文档库 最新最全的文档下载
当前位置:文档库 › 回归直线方程的推导

回归直线方程的推导

回归直线方程的推导
回归直线方程的推导

回归直线方程的推导

山东 王加祥 范玉峰

设x 与y 是具有线性相关关系的两个变量,且相应于样本的一组观测值的n 个点的坐标分别是:112233()()()()n n x y x y x y x y ,,

,,,,,,,下面给出回归方程的推导. 设所求的回归方程为i i y bx a =+,(123)i n =,,,,.显然,上面的各个偏差的符号有正、

有负,如果将他们相加会相互抵消一部分,因此他们的和不能代表n 个点与回归直线的整体上的接近程度,因而采用n 个偏差的平方和Q 来表示n 个点与相应直线(回归直线)在整体上的接近程度,

即2

222222331

1

()()()()()n

n

i i i n n i i i Q y y y bx a y bx a y bx a y bx a ===-=--+--+--+

+--∑∑.

求出当Q 取最小值时的a b ,的值,就求出了回归方程.

一、先证明两个在变形中用到的公式 公式(一)2

2

21

1

()n

n

i i i i x x x nx ==-=-∑∑,其中12n

x x x x n

++

+=

证明:2222121

()()()()n

i n i x x x x x x x x =-=-+-+

+-∑∵

2

22

2

1212()

2n n x x x x x x nx

nx n

++

+=+++-+

2

2

2

222222212

1

2

1

()2()n

n

n

i i x x x nx nx x x x x nx ==++

+-+=++

+=-∑

2

2

21

1

()n

n

i i i i x x x nx ==-=-∑∑∴.

公式(二)1

1

()()n n

i i i i i i x x y y x y nx y ==--=-∑∑

证明:11221

()()()()()()()()n

i i n n i x x y y x x y y x x y y x x y y =--=--+--+

+--∑∵

11221122()()n n n n x y x y x y x y y x x y y x x y y x nxy =++

+-++++

+++

12121[()()]n

i i n n i x y x x x y y y y x nx y ==-++

++++++∑ 1

2121

()

()n

n n i i i x x x y y y x y n y x nx y n n

=++

+++

+??

=-+

+????

∑ 11

2n n

i i i i i i x y nx y nx y x y nx y ===-+=-∑∑,

1

1

()()n

n

i i i i i i x x y y x y nx y ==--=-∑∑∴.

二、推导:将Q 的表达式的各项先展开,再合并、变形 2222112233()()()()n n Q y bx a y bx a y bx a y bx a =--+--+--+

+--

22

22

121122()[2()2()]n y y y y b x a y b x a =++

+-+++

展开 2

2

22

1

1

1

1

1

222n

n

n

n

n

i i i i i

i i i i i i y b x y a y b

x

ab x na ======--+++∑∑∑∑∑合并同类项

222211

11122n

n

i

i n n n

i i i i i i i i i y x na na b b x b x y y n

n =====?? ? ?=--+-+ ? ???

∑∑∑∑∑以a b ,的次数为标准整理 22

22

1

11

2()2n

n n

i

i i i i i i na na y bx b

x

b x y y ====--+-+∑∑∑转化为平均数x y ,

2

2

2

2

2

1

11[()]()2n

n

n

i i i i i i i n a y bx n y bx b

x

b x y y ====----+-+∑∑∑配方法

2

2

22222

1

1

1

[()]22n

n

n

i i i i i i i n a y bx n y nbx y nb x b x b x y y ====---+-+-+∑∑∑展开 2

2

2

2

2

21

1

1[()]()2()()

n

n n

i i i i i i i n a y bx b x nx b x y nx y y n y ====--+---++∑∑∑整理

22

2

2

1

1

1

[()]()2()()()n

n

n

i

i i i i i i n a y bx b

x

x b x x y y y y ====--+----+-∑∑∑用公式(一)、(二)

变形

2221

21

11()()[()]()()()n

i i n n

i i i n

i i i i x x y y n a y bx x x b y y x x ====??

--????=--+--+-??-????

∑∑∑∑配方

2

22

12212211

111()()()()()()()()()n

n

i i i i n n i i i i n n i i i i i x x y y x x y y n a y bx x x b y y x x x x ======????----??????????=--+---+-????--????

