身上部和炉喉砌筑23 高炉冷却 23 冷却的目的和意义24 高炉冷却介质 24 冷却设备 24 炉体钢结构25 炉体钢结构25 炉壳25 高炉基础25 结论错误!未定义书签。 谢辞26 参考文献 27

前言 高炉炼铁是以铁矿石(天然富矿、烧结矿、球团矿)为原料,以焦炭、煤粉、重油、天然气等为燃料和还原剂,以石灰石等为熔剂,在高炉内通过燃料燃烧、氧化物中铁元素的还原以及非铁氧化物造渣等一系列复杂的物理化学过程获得生铁。其主要副产品有高炉炉渣和高炉煤气。 为实现优质、低耗、高产和延长炉龄,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。现代化高炉已成为高度机械化、自动化和大型化的一种综合生产装置。高炉车间的设计也必须满足高炉生产的经济技术指标,以期达到最佳的生产效果。 摘要: 高炉炼铁的历史悠久,炼铁技术日臻成熟,是当今主要的炼铁方式。高炉作为炼铁工艺的主体设备,其结构的合理性对炼铁的工艺操作、生产技术指标以及自身的寿命都有十分重要的影响。根据攀枝花钒钛磁铁矿的高炉冶炼特点,通过进行配料计算和物料平衡计算,设计了1700m3高炉本体。设计过程除考虑通常的高炉设计方案外,还考虑了攀枝花钒钛磁铁矿多年高炉冶炼的一些生产实践经验。采用碳砖加高铝砖综合炉底、全碳砖炉缸;冷却设备的设计为水冷炉底、炉缸和炉底采用三段光面冷却壁、炉身采用镶砖冷却壁;高炉钢结构采用炉体框架式结构,最后采用CAD绘制出高炉本体图。 关键词: 高炉炼铁;综合计算,高炉本体设计

毕设任务书_车间设计

2014届应用化学制药方向《毕业设计任务书》 设计人: 设计题目: 设计目的:设计的目的是把选定的实验室的的小试工艺放大到规模化大生产的相应条件,在选择中设计出最合理、最经济的生产工艺流程,做出物料和能量衡算;根据产品的档次,筛选出合适的设备;按GMP规范要求设计车间工艺平面图;估算生产成本,最终使该制药企业得以按预定的设计期望顺利投入生产。 设计规范:《中华人民共和国药典(2010版)》、《药品注册管理办法(局令第28号)》、《医药工业洁净厂房设计规范(GB50457--2008)》、《药品生产质量管理规范(2010年版)》等。 设计内容: 1.处方设计 (1)查阅文献,详细列出药物的临床用途、理化性质、稳定性和生物学特性(天然药物罗列指标性成分的生物学特性)等信息(天然药物提取物还需列药物浸膏的性状信息)。说明这些信息对选择剂型的指导意义。 药物的理化性质信息至少包括:溶解度和pKa、粒径(天然药物浸膏的过筛目数)、晶型、吸湿性、脂水分配系数(天然药物浸膏列指标性成分的脂水分配系数)、pH-稳定性关系。 稳定性包括:药物(或天然药物的指标性成分)对光、湿、热的稳定性。 生物学特性包括:药物(或天然药物的指标性成分)在人体内的吸收、分布、代谢、排泄等。 (2)处方的筛选与优化 列出选定处方的处方全部组成及各原辅料的用量。处方组成应包括:原料药、全部辅料、包装材料或容器。 原料药、全部辅料、包装材料或容器应通过对比分析,选择固定的供应商。 说明处方筛选过程,并结合药物的临床用途、理化性质、稳定性和生物学特性及辅料的理化性质、稳定性和生物学特性等信息,说明所选定处方的合理性及存在的问题。 说明处方优化的过程及理由。 处方的筛选与优化的原则:根据临床用途及给药途径慎重选择,尽量优化处方,做到处方与生产工艺为最佳匹配、有利于设备选型与生产工艺验证。

年产量500万吨高炉炼铁车间设计毕业论文

年产量500万吨高炉炼铁车间设计毕业论文 目录 1 绪论 1.1 高炉炼铁的任务及工艺流程 (8) 1.2 高炉生产的特点及优点 (9) 1.3 设计原则和指导思想 (9) 2炼铁工艺计算 2.1 配料计算 (10) 2.2 物料平衡计算 (12) 2.3 热平衡计算 (15) 3高炉本体 3.1 高炉炉型 (19) 3.2 高炉炉衬 (20) 3.3 炉体冷却方式 (21) 3.4 冷却系统 (24) 3.5 高炉钢结构及高炉基础 (25) 4 炉顶装料制度 4.1 并罐式无钟炉顶装料设备 (29) 4.2 均压装置 (31) 4.3 探料尺 (32) 5 供料系统 5.1 矿槽、焦槽容积与数量的确定 (33) 5.2 筛分 (33) 5.3上料系统 (33) 5.4 贮矿槽下运输称量 (34)

