文档库 最新最全的文档下载
当前位置:文档库 › 易拉罐是如何成型制造的

易拉罐是如何成型制造的

易拉罐是如何成型制造的
易拉罐是如何成型制造的

易拉罐是如何成型制造的

我在易拉罐厂作过,给你讲讲它的工序.

易拉罐由罐身和罐盖两部分组成,行内称两片罐。下面是罐子的制作工程:

1)由薄铝带,(厚0.27MM~0.33MM,宽1.6M~2.2M,一卷重约3T)由冲床冲成圆杯

2)冲后的杯由拉伸机拉成罐子的形状

3)拉伸后的罐子经清洗,烘干,外表印刷并烘干,内壁喷涂并烘干,罐口缩颈返边,漏光检测后就是成形的易拉罐(没有盖子)

4)罐盖也是用铝带用冲床一次冲成形的,经过喷涂烘干和检测后即完工

制作过程中不需要热处理。

=========================================

拉深的。 先是铝带冲成圆片,再多次拉深。

===========================================

铝质易拉罐成形工艺及模具

摘要:对罐体拉伸工序、变薄拉伸工序和底部成形工序进行了分析,并对与这些工序相关的模具在设计和制造中存在的若干关键性技术进行了研究。

1 引言

铝质易拉罐在饮料包装容器中占有相当大的比重。易拉罐的制造融合了冶金、

化工、机械、电子、食品等诸多行业的先进技术,成为铝深加工的一个缩影。随着饮料包装市场竞争的不断加剧,对众多制罐企业而言,如何在易拉罐生产中最大限度地减少板料厚度,减轻单罐质量,提高材料利用率,降低生产成本,是企业追求的重要目标。为此,以轻量化(light-weighting)为特征的技术改造和技术创新正在悄然兴起。易拉罐轻量化涉及到许多关键性技术,其中罐体成形工艺和模具技术是十分重要的方面。

2 罐体制造工艺和技术

2.1罐体制造工艺流程CCB-1A型罐罐体的主要制造工艺流程如下:卷料输送→卷料润滑→落料、拉伸→罐体成形→修边→清洗/烘干→堆垛/卸→涂底色→烘干→彩印→底涂→烘干→内喷涂→内烘干→罐口润滑→缩颈→旋压缩颈。

在工艺流程中,落料、拉伸、罐体成形、修边、缩径、旋压缩径/翻边工序需要模具加工,其中以落料、拉伸和罐体成形工序与模具最为关键,其工艺水平及模具设计制造水平的高低,直接影响易拉罐的质量和生产成本。

2.2罐体制造工艺分析

(1)落料一拉伸复合工序。拉伸时,坯料边缘的材料沿着径向形成杯,因此在塑性流动区域的单元体为双向受压,单向受拉的三向应力状态,如图1所示。由于受凸模圆弧和拉伸凹模圆弧的作用,杯下部壁厚约减薄10%,而杯口增厚约25%。杯转角处的圆弧大小对后续工序(罐体成形)有较大的影响,若控制不好,易产生断罐。因此落料拉伸工序必须考虑以下因素:杯的直径和拉伸比、凸模圆弧、拉伸凹模圆弧、凸、凹模间隙、铝材的机械性能、模具表面的摩擦性能、材料表面的润滑、拉伸速度、突耳率等。突耳的产生主要由2个因素确定:一是金属材料的性能,二是拉伸模具的设计。突耳出现在杯的最高点同时也是最薄点,将会对罐体成形带来影响,造成修边不全,废品率增高。

基于以上分析,确定拉伸工序选择的拉伸比m=36.55%,坯料直径Dp=140.20±

0.0lmm,杯直径Dc=88.95mm。

(2)罐体成形工序。

变薄拉伸工艺分析。典型的铝罐拉伸、变薄拉伸过程如图2所示,变薄拉伸过程中受力状况如图3所示。在拉伸过程中,集中在凹模口内锥形部分的金属是变形区,而传力区则为通过凹模后的筒壁及壳体底部。在变形区,材料处于轴向受拉、切向受压、径向受压的三向应力状态,金属在三向应力的作用下,晶粒细化,强度增加,伴有加工硬化的产生。在传力区,各部分材料受力状况是不相同的,其中位于凸模圆角区域的金属受力情况最为恶劣,其在轴向、切向两向受拉,径向受压,因而材料的减薄趋势严重,金属易从此处发生断裂,从而导致拉伸失败。比较变形区和传力区金属的应力状态可知:变薄拉伸工艺能否顺利进行主要取决于拉伸凸模圆角部位的金属所受拉应力的大小,当拉应力超过材料强度极限时就会引起断裂,否则拉伸工艺可以顺利进行。因此,减小拉伸过程中的拉应力成为保证拉伸顺利进行的关键。