∑∑∑∑∑

∑配方法

在上式中,共有四项,后两项与a b ,无关,为常数;前两项是两个非负数的和,因此

要使得Q 取得最小值,当且仅当前两项的值都为0.所以a y bx =-,1

2

1

()()

()

n

i

i i n

i

i x

x y y b x

x ==---

-∑∑或

1

2

2

1

n

i i

i n

i

i x y

nx y b x

nx

==-=

-∑∑用公式(一)、(二)变形得

三、总结规律

上述推导过程是围绕着待定参数a b ,进行的,只含有i i x y ,的部分是常数或系数,用到 的方法有:①配方法,有两次配方,分别是a 的二次三项式和b 的二次三项式;②变形时,用到公式(一)、(二)和整体思想;③用平方的非负性求最小值.④实际计算时,通常是分

步计算:先求出x y ,,

再分别计算1

()()n i i i x x y y =--∑,2

1

()n i i x x =-∑或1

n i i i x y nx y =-∑,2

21

n

i i x nx =-∑的值,最后就可以计算出a b ,的值.

线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n = +++???+ (2) 求变量y 的平均值,既1231()n y y y y y n =+++???+ (3) 求变量x 的系数?b ,有两个方法 法112 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=??-+-++-?? (需理解并会代入数据) 法21 2 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?=??+++-??(这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1(0123) 1.54x = +++= (2)求变量y 的平均值,既1(1357)44 y =+++= (3)求变量x 的系数?b ,有两个方法

法1?b = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=??-+-+-+-??--+--+--+--==??-+-+-+-?? 法2?b =[][]11222222222212...011325374 1.5457 ...0123n n n x y x y x y nx y x x x nx ++-??+?+?+?-??==????+++-+++???? (4)求常数?a ,既525??4 1.577a y bx =-=-?= 最后写出写出回归方程525???77 y bx a x =+=+ 第二公式:独立性检验 两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。数 据b 具有两个属性1x ,2y 。数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。解题步骤如下 第一步:提出假设检验问题 (一般假设两个变量不相关) 第二步:列出上述表格 第三步:计算检验的指标 2 2 ()()()()()n ad bc K a b c d a c b d -=++++ 第四步:查表得出结论 例如你计算出2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50 例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50 上述结论都是概率性总结。切记事实结论。只是大概行描述。具体发生情况要和实际联系!! !!

线性回归方程公式证明

112233^ ^^^2 211(,),(,),(,)(,)1,2,3),()()n n i i i i i i n i i i i i i n x y x y x y x y y bx a x i n y bx a y y y a b Q y y bx a y ===+==+-=-=+-∑L L 设有对观察值,两变量符合线生回归设其回归方程为:,把自变量的某一观测值代(入入回归方程得:,此值与实际观测值存在一个差值,此差值称为剩余或误差。现要决定取何值时,才能够使剩余的平方和有最小值,即求11 2 21122 221 1111 22111:,()[()()()]()()()2()()2()()2()() ()2n n n i i i i n n i i i i i i n n n i i i i i i n n i i i i i n i i x x y y n n Q bx a y a bx y y y b x x n a bx y y y b x x a bx y y y a bx y x x b x x y y b x x =============+-=+---+-=+-+-+--+---+-----=--∑∑∑∑∑∑∑∑∑∑∑的最小值知又22 111 122211()()()()()()()()n n i i i i i n n i i i i i i n n i i i i b x x y y n a bx y y y b x x y y x y nx y b x x x n x a y bx ======--++-+----==--=-∑∑∑∑∑∑此式为关于的一元二次方程,当

线性回归方程高考题

线性回归方程高考题 1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据: 3 4 5 6 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)

2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下: 使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0 若有数据知y对x呈线性相关关系.求: (1) 填出下图表并求出线性回归方程=bx+a的回归系数,; 序号x y xy x2 1 2 2.2 2 3 3.8 3 4 5.5 4 5 6.5 5 6 7.0 ∑ (2) 估计使用10年时,维修费用是多少.

3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注:

4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表: 3 4 5 6 7 8 9 66 69 73 81 89 90 91 已知:. (Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程. 5、某种产品的广告费用支出与销售额之间有如下的对应数据: 2 4 5 6 8 30 40 60 50 70 (1)画出散点图: (2)求回归直线方程; (3)据此估计广告费用为10时,销售收入的值.