6送风系统 6.1 鼓风机的选择 (35) 6.2 热风炉的结构 (35) 6.3 热风炉常用耐火材料 (37) 6.4 燃烧器及送风制度的选择 (37) 6.5 热风炉主要管道直径的选定 (37) 7.渣铁处理系统 7.1 风口平台及出铁场 (39) 7.2 炉前设备 (39) 7.3 炉渣处理 (41) 8 煤气除尘系统 8.1 除尘设备及原理 (44) 8.2 有关设备 (45) 8.3 重力除尘器 (45) 9 喷吹设备 9.1 设计为喷吹煤粉 (47) 9.2 高炉喷煤设备 (48) 10车间布置形式 10.1 车间布置 (50) 10.2 本设计车间平面布置形式 (50) 结束语 (52) 参考文献 (53)

1 绪论 1.1 高炉炼铁的任务及工艺流程 高炉炼铁的任务是用还原剂(焦炭、煤粉)在高温条件下将铁矿石或含铁原料还原成液态生铁的过程。高炉生产要求以最小的投入获得最大的产出,即做到高产、优质、低耗、有良好的经济效益。 高炉生产时借助高炉本体和其辅助设备来完成的。高炉本体是冶炼生铁的主体设备,它是由耐火材料砌筑的竖立式圆筒形炉体,最外层是由钢板制成的炉壳,在炉壳和耐火材料之间有冷却设备。要完成高炉炼铁生产,除高炉本体外,还必须有其他附属系统的配合,其生产工艺流程如图1-1所示。 图1-1 高炉炼铁生产工艺流程 1—矿石输送皮带机;2—称量漏斗;3—贮矿槽;4—焦炭输送皮带机;5—给料机; 6—焦粉输带机;7—焦粉仓;8—贮焦槽;9—电除尘器;10—调节阀;11—文氏管除尘器;12—净煤气放散管;13—下降管;14—重力除尘器;15—上料皮带机;16—焦炭称量漏斗;17—矿石称量漏斗;18—冷风管;19—烟道;20—蓄热室;21—热风主管;22—燃烧室; 23—煤气主管;24—混风管;25—烟筒。 (1)供料系统。包括贮矿槽、贮焦、称量与筛分等一系列设备,其任务是将

水泵及水泵站课程设计心得【模版】

水泵及水泵站课程设计 1基本设计资料 1.1 基本情况 本区地势较高,历年旱情比较严重,粮食产量低。根据规划,拟从附近河流扬水灌溉该区的10万亩农田,使之达到高产稳产的目的。 机电扬水灌区内主要作物有小麦、玉米、谷子和棉花等。灌区缺少灌溉制度,现参考附近老灌区的灌水经验,拟定出本灌区灌溉保证率为75%的灌溉制度。其设计灌水率如表1所示。 1.2地质及水文地质资料 根据可能选择的站址,布置6个钻孔。由地质柱状图明显的看出,3米以内表土主要是粘壤土,经土工试验,得到的有关物理指标为粘壤土的内摩擦角φ=35°,承载力为220kN/m2。 站址附近的地下水位多年平均在202.2m左右(系黄海高程)。 1.3气象资料 夏季多年平均旬最高气温34℃,春、秋季干旱少雨,年平均降雨量为524mm,降雨年内分配极不均匀,每年7、8、9月的降雨量占全年降雨量的80%以上。年平均无霜期为200天左右,多年平均最低气温为-8℃,最大冻土深度为o.44m。平均年地面温度为15℃,平均年日照时数为2600.4h。累积年平均辐射总量为527.4l kJ/cm,平均日照百分率为59 %。热量和积温都比较丰富,能满足一年两熟作物生长的需要。 1.4 水源 灌区南侧有一河流,是规划灌区的水源,其水量充沛。灌溉保证率为75 %时的河流月平均水位如表2所示。 达2l6.5m,夏季多年旬平均最高水温为20℃。 1.5其它 根据规划,为保证扬水后自流灌溉,出水池水位均不应低于234m。站址附近有8 kV高压电力线通过,已经有关部门批准,可供泵站使用。该地区劳动力充足,交通方便。除水泥、金属材料以及泵站建设中所需的特殊材料外,当地可提供砖、石、砂、瓦、木材等建筑用材。 根据机电设备的运行特性,每天按20h运行设计。