线性回归方程题型

线性回归方程 1.【2014高考全国2第19题】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表: (Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为: ()() () 1 2 1 n i i i n i i t t y y b t t ∧ = = -- = - ∑ ∑ ,? ?a y bt =- 2.【2016年全国3】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1–7分别对应年份2008–2014. (Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;

(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据: 7 1 9.32i i y ==∑,7 1 40.17i i i t y ==∑ 0.55=,≈2.646. 参考公式:()() n i i t t y y r --= ∑ 回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为: 1 2 1 ()() ()n i i i n i i t t y y b t t ==--= -∑∑ ,=.a y bt - 3.【2015全国1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i = 数据作了初步处理,得到下面的散点图及一些统计量的值.

多元线性回归模型公式().docx

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量 y 受 k 个自变量 x 1, x 2 ,..., x k 的影响,其 n 组观测值为( y a , x 1 a , x 2 a ,..., x ka ), a 1,2,..., n 。那么,多元线性回归模型的结构形式为: y a 0 1 x 1a 2 x 2 a ... k x ka a () 式中: 0 , 1 ,..., k 为待定参数; a 为随机变量。 如果 b 0 , b 1 ,..., b k 分别为 0 , 1 , 2 ..., k 的拟合值,则回归方程为 ?= b 0 b 1x 1 b 2 x 2 ... b k x k () 式中: b 0 为常数; b 1, b 2 ,..., b k 称为偏回归系数。 偏回归系数 b i ( i 1,2,..., k )的意义是,当其他自变量 x j ( j i )都固定时,自变量 x i 每变 化一个单位而使因变量 y 平均改变的数值。 根据最小二乘法原理, i ( i 0,1,2,..., k )的估计值 b i ( i 0,1,2,..., k )应该使 n 2 n 2 Q y a y a y a b 0 b 1 x 1a b 2 x 2a ... b k x ka min () a 1 a 1 有求极值的必要条件得 Q n 2 y a y a b 0 a 1 () Q n 2 y a y a x ja 0( j 1,2,..., k) b j a 1 将方程组()式展开整理后得:

线性回归方程

线性 回归 方程 统计总课时第18课时分课题线性回归方程分课时第1 课时 教学目标了解变量之间的两种关系,了解最小平方法〔最小二乘法〕的思想,会用公式求解回归系数. 重点难点最小平方法的思想,线性回归方程的求解. 线性回归方程 某小卖部为了了解热茶销量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表: 气温/C ?26 18 13 10 4 -1 杯数20 24 34 38 50 64假设某天的气温是C? -5,那么你能根据这些数据预测这天小卖部卖出热茶的杯数吗? 新课教学 1.变量之间的两类关系: 〔1〕函数关系: 〔2〕相关关系: 2.线性回归方程: 〔1〕散点图: 〔2〕最小平方法〔最小二乘法〕:〔3〕线性相关关系: 〔4〕线性回归方程、回归直线:3.公式: [来源:https://www.wendangku.net/doc/dc688135.html,] 4.求线性回归方程的一般步骤: x y O

例题剖析 例1 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否具有线性相关关系,如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由.[来源:学&科&网] 机动车辆数x/千辆95 110 112 120 129 135 150 180 交通事故数y/千件 6.2 7.5 7.7 8.5 8.7 9.8 10.2 13 [来源:1ZXXK]

思考:如图是1991年到2000年北京地区年平均气温〔单位:C 〕与年降雨量〔单位:mm 〕的散点图,根据此图能求出它的回归直线方程吗?如果能,此时求得的回归直线方程有意义吗? 巩固练习 1x /百万元 [来 源:Z+xx+https://www.wendangku.net/doc/dc688135.html,] 2 4 5 6 8 y /百万元 30 40 60 50 70 〔1〕画出散点图; 〔2〕求线性回归方程. 课堂小结 了解变量之间的两种关系,了解最小平方法的思想,会用公式求解回归系数. x y 100 200 300 400 500 600 12.40 12.60 12.80 13.00

多元线性回归的计算方法

多元线性回归的计算方法 摘要 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭 消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。 多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由 于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。 但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下: Zy=β1Zx1+β2Zx2+…+βkZxk 注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。 多元线性回归模型的建立 多元线性回归模型的一般形式为 Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n 其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数 (regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为 E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki βj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型

线性回归方程

2.4线性回归方程 重难点:散点图的画法,回归直线方程的求解方法,回归直线方程在现实生活与生产中的应. 考纲要求:①会作两个有关联变量数据的散点图,会利用散点图认识变量间的相关关系. ②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 经典例题:10.有10名同学高一(x)和高二(y)的数学成绩如下: ⑴画出散点图; ⑵求y对x的回归方程。 当堂练习: 1.下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是() . .

. . A . B . C . D . 2.线性回归方程表示的直线必经过的一个定点是( ) A . B . C . D . 3.设有一个直线回归方程为 ,则变量x 增加一个单位时 ( ) A . y 平均增加 1.5 个单位 B. y 平均增加 2 个单位 C . y 平均减少 1.5 个单位 D. y 平均减少 2 个单位 4.对于给定的两个变量的统计数据,下列说确的是( ) A .都可以分析出两个变量的关系 B .都可以用一条直线近似地表示两者的关系 C .都可以作出散点图 D. 都可以用确定的表达式表示两者的关系 5.对于两个变量之间的相关系数,下列说法中正确的是( ) A .|r|越大,相关程度越大 B .|r|,|r|越大,相关程度越小,|r|越小,相关程度越大 杯 数 24 34 39 51 63

C.|r|1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小D.以上说法都不对 6.“吸烟有害健康”,那么吸烟与健康之间存在什么关系() A.正相关B.负相关C.无相关D.不确定 7.下列两个变量之间的关系不是函数关系的是() A.角度与它的余弦值B.正方形的边长与面积 C.正n边形的边数和顶点角度之和D.人的年龄与身高 8.对于回归分析,下列说法错误的是() A.变量间的关系若是非确定性关系,则因变量不能由自变量唯一确定 B.线性相关系数可正可负 C.如果,则说明x与y之间完全线性相关 D.样本相关系数 9.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立的做10次和15V次试验,并且利用线性回归方法,求得回归直线分布为和,已知 . .

多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量 y 受k 个自变量x 1,x 2,...,x k 的影响,其n 组观测值为(y a ,x 1a ,x 2a ,...,x ka ), a 1,.2..,n 。那么,多元线性回归模型的结构形式为: y a 1x 1a 2x 2a ... k x ka a (3.2.11) 式中: 0,1 ,..., k 为待定参数; a 为随机变量。 如果b 0,b 1,...,b k 分别为 0,1, 2 ... , k 的拟合值,则回归方程为 ?=b 0 b 1x 1 b 2x 2 ... b k x k (3.2.12) 式中: b 0为常数; b 1,b 2,...,b k 称为偏回归系数。 偏回归系数b i (i1,2,...,k )的意义是,当其他自变量 x j (j i )都固定时,自变量 x i 每 变化一个单位而使因变 量 y 平均改变的数值。 根据最小二乘法原理, i (i 0,1,2,...,k )的估计值b i (i 0,1,2,...,k )应该使 n 2 n 2 Q y a y a y a b 0 b1x1a b2x2a ... bkxk a min (3.2.13) a 1 a1 有求极值的必要条件得 Q n 2 y a y a 0 b 0 a 1 (3.2.14) Q n 2 y a yaxja 0(j 1,2,...,k) b j a1 将方程组(3.2.14)式展开整理后得:

线性回归方程和卡方的求法

高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n = +++???+ (2) 求变量y 的平均值,既1231()n y y y y y n =+++???+ (3) 求变量x 的系数?b ,有两个方法 法112 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=??-+-++-?? (需理解并会代入数据) 法21 2 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?=??+++-??(这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1(0123) 1.54x = +++= (2)求变量y 的平均值,既1(1357)44 y =+++= (3)求变量x 的系数?b ,有两个方法

法1?b = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=??-+-+-+-??--+--+--+--==??-+-+-+-?? 法2?b =[][]11222222222212...011325374 1.5457 ...0123n n n x y x y x y nx y x x x nx ++-??+?+?+?-??==????+++-+++???? (4)求常数?a ,既525??4 1.577a y bx =-=-?= 最后写出写出回归方程525???77y bx a x =+=+ 第二公式:独立性检验 两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。数 据b 具有两个属性1x ,2y 。数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。解题步骤如下 第一步:提出假设检验问题 (一般假设两个变量不相关) 第二步:列出上述表格 第三步:计算检验的指标 22 ()()()()()n ad bc K a b c d a c b d -=++++ 2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50 例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50 上述结论都是概率性总结。切记事实结论。只是大概行描述。具体发生情况要和实际联 系!!!!