年产40000吨苯酐的车间工艺设计_毕业设计

第一章文献综述 1.1苯酐简述 苯酐,全称为邻苯二甲酸酐(Phthalic Anhydride),常温下为一种白色针状结晶(工业苯酐为白色片状晶体),易燃,在沸点以下易升华,有特殊轻微的刺激性气味。苯酐能引起人们呼吸器官的过敏性症状,苯酐的粉尘或蒸汽对皮肤、眼睛及呼吸道有刺激作用,特别对潮湿的组织刺激更大。苯酐主要用于生产PVC 增塑剂、不饱和聚酯、醇酸树脂以及染料、涂料、农药、医药和仪器添加剂、食用糖精等,是一种重要的有机化工原料。在PVC 生产中,增塑剂最大用量已超过50%,随着塑料工业的快速发展,使苯酐的需求随之增长,推动了国内外苯酐生产的快速发展。 最早的苯酐生产始于1872 年,当时德国BASF 公司以萘为原料,铬酸氧化生产苯酐,后又改用发烟硫酸氧化生产苯酐,但收率极低,仅有15%。自1917 年世界开始以氧化钒为催化剂,用萘生产苯酐后,苯酐的生产逐步走向工业化、规模化,并先后形成了萘法、邻法两种比较成熟的工艺[1]。 1.2苯酐的性质[2] 苯酐,常温下为一种白色针状结晶(工业苯酐为白色片状晶体),易燃,在沸点以下易升华,有特殊轻微的刺激性气味。 分子式C8H4O3,相对密度1.527(4.0℃),熔点131.6℃,沸点295℃(升华),闪点(开杯)151.7℃,燃点584℃。 微溶于热水和乙醚,溶于乙醇、苯和吡啶。 1.3苯酐的合成方法比较及选取 1.3.1合成苯酐的主要工艺路线 1.3.1.1 萘法[1] 1.3.1.1.1反应原理 萘与空气在催化剂作用下气相氧化生成苯酐。

+O O O 2 V 2O 5 CO 2O H 29/2++2 2 1.3.1.1.2 工艺流程 空气经净化、压缩预热后进入流化床反应器底部,喷入液体萘,萘汽化后与空气混合,通过流化状态的催化剂层,发生放热反应生成苯酐。反应器内装有列管冷却器,用水为热载体移出反应热。反应气体经三级旋风分离器,把气体携带的催化剂分离下来后,进入液体冷凝器,有40%-60%的粗苯酐以液态冷凝下来,气体再进入切换冷凝器( 又称热融箱)进一步分离粗苯酐,粗苯酐经预分解后进行精馏得到苯酐成品。尾气经洗涤后排放,洗涤液用水稀释后排放或送去进行催化焚烧。 1.3.1.2邻法 1.3.1.2.1 反应原理[1] 邻二甲苯与空气在催化剂作用下气相氧化生成苯酐。 CH 3 CH 3 +3O 2 3O O O H 225 + 1.3.1. 2.2 工艺流程 过滤、净化后的空气经过压缩,预热后与汽化的邻二甲苯混合进入固定床反应器进行放热反应,反应管外用循环的熔盐移出反应热并维持反应温度,熔盐所

2012年高炉炼铁毕业设计

(2012届) 专科毕业设计(论文)资料 湖南工业大学教务处

本次设计是根据娄底地区设计年产量为480万吨的高炉炼铁车间,该地区矿藏丰富,水资源充沛,交通发达,设计炼铁车间比较合理。炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸H 2 造外,绝大部分是作为炼钢原料。虽然现在高炉并不是以后炼钢的发展趋势,但高炉冶金是获得生铁的重要手段。它是以铁矿石是为原料,焦炭煤粉作为燃料和还原剂,在高炉内通过燃料燃烧,氧化物中铁元素的还原以及非铁氧化物造渣等一系列复杂的物理化学过程。随着冶金技术的不断发展,对其冶炼的关键设备——“高炉”。也有了越来越严格的要求。高效率、高质量、高寿命、低能耗、低污染——是本次设计所追求的目标。 在本次设计中翻阅了大量的参考文献,相当于又系统的学习了一遍高炉的有关知识,是对高炉发展的新的具体认识和总结,是本人三年专业知识学习的一个促进过程。本次设计中得到了王建丽老师的悉心指导和帮助,本人表示非常的感谢。然而,由于本人水平有限,设计中难免有不足和纰漏之处。望各位给予指正。