(完整版)线性回归方程-刷题训练

线性回归方程同步练习题(文科) 1.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值, 计算,得∑8 i =1 x i =52,∑8 i =1y i =228,∑8 i =1x 2 i =478,∑8 i =1x i y i =1849,则其线性回归方程为( A ) A.y ^ =11.47+2.62x B.y ^ =-11.47+2.62x C.y ^ =2.62+11.47x D.y ^ =11.47-2.62x 解析 利用回归系数公式计算可得a =11.47,b =2.62,故y ^ =11.47+2.62x . 2.已知x 与y 之间的一组数据: x 0 1 2 3 y 1 3 5 7 则y 对x 的线性回归方程y =bx +A. (2,2) B. (1.5,3.5) C. (1,2) D. (1.5,4) 3. 设回归直线方程为y =2-1.5x ,若变量x 增加1个单位,则( C ). A. y 平均增加1.5个单位 B. y 平均增加2个单位 C. y 平均减少1.5个单位 D. y 平均减少2个单位 4.已知回归方程为y ?=0.50x-0.81,则x=25时,y ?的估计值为 .答案 11.69 5.下表是某厂1~4月份用水量月份x 1 2 3 4 用水量y 4.5 4 3 2.5 由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y ^ =-0.7x +a ,则a 等于______. 解析 x =2.5,y =3.5,∵回归直线方程过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25. 6.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x (℃) 17 13 8 2 月销售量y (件) 24 33 40 55 由表中数据算出线性回归方程y ^ =bx +a 中的b ≈-2,气象部门预测下个月的平均气温约为6℃,据此估计, 该商场下个月毛衣的销售量约为________件. 答案 46解析 由所提供数据可计算得出x =10,y =38,又b ≈-2代入公式a =y -b x 可得a =58, 即线性回归方程y ^ =-2x +58,将x =6代入可得. 7.正常情况下,年龄在18岁到38岁的人们,体重y (kg )依身高x (cm )的回归方程为y=0.72x-58.5。 张红红同学不胖不瘦,身高1米78,他的体重应在 69.66 kg 左右。 8.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是 . 答案 a,c,b 9.三点(3,10),(7,20),(11,24)的回归方程是 .答案 y ?=1.75x+5.75 10.使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0

高中数学线性回归方程讲解练习题

教学步骤及教学内容 线性回归方程 (参考公式:b= ∑ i=1 n x i y i-n x y ∑ i=1 n x2i-n x2 ,a=y-b x) 1.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为() A.y ^ =x+1 B.y ^ =x+2 C.y ^ =2x+1 D.y ^ =x-1 2.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R2的值分别约为0.96和0.85,则拟合效果好的模型是() A.甲B.乙C.甲、乙相同D.不确定 3.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得∑ 8 i=1 x i=52,∑ 8 i=1 y i=228,∑ 8 i=1 x2i=478,∑ 8 i=1 x i y i=1849,则其线性回归方程为() A.y ^ =11.47+2.62x B.y ^ =-11.47+2.62x C.y ^ =2.62+11.47x D.y ^ =11.47-2.62x 4.下表是某厂1~4月份用水量(单位:百吨)的一组数据: 月份x 123 4 用水量y 4.543 2.5 由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y ^ =-0.7x+a,则a等于______. 5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x (个) 2 3 4 5 加工的时间y (小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y 关于x 的线性回归方程y ^ =bx +a ,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时? 作业 布置 家长 意见 家长签名: 2013 年_月 _日 (第_ 次) 审阅人:

用最小二乘法求线性回归方程

最小二乘法主要用来求解两个具有线性相关关系的变量的回归方程,该方法适用于求解与线性回归方程相关的问题,如求解回归直线方程,并应用其分析预报变量的取值等.破解此类问题的关键点如下: ①析数据,分析相关数据,求得相关系数r,或利用散点图判断两变量之间是否存在线性相关关系,若呈非线性相关关系,则需要通过变量的变换转化构造线性相关关系. ②建模型.根据题意确定两个变量,结合数据分析的结果建立回归模型. ③求参数.利用回归直线y=bx+a的斜率和截距的最小二乘估计公式,求出b,a,的值.从而确定线性回归方程. ④求估值.将已知的解释变量的值代入线性回归方程y=bx+a中,即可求得y的预测值. 注意:回归直线方程的求解与应用中要注意两个方面:一是求解回归直线方程时,利用样本点的中心(x,y)必在回归直线上求解相关参数的值;二是回归直线方程的应用,利用回归直线方程求出的数值应是一个估计值,不是真实值. 经典例题: 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为1,2.,……,17)建立模型①:y=+;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:y=99+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠并说明理由. 思路分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测. 解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–+×19=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+×9=(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利

求回归直线方程(教学知识)

“求直线的回归方程”的教学设计 一.教学内容分析 本节课的主要内容为用最小二乘法求线性回归方程。所以,在内容重点的侧重上,本节课与上节课有较大的区别:上节课侧重于估算方法设计,在不同的数据处理过程中,体会回归直线作为变量相关关系代表这一概念特征;本节课侧重于估算方法评价与实际应用,在评价中使学生体会核心思想,理解核心概念。 考虑到本节课的教学侧重点与新课程标准的要求,对线性回归方程系数的计算公式,可直接给出。由于公式的复杂性,一方面,既要通过教学设计合理体现知识发生过程,不搞“割裂”;另一方面,要充分利用计算机或计算器,简化繁琐的求解系数过程,简化过于形式化的证明说理过程。 基于上述内容分析,确定本节课的教学重点为知道最小二乘法思想,并能根据给出的线性回归方程的系数公式建立线性回归方程。 二.教学目标分析 本节课要求学生了解最小二乘法思想,掌握根据给出的线性回归方程系数公式建立线性回归方程,理解线性回归方程概念和回归思想,在以上过程中体会随机思想: 1.能用数学符号刻画出“从整体上看,各点与此直线的点的偏差”的表达方式; 2.知道最小二乘法的思想,了解其公式的推导过程; 3.能结合具体案例,根据回归方程系数公式建立回归方程; 4.利用回归方程预测,体现用“确定关系研究相关关系”的回归思想; 三.重点,难点分析 在经历用不同估算方法描述两个变量线性相关的过程后,在学生现有知识能力范围内,如何选择一个最优方法,成为知识发展的逻辑必然。知识发展的要求与学生能力和经验的欠缺成为本节课将会遇到的最大矛盾。在教学中,要防止两种倾向:一是直接套用回归系数公式求解回归方程而回避说理过程;二是过多纠缠于数学刻画过程,甚至在课堂内花大量时间对回归系数公式进行证明说理。这两种倾向,都脱离了实际情况,前者忽略了“最小二乘法思想”,迷失了本节课的教学目标;后者人为拔高教材要求,脱离了本节课教学要求。 所以,本节课的教学难点是:如何通过数学方法刻画“从整体上看,各点与此直线的距离最小”并在此过程中了解最小二乘法思想。通过“降次举特例说明,进行合情推理”是学生突破此难点的一个方法。 四.教学过程设计 1.课题引入 问题1:(投影上节课探究结果)如何评价这些“直线”的优劣?理由呢? 问题2:能否从几何直观角度用文字语言叙述你的理由?

求回归直线方程之欧阳家百创编

“求直线的回归方程”的教学设计 欧阳家百(2021.03.07) 一.教学内容分析 本节课的主要内容为用最小二乘法求线性回归方程。所以,在内容重点的侧重上,本节课与上节课有较大的区别:上节课侧重于估算方法设计,在不同的数据处理过程中,体会回归直线作为变量相关关系代表这一概念特征;本节课侧重于估算方法评价与实际应用,在评价中使学生体会核心思想,理解核心概念。 考虑到本节课的教学侧重点与新课程标准的要求,对线性回归方程系数的计算公式,可直接给出。由于公式的复杂性,一方面,既要通过教学设计合理体现知识发生过程,不搞“割裂”;另一方面,要充分利用计算机或计算器,简化繁琐的求解系数过程,简化过于形式化的证明说理过程。 基于上述内容分析,确定本节课的教学重点为知道最小二乘法思想,并能根据给出的线性回归方程的系数公式建立线性回归方程。 二.教学目标分析 本节课要求学生了解最小二乘法思想,掌握根据给出的线性回归方程系数公式建立线性回归方程,理解线性回归方程概念和回归思想,在以上过程中体会随机思想: 1.能用数学符号刻画出“从整体上看,各点与此直线的点的偏差”的表达方式; 2.知道最小二乘法的思想,了解其公式的推导过程; 3.能结合具体案例,根据回归方程系数公式建立回归方程; 4.利用回归方程预测,体现用“确定关系研究相关关系”的回归思想; 三.重点,难点分析 在经历用不同估算方法描述两个变量线性相关的过程后,在学生现有知识能力范围内,如何选择一个最优方法,成为知识发展的逻辑必然。知识发展的要求与学生能力和经验的欠缺成为本节课将会遇到的最大矛盾。在教学中,要防止两种倾向:一是直接套用回归系数公式求解回归方程而回避说理过程;二是过多纠缠于数学刻画过程,甚至在课堂内花大量时间对回归系数公式进行证明说理。这两种倾向,都脱离了实际情况,前者忽略了“最小二乘法思想”,迷失了本节课的教学目标;后者人为拔高教材要求,脱离了本节课教学要求。 所以,本节课的教学难点是:如何通过数学方法刻画“从整体上看,各点与此直线的距离最小”并在此过程中了解最小二乘法思想。通过“降次举特例说明,进行合情推理”是学生突破此难点的一个方法。 四.教学过程设计 1.课题引入 问题1:(投影上节课探究结果)如何评价这些“直线”的优劣?理由呢? 问题2:能否从几何直观角度用文字语言叙述你的理由?