第一章绪论 (1) 1.1 高炉炼铁任务及工艺流程 (1) 1.2 高炉生产的特点及优点 (2) 1.3 设计原则和指导思想 (2) 1.4 厂址及建厂条件论证 (3) 第二章炼铁工艺计算 (4) 2.1 配料计算 (4) 2.2 根据铁平衡求铁矿石需要量 (6) 2.3 渣量及炉渣成分计算 (6) 2.4 物料平衡计算 (7) 2.5 热平衡计算 (8) 第三章高炉本体 (14) 3.1 高炉炉型 (14) 3.2 高炉炉衬 (16) 3.3 炉体冷却方式 (16) 3.4 冷却系统 (19) 3.5 高炉钢结构及高炉基础 (20) 第四章炉顶装料系统 (23) 4.1 串罐式无钟炉顶装料设备 (23) 4.2 串罐式无钟炉顶的特点 (25) 第五章供料系统 (26) 5.1 高炉供料系统 (26) 5.2 储矿(焦)槽及其主要设备 (27)

取水泵站毕业设计论文

摘要 泵站工程作为国民经济建设中的一部分,已在机电灌排、跨流域调水、城乡供水、电厂供水及输油系统等工程得到了广泛的应用。为促进工业生产的发展和人民生活水平的提高发挥了重要作用,而离心泵由于其扬程较高,流量范围广,在实际中更是获得了广泛的应用。 本设计所设计的为一取水泵站(有隔墩的进水池),其作用是排灌供水,将低处的水输送到高处,供灌溉和饮用,从而实现能量从机械能到势能的转化。本论文为某供水泵站的初步设计,主要根据泵站设计规范对水泵、泵房、进出水池、管路系统及其他配套设施进行了初步的设计,列出了离心泵站设计的一般设计方法及步骤。其中对水泵的选型、水泵的安装高程、泵房的设计和水锤等给出了详细的设计说明及计算步骤,并附有各部分结构示意图和泵站剖面图。从设计结果上来看本设计技术上可行,满足《泵站设计规范》的要求。 关键词:水泵选型水锤工作点安装高程 I

ABSTRACT Pumping station as part of the national economic construction has been widely used in irrigation and drainage in mechanical and electrical, water transfer, urban and rural water supply and oil systems. It plays an important role in promoting the development of industrial production and the improvement of living standards,and the centrifugal pump have gained wide application in practice for its higher head and bigger flow range. This design is designed for a water pumping station (with isolated pier into the pool ) , whose role is to drainage and irrigation water supply, will lower the water delivered to the height , for irrigation and drinking , in order to achieve the conversion of energy from mechanical energy to potential energy .This paper preliminary design for a water supply pump station, I basically according to pump station design specification of pump, pump room, in and out pool, pipeline system and other auxiliary facilities for a preliminary design, lists the centrifugal pump station design general design methods and steps. Among them on the pump selection, pump installation elevation, the design and water hammer pump are the details of the design specifications and calculation steps, attached parts structure schematic diagram and pumping stations section. Judging from the design results this design technically feasible, satisfy the requirements of “ Pumping station design of the standards”. Key words:Pump Selection water hammer pump operating point elevation for pump install

年产2000吨环氧树脂车间工艺设计毕业设计(论文)

目录 第1章绪论 (8) 1.1产品介绍 (8) 1.2、生产工艺 (8) 1.2.1一步法工艺 (11) 1.2.2二步法工艺 (11) 1.3、主要原材料 (12) 第2章初步工艺流程设计 (12) 2.1 工艺流程框图: (13) 2.2工艺流程: (14) 第3章物料衡算 (14) 3.1 计算条件与数据理: (15) 3.2 原料用量计算: (15) 3.3 缩合工段物料衡算: (16) 3.3.1 一次反应: (16) 3.3.3回收过量环氧氯丙烷: (18) 4.3.4 环氧树脂收集: (19) 第4章热量衡算 (19) 4.1对溶解釜进行热量衡算:............................ 错误!未定义书签。 4.2对反应釜进行热量衡算:............................ 错误!未定义书签。 4.2.1冷却阶段:.................................. 错误!未定义书签。 4.2.2反应阶段:.................................. 错误!未定义书签。 4.2.3.回流脱水阶段:.............................. 错误!未定义书签。 4.3对蒸发器进行热量衡算:........................ 错误!未定义书签。 4.3.1脱苯所需热量衡算:.......................... 错误!未定义书签。 4.3.2脱苯用冷凝器冷却水用量计算:................ 错误!未定义书签。 5.3 其它设备的选型................................... 错误!未定义书签。第5章设备选型....................................... 错误!未定义书签。 5.1溶解釜的设计...................................... 错误!未定义书签。 5.1.1选材:...................................... 错误!未定义书签。 5.1.2 确定参数:.................................. 错误!未定义书签。 5.1.3计算筒体厚度:.............................. 错误!未定义书签。 5.1.4计算封头厚度:.............................. 错误!未定义书签。 5.1.5校核筒体和封头的水压试验强度:.............. 错误!未定义书签。 5.1.6夹套的设计:................................ 错误!未定义书签。 5.1.7搅拌器的设计:.............................. 错误!未定义书签。 5.2反应釜的设计:................................ 错误!未定义书签。 5.2.1选材:...................................... 错误!未定义书签。 5.2.2确定参数:.................................. 错误!未定义书签。 5.2.3计算筒体厚度:.............................. 错误!未定义书签。