一个求回归直线方程的简单方法

一个求回归直线方程的简单方法 科技信息高校理科研究 一 个求回归直线方程明简单方法 华北电力大学柳燕 [摘要]求回归直线方程是统计学中经常用到的一个统计方法,大量的数据处理也可以有一些简单的方法,例如利用常用的数学记 号,经过推导与整理,便得到了简洁易用的公式. [关键词]统计分析回归直线方程相关性 由于自然界中的许多事物间都包含着某种相互依存的内部规律, 这种联系反映到数学上,就是变量间的关系.变量的关系分为两大类: 有确定性关系和非确定性关系.数学的任务之一就是从数量上来解释 和分析这些关系.回归分析就是一种处理变量与变量间相互关系的数 学方法,也是数据处理中最为常用的一种统计方法.它是用数学方法从 大量观测数据中找出变量间近似关系的定量表达式,并由此利用这个 定量表达式去研究我们所未知的东西.研究两个变量间的相互关系的, 称为一元回归分析,在回归分析中,最简单也是最基本的情形是线性回 归,而一元线性回归所要找寻的是与变量相匹配的线性回归直线.这 里,我们用计算器上的统计键就可以轻而易举地得到这条直线方程. 回归的发现源自于19世纪末期对社会统计学的研究.那时,统计 学家发现,有许多数据都与正态曲线拟合的很好.但是这无所不在的正 态性却给高尔登带来了一个困惑,他发现亲子两代各自的身高数据,都 遵从同一的正态分布,但理论上,遗传把一种性态(例如身高)的优势传 递给下一代,则应该在后代中出现两极分化,即高个子的后代个子更 高,矮个子的后代个子更矮,或者说,高个子与矮个子的比例应该日渐 增加,而中等身材的比例应该日渐下降,但事实却是一代代的身高始终 呈现出稳定的正态分布.怎么解释这一现象呢?为此,高尔登想出了一

线性回归方程

线 性回归方程(1) 一.教学任务分析: (1)通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系. (2) 了解最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. (3)在两个变量具有线性相关关系时,会在散点图中作出线性回归直线,会用线性回归方程进行预测. 二.教学重点与难点: 教学重点:回归直线方程的求解方法. ↓ 四.教学情境设计: 1.创设情景,揭示课题 6个数对所表示的点在坐标系内标出,得到散点图. 从散点图可以看出.这些点大致分布在通过散点图中心 的一条直线的附近. 如果散点图中点的分布从整体看大致分布在一条直线的附近,我们称这两个变量之间具有线性相关关系,这条直线叫回归直线. 如果能够求出这条回归直线的方程,我们就可以比较清楚的了解热茶销量与气温之间的关系. 2.最小二乘法 选择怎样的直线近似地表示热茶销量与气温之间的关系? 我们有多种思考方案: (1)选择能反映直线变化的两个点,例如取(4,50),(18,24)这两点的直线; (2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同; (3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距; ………………