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计 摘要 人类获得生铁重要手段是通过高炉炼铁,高炉炼铁是钢铁冶金中的基础环节,同时也是最重要的环节。本设计任务是设计一个年生产能力达200万吨炼铁高炉车间。 本次设计的高炉1100m3。高炉炉型为五段式,高炉炉衬设计依据各个部分的工作条件的不同以及炉衬破损的机理,选择相应的耐火材料。热风炉采用的传统改进型内燃式热风炉,燃烧室为复合型断面,热风炉数量为3座,关于热风炉的设计部分还包括热风炉的各种设备以及相应的技术参数。上料系统采用的是可不间断上料,原料破损率低的皮带运输上料,炉顶装料设备是并罐式无钟炉顶。煤气处理系统的功能是降低高炉煤气粉尘含量,一般分为三个阶段--粗除尘、半精细除尘、精细除尘。煤粉喷吹系统采用了单管路串罐式直接喷吹工艺,这种工艺大大提高了喷吹效率,改善冶炼条件。本设计中还包括了其他一些环节的设计,例如渣铁处理系统。在设计的同时,广泛参考借鉴前辈的研究数据和国内外同级别炉容的高炉的实际生产经验,从理论和实践并举的角度出发,努力使本设计的高炉在技术操作上实现自动化和机械化,并把对环境的损害降到最低。 关键词:高炉,冶金计算,热风炉,鼓风机,煤气处理,渣铁处理

目录 前言 (1) 第一章高炉炼铁概况 (2) §1.1 高炉炼铁的发展概况 (2) §1.2 高炉及其附属设备 (2) §1.3 高炉炼铁设计的基本原则 (2) 第二章高炉炼铁综合计算 (4) §2.1 原始资料 (4) §2.2 配料计算 (5) §2.3 物料平衡计算 (8) §2.4 热平衡计算 (12) 第三章高炉炼铁车间设计 (17) §3.1 高炉座数及容积设计 (17) 第四章高炉本体设计 (18) §4.1 炉型设计 (18) §4.2 炉衬设计 (20) §4.3 高炉冷却设备 (21) §4.4 高炉冷却系统 (23) §4.5 高炉送风管路 (23) §4.6 高炉钢结构 (23) §4.7 高炉基础 (24) 第五章附属设备系统 (25) §5.1 供料系统 (25) §5.2 炉顶装料系统 (26) §5.3 送风系统 (27) §5.4 煤气处理系统 (30) §5.5 煤粉喷吹系统 (33) §5.6 渣铁处理系统 (34) 第六章高炉炼铁车间平面布置 (37)

高炉炼铁(附彩图)

本次将高炉炼铁工艺流程分为以下几部分: 一、 高炉炼铁工艺流程详解 二、 高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示: 附:高炉炉本体主要组成部分介绍以及高炉操作知识 料钾调控阙, -20 0V 炉身V -E001C ■ -14001C 炉腹, -leoor £ 小料牛 小料钟 出铁口 , 900-1000V " 京铁加利面 铁 炉 炉爆气首 工艺设备相见文库文档: 料风咀

注,各类校珀均产生暖声

:、高炉炼铁原理 炼铁过程实质上是将铁从其白然形态一一矿石等含铁化合物中还原出来的过程。 铁矿石、焦炭、石炎石炼铁方法主要有高炉法、直接 还原法、熔融还原法等,其原理是 矿石在特定的气氛中(还原物质 CO、H2、C;适宜温度等)通过物化 反应获取还原后的生铁。生铁除了 少部分用于铸造外,绝大部分是作 为炼钢原料。 高炉炼铁是现代炼铁的主要方 法,钢铁生产中的重要环节。这种 方法是由古代竖炉炼铁发展、展了 改进而成的。尽管世界各国研究发很多新的炼铁法,但由于高炉炼铁技 术经济指标良好,工艺简单, 生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锭矿等)按一定比例白高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降