怎样的直线最好呢? ------从整体上看,各点与此直线的距离最小. 即: 用方程为?y bx a =+的直线拟合散点图中的点,应使得该直线与散点图中的点最接近.那么,怎样衡量直线?y bx a =+与图中六个点的接近程度呢? 我们将表中给出的自变量x 的六个值带入直线方程,得到相应的六个?y 的值: 26,18,13,10,4,b a b a b a b a b a b a +++++-+.这六个值与表中相应的实际值应该越接近 越好.所以,我们用类似于估计平均数时的思想,考虑离差的平方和: 222222 22(,)(2620)(1824)(1334)(1038)(450)(64)12866140382046010172 Q a b b a b a b a b a b a b a b a ab b a =+-++-++-++-+ +-+-+-=++--+ (,)Q a b 是直线?y bx a =+与各散点在垂直方向(纵轴方向)上的距离的平方和,可以用来衡量直线?y bx a =+与图中六个点的接近程度,所以,设法取,a b 的值,使(,)Q a b 达到最小值.这种方法叫做最小平方法(又称最小二乘法) . 先把a 看作常数,那么Q 是关于b 的二次函数.易知,当1403820 21286a b -=- ?时, Q 取得最小 值.同理, 把b 看作常数,那么Q 是关于a 的二次函数.当140460 12 b a -=-时, Q 取得最小 值.因此,当14038202128614046012 a b b a -? =-???? -?=-??时,Q 取得最小值,由此解得 1.6477,57.5568b a ≈-≈.所求直线方程为? 1.647757.5568y x =-+.当5x =-时,?66y ≈,故当气温为5-0 C 时,热茶销量约为66杯. 3.线性回归方程的求解方法 一般地,设有n 个观察数据如下: 当,a b 使1122()()...()n n Q y bx a y bx a y bx a =--+--++--取得最小值时,就 称?y bx a =+为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线. 上述式子展开后,是一个关于,a b 的二次多项式,应用配方法,可求出使Q 为最小值时的,a b 的值.即 ???? ????? -=--=---=---=--==-=--∑∑∑∑x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i 2 1 21 11)())((,(*) ∑==n i i x n x 11, ∑==n i i y n y 11 线性回归方程是 ?y bx a =+,其中b 是回归方程的斜率,a 是截距.系数 4.求线性回归方程的步骤: (1)计算平均数y x ,;

高中数学必修三教案-线性回归方程

教学目标: 1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系; 2.在两个变量具有线性相关关系时,会在散点图中作出线性直线,会用线性回归方程进行预测; 3.知道最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解(线性)相关系数的定义. 教学重点: 散点图的画法,回归直线方程的求解方法. 教学难点: 回归直线方程的求解方法. 教学方法: 引导发现、合作探究. 教学过程: 一、创设情景,揭示课题 客观事物是相互联系的.过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系. 二、学生活动 提出问题:两个变量之间的常见关系有几种? (1)确定性的函数关系,变量之间的关系可以用函数表示; (2)相关关系,变量之间有一定的联系,但不能完全用函数来表示. 说明:不要认为两个变量间除了函数关系,就是相关关系,事实是,两个变量间可能毫无关系.比如地球运行的速度与某个人的行走速度就可认为没有关系.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:

气温/0C 26 18 13 10 4 1- 杯数 20 24 34 38 50 64 如果某天的气温是5-0C ,你能根据这些数据预测这天小卖部卖出热茶的杯数吗? 从下图可以看出,这些点散布在一条直线的附近,故可用一个线性函数近似地表示热茶销量与气温之间的关系. 选择怎样的直线近似地表示热茶销量与气温之间的关系? 我们有多种思考方案: (1)选择能反映直线变化的两个点,例如取(4,50),(18,24)这两点的直线; (2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同; (3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距; …… 怎样的直线最好呢? 三、建构数学 1.最小平方法: 用方程为?y bx a =+的直线拟合散点图中的点,应使得该直线 与散点图中的点最接近.那么,怎样衡量直线?y bx a =+与图中六 个点的接近程度呢? 我们将表中给出的自变量x 的六个值带入直线方程,得到相 应的六个?y 的值: 26,18,13,10,4,b a b a b a b a b a b a +++++-+.这六个值与表中相应 的实际值应该越 接近越好.所以,我们用类似于估计平均数时的思想,考虑离差的 平方和 222222 (,)(2620)(1824)(1334)(1038)(450)(64) Q a b b a b a b a b a b a b a =+-++-++-++-+ +-+-+- 21286b =26140382046010172a ab b a ++--+ 说明: (,)Q a b 是直线?y bx a =+与各散点在垂直方向(纵轴方向)上的距离的平

相关文档