高炉设计的基础概念

高炉炉型概述 高炉炉型的发展 高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。 高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。 近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。 /D即高径比缩小,大型随着炉容的扩大,炉型的变化出现以下特征:高炉的H U 高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,

固体制剂车间工艺设计毕业论文

固体制剂车间工艺设计毕业论文 1设计依据及设计围 1.1设计依据 1.1.1设计任务 课题名称:布洛芬剂车间工艺设计 生产规模:年产片剂(奥美沙坦酯)6.5亿片 1.1.2设计规和标准 1.药品生产质量管理规(2010年修订,国家食品药品监督管理局颁发) 2.药品生产质量管理规实施指南(2010年版,中国化学制药工业协会) 3.医药工业厂房洁净设计规,GB50457-2008 4.洁净厂房设计规,GB 50073-2001 5.建筑设计防火规,GB/T50016-2006(2006年版) 6.设计规和标准建筑设计防火规,GB/T50016-2006(2006年版) 7.爆炸和火灾危险环境电力装置设计规,GB50058-1992 8.工业企业设计卫生标准,GBZ 1-2010 1.2设计围 本设计参照《医药建筑项目初步设计容及深度的规定》、《车间装置设计》;及校本科生毕业小设计总体要求。 此次设计的围限于片剂车间围的工艺设计及对辅助设施、公用工程等提出设计条件,包括相关的生产设备、车间布置设计、带控制点的工艺流程设计,同时对空调通风、

照明、洁净设施、生产制度、生产方式、土建、环保等在的一些非工艺工程提出要求。

2设计原则及指导思想 2.1设计原则 2.1.1医药工业洁净厂房设计规 1.工艺布局应按生产流程的要求,做到布置合理,紧凑,有利生产操作,并能保证对生产过程进行有效的管理。 2.工艺布局要防止人流、物流之间的混杂和交叉污染,并符合下列基本要求: a分别设置人员和物料进出生产区的通道,极易造成污染的物料(如部分原辅料,生产中废弃物等),必要时可设置专用入口,洁净厂房的物料传递路线尽量要短。 b人员和物料进入洁净生产区应有各自的净化用室和设施。净化用室的设置要求与生产区的空气洁净度级别相适应。 c生产操作区应只设置必要的工艺设备和设施。用于生产、贮存的区域不得用作非本区域工作人员的通道。 3.在满足工艺条件的前提下,为了提高净化效果,节约能源,有空气洁净度要求按下列要求布置: a空气洁净度高的房间或区域宜布置在人员最少达到的地方,并宜靠近空调机房。 b不同空气洁净度级别的房间或区域宜按空气洁净度级别高低有及外布置。 c空气洁净度相同的房间或区域宜相对集中。 d不同空气洁净度房间之间相互联系应有防止污染措施,如气闸室或传递窗(柜)等。 4.洁净厂房应设置与生产规模相适应的原辅材料、半成品、成品存放区域,且尽可能靠近与其相联系的生产区域,减少运输过程中的混杂与污染。存放区域应安排试验区,

(整理)泵站课程设计

扬州大学能源与动力工程学院 泵站工程课程设计 业:热能与动力工程级:热动0901 号:0 姓名:陈会强 指导教师:陈松山 设计日期:一 目录 第一章综合说明 (3) 兴建缘由 (3)

工程位置、规模、作用 (3) 基本资料 (3) 第二章设计参数的确定 (4) 水位分析及特征净扬程的确定 (4) 设计流量的确定 (4) 工程设计等级 (4) 第三章机组选型 (4) 水泵选型 (4) 电机选型 (5) 第四章进水布置及进出水建筑物设计 (6) a) 进水池设计 (6) 前池设计 (7) 出水池设计 (7) 第五章站房设计 (9) 站房结构型式与布置 (9) 站房平面尺寸的确定 (9) 站房各部分高程的确定 (10) 第六章水泵工况点的校核 (11) 出水管道设计 (11) S值计算 (11) Q-H * 曲线 (11) ―Ini - 装置效率校核 (12) 第七章站房稳定分析 (12) 渗透稳定演算 (13) 泵房自重计算 (13) 泵室内水重 (13) 水平水压力 (14) 浮托力 (14) 渗透压力 (14) 土压力及墙后水压力 (14) 第一章综合说明 1.1 兴建缘由 为满足徐州市某县向大运河补水要求

1.2 工程位置、规模、作用 工程位置选在徐州市某县主要河流旁,规模为一般补水型泵站,主要是为了满足该县向大运河的补水 1.4 基本资料 一、地质条件 地面以下土质均为中粉质壤土,夹铁镒质结核,贯入击数26击,地基允许承 载力180KPa,内摩擦角24° ,凝聚力26KPa 二、水位特征值 泵站流量为:〃广/s 地面高程低于下游引水河道堤顶高程

高炉设计的基础概念

文献综述 高炉炉型概述 高炉炉型的发展 高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。 高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。 近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。随着炉容的扩大,炉型的变化出现以下特征:高炉的H U/D即高径比缩小,大型高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,炉喉直径d1与炉缸直径d之比在~之间。从而炉型能够充分发挥炉身的间接还原作用,使高炉节约焦炭,降低消耗,减少二氧化碳排放,能够使钢铁企业降低生产成本。 高炉炉龄及其影响因素

日产2500吨白水泥熟料生产线原料粉磨车间工艺设计毕业设计说明书(可编辑)

日产2500吨白水泥熟料生产线原料粉磨车间工艺设计 毕业设计说明书 2500t/d特种水泥熟料生产线原料粉磨车间工艺设计 摘要:拟设计一条日产2500t干法白水泥生产线,设计部分重点是生料粉磨配套系统工艺设计。在设计中参考了很多国内外比较先进的大型水泥厂,用了很多理论上的经验数据。其中主要设计内容有:1.配料计算、物料平衡计算、储库计算;2.全厂主机及辅机的选型;3.全厂工艺布置;4.窑磨配套系统工艺布置;5.计算机CAD绘图;6.撰写设计说明书。 白水泥与普通硅酸盐水泥在成分上的主要区别是白水泥中铁含量只有普通水泥的十分之一左右。设计采用石灰石与叶腊石两种原料。物料平衡计算时考虑到需控制铁含量,按照经验公式(石灰石饱和系数、硅酸率、铝氧率)计算并参考其他白水泥厂,得出恰当的率值为:KH0.9、IM3.85、SM18。全厂布局由水泥生产的流程决定。设计中采用立磨粉磨系统。立磨设备工艺性能优越,单机产量大,操作简便,能粉磨料粒度大、水分高的原料,对成品质量控制快捷,可实行智能化、自动化控制等优点。设计采用窑尾废气烘干物料,节约能源。总之原则上最大限度地提高产量和质量,降低热耗,符合环保要求,做到技术经济指标先进合理。 关键词:白水泥;干法生产线;回转窑;立磨 2500t / d special cement clinker production line and supporting system for kiln grinding process design

Abstract: Designing a 2500 t/d white cement production line, which was focused on the design part of the raw material grinding design supporting system. In the design, many more advanced large-scale cement home and abroad are referenced. Main content of the design were: 1. burden calculation, the material balance calculation, calculation of reservoir; 2. The whole plant selection of main and auxiliary machinery; 3. the entire plant process layout; 4. the system grinding process kiln Arrangement; 5. computer CAD drawing; 6.writing design specifications. The main difference in composition of white cement and ordinary Portland cement is the content of white cement in the iron was only one-tenth of the ordinary cement. Controlling the iron content was considered when calculated material balance. According to the experience formula KH, IM, SM and refer to other white cement plant, drawn the appropriate ratio value: KH 0.9, IM 3.85, SM 18. The layout of the entire plant was up to the cement production process.Vertical roller mill grinding system was used in key plant design. Vertical grinding process equipment performance was superiority, single output, easy to operate, grinding people particle size, moisture and high raw materials, finished product quality control fast and it can take advantages of intelligent and automated control.In principle, the aim of the design is increase production and quality, reduce heat consumption, be accord with environmental requirements. so, technical and economic indicators should

炼铁工艺设计原则

1?炼铁工艺设计原则:先进性经济性可靠性; 2?有效容积利用系数n v (t/m3 ? d):每立方米高炉有效容积每天生产的合格生铁量。 3?焦比K (Kg/t铁):冶炼每吨合格生铁所消耗的焦碳量,一般焦比400~600Kg/t,大炉取小值,小炉取大值。 4?冶炼强度I (t/m3 ? d):每立方米高炉有效容积每天燃烧的燃料量 一、车间规模的确定: 由全厂金属平衡决定,并考虑与原燃料资源条件相适应 1、高炉座数的确定:金属平衡和煤气平衡(一般以2~4座为宜)太少:检修时影响全厂铁 水和煤气供应 太多:运输紧张,生产率低 2、、高炉有效容积(Vu )的确定: 钟式高炉:大钟开启时大钟下沿距铁水中心线这段距离所对应的容积 无钟高炉:溜槽垂直位置下沿距铁水中心线这段距离所对应的容积 3、平面布置应遵循的原则:安全,方便 只有一个出铁场,中、小高炉:一列式、并列式 多铁口的大、中型高炉:岛式、半岛式 二、高炉本体设计 1、高炉炉型五段式炉型:炉喉、炉身、炉腰、炉腹、炉缸。适应了高炉内炉料流和煤气流的运动规律。 2、炉缸、炉底工作环境:高温、渣铁化学侵蚀、气一固一液一粉多相冲击。高炉长寿的关键 3、炉底、炉缸作用:储存渣铁、保证燃烧空间 4、死铁层作用:减少铁水环流速度(隔绝铁水流动对炉底的冲刷侵蚀)、(其相对固定 的热容)有利于炉底温度的均匀稳定 5、矮胖型的优点: a:有利于改善料柱的透气性,稳定炉料和煤气流的合理分布,并减轻炉料和煤气流对炉身和炉胶的冲刷。 b:炉缸容积较大,死铁层较深,可减少渣铁环流对炉底炉缸砖衬的冲刷。 c:风口数目增加有利于高沪的强化冶炼。 6、炉衬是由耐火砖、耐火材料组成的衬里高炉炉衬的作用: 减少高炉的热损失;构成高炉的工作空间;保护炉壳和其它金属结构免受热应力 和化学侵蚀; 炉衬材质: 1、陶瓷质耐材(主要由AI203组成) 特点:此类耐材具有耐磨,抗渣铁浸蚀能力强,但耐急冷急热性(热震)差,易剥落 的特点。 2、C质耐材:抗热震能力强,导热性高,抗渣铁能力强,但易氧化的特点,所以风口附近不能用。 高炉内衬设计: 1、炉底、炉缸的工作环境及破损原因:a:热应力破损和铁的渗透; b :高温渣铁环流破损;c:碱金属,重金属的沉积;d:操作和原料成分的波动 在以上破坏机理中,热应力破损和铁的渗透是最主要的破坏方式 考虑主要的破坏机理,设计时考虑: a加快热传递,降低温差△ t (美国“ VCAR ”为代表的热压小C砖结构) b?降低铁水渗透侵蚀(法国“ SAVOIC ”为代表的陶瓷杯结构) 2炉腹、炉腰及炉身中下部:

给水工程毕业设计指导(2014)泵站

毕业设计指导书 (管网部分) 设计步骤 一、设计准备 1、了解及明确设计任务书有关管网与泵站部分的各项内容与任务要求。 2、分析设计任务书中提供的设计资料。 3、生产设计在熟悉资料基础上,需深入现场实地踏勘,核实并补充有关资料和数据。 4、在教师指导下,拟定给水系统的设计方案,根据总体安排,制定较详细的设计计划。 二、设计计算 1.给水管网设计计算 1.1用水量计算 (1)确定用水量标准 居民最高日生活用水量按城市分区用水量标准计算,见表1。 工厂最高日生产用水量,由所给资料,按用地性质不同分别取不同标准进行计算,见表1。 浇洒道路、绿地用水量由园区的中水系统供应,不在自来水系统内考虑。 此外,未预见水量按总用水量的20%考虑。 表1 设计采用的各类用水标准(高日) (2)最高日用水量

最高日用水量包括综合用水(居民生活+公建用水)、工业生产用水、浇洒道路和绿化用水、未预见用水和管网漏失水量。 该园区在天津,总人口XX 万人,查《室外给水设计规范》可知该城市位于X 分区,为特大城市。居民生活用水定额采用上限L/cap.d 1)最高日居民生活用水量Q 1 : d m f N b Q /3111= ??= Q 1―—城市最高日居民生活用水,m 3/d ; b 1――城市最高日生活用水量定额,由表1取值,L/cap.d ; N 1――城市设计年限内计划用水人口数; f ――城市自来水普及率,采用f=100% 由表1,最高日居民生活用水为: d m b Q /170000311= ??= 2)公共建筑用水Q 2 : d m N b Q /3222= ?= 3)工业用水量为: d m N b N b Q /344333= ?+?= 4) 未预见水量和管网漏失水量按最高日用水量的20%计算: d m Q Q Q Q /)(20.033214=++?= 最高日设计流量Q d : d m Q Q Q Q Q Q Q Q d /)(20.1)(33214321=++?=+++= (3)最高日最高时用水量。 取区内综合生活用水(生活与公建)时变化系数K h =1.23。设其24小时用水量变化如下表2 表2 高日综合生活用水量变化表 %

相关文档
相关文档 最新文档