变薄拉伸拉伸比的选择为:再拉伸:25.7%,第1次变薄拉伸:20%~25%,第2次变薄拉伸:23%~28%,第3次变薄拉伸:35%~40%。

在成形过程中,影响金属内部所受拉应力大小的因素很多,其中凹模锥角。的取值直接关系到变形区金属的流动特性,进而影响拉伸所需成形力的大小,所以,其数值合理与否对工艺的实施有着重要影响。当α较小时,变形区的范围比较大,金属易于流动,网格的畸变小。随着α的增大,变形区的范围减小,金属的变形集中,流动阻力增大,网格歧变严重。而且,随着凹模锥角的增大,变形区材料的应变相应增加,这说明凹模锥角较大时,不仅金属的变形范围集中,而且变形量迅速上升,因而使得变形区金属的加工硬化现象加剧,导致金属内部的应力上升,从而对拉伸产生不利影响。另一方面,在α过于大或过小时都会引起拉伸力的增加,其原因在于:当α过大时,金属流动急剧,材料的加工硬化效应显著,并且随着锥角的增大,凹模锥面部分产生的阻碍金属流动的分力加大,因而所需拉伸力增加;当。过小时,虽然金属流动的转折小,但由于变形区金属与凹面的接触锥面长,锥面上总摩擦阻力大,因此网格畸变虽小,总拉伸力却增大。

由此可见,凹模锥角的合理确定应同时考虑变形区材料的变形特点以及模具与工件间的摩擦状况,凹模锥角合理范围的确定对拉伸工艺有着直接的影响。工艺试验表明,对于CCB-1A型罐用铝材3104H19,其凹模锥角合理取值在α=5°-8°为宜。

底部成形工艺分析。罐底部成形发生在凸模行程的终点,采用的是反向再拉伸工艺。图4为罐底成形受力状况示意图,底部成形力主要取决于摩擦力的性质以及压边力的大小。通常,材料的厚度和强度是一对矛盾,材料愈薄,强度愈低,因此轻量化技术要求减少罐底直径及设计特殊的罐底形状。工艺试验表明,罐底沟外壁夹角若α1大于40°,将大大减小罐底耐压。考虑到金属的成形性,凸模圆弧R不能小于3倍的料厚。但R太大,将会减小强度。球面和罐底沟内壁圆弧R1,至少为3倍料厚,通常R1取4~5倍料厚。减小罐底沟内壁夹角α2,将增加强度,生产中大多数采用10°以下。

罐底部有两处失效点:一为底部球面;二为连接球面和侧壁的罐底部圆弧R。罐底球面的强度取决于以下几个因素:材料的弹性模量、底部直径、材料的强度、球面半径以及在底部成形时金属的变薄程度。罐底球面半径常用公式R球=d1/0.77确定,实际取R球=45.72mm。

3模具设计与制造

3.1罐体拉伸模

罐体拉伸过程实际上是筒形件的拉伸过程,拉伸过程中,其材料的凸缘部分在压应力作用下易失稳,导致起皱,因此必须考虑设置防止起皱的压边装置。当材料通过凹模时,凹模圆角部分是一个过渡区,其变形较复杂,除了径向拉伸与切向压缩外,还受弯曲作用,因此凹模圆角选择尤为重要。材料通过凹模圆角后,处于拉伸状态,由于拉伸力来自凸模压力,是经过凸模圆角处传递的,凸模圆角处的材料变薄最严重,此处成为最易破裂的危险断面。

落料一拉伸组合模结构如图5所示。

(1)模具材料:凸、凹模均选择镶硬质合金的材料。

(2)变形量:在易拉罐行业内,一般采用拉伸比δ表示变形量,δn=(dn-1-dn)/dn-1×100%,按此公式,计算如下:

首次拉伸取δ1=(d0-d1)/d0×100%=(140.2001-88.951)/140.2004×100%=36.6%。

再拉伸取δ2=(d1-d2)/d1×100%=(88.951-66.015)/88.951×100%=25.8%。一般要求2次总拉伸比δ≤64%,δ1≥δ2≥……≥δn,δ1≤40%。

(3)压边装置:采用波形压边圈,0.2-0.3MPa压缩空气作为动力源。

(4)拉伸模工作部参数:

圆角半径:拉伸凹模圆角半径rA取 3.556mm,再拉伸凹模圆角半径rA取1.78mm。拉伸凸模圆角半径rB取2.921mm,再拉伸凸模圆角半径取rB2.286mm。

间隙:

拉伸模凸、凹模单边间隙Z/2大,则摩擦小,能减少拉伸力,但间隙大,精度不易控制;拉伸模凸、凹模单边间隙Z/2小,则摩擦大,增加拉伸力。

单边间隙Z/2可按以下公式计算:

Z/2=tmax+Kt

式中tmax--最大料厚,取0.285+0.005mm

t--公称料厚,取0.285mm

K--系数,当t<0.4mm时,取0.08

则Z/2=0.290+0.08×0.285=0.313mm。

3.2变薄拉伸模易拉罐罐体成形实际上是将再拉伸和3道变薄拉伸组合在一起的组合工序。现将变薄拉伸模的设计介绍如下:

(1)模具材料。凸模:基体材料为合金工具钢,凸模材料为M2,热处理硬度60~62HRC,镀TiN。凹模(变薄拉伸环):基体材料为合金工具钢,模口材料为硬质合金(牌号为V ALENITEVCID-H.L.D或KE-84KENNAMETAL)。

(2)变形量。变薄拉伸比方的计算公式为:δ=(tn-tn-1)/tn×100%,其中tn、tn-1分别为n次及n-1次变薄拉伸后的零件侧面壁厚,计算得:δ1=(0.285-0.225)/0.285×100%=21.05%;δ2=(0.225-0.170)/0.225×100%=24.44%;δ3=(0.170-0.106)/0.170×100%=37.65%。

制罐工厂常常根据给定的材料厚度、罐体厚、薄壁要求、拉伸环和凸模尺寸、拉伸机精度等条件,编制拉伸环和凸模的匹配表供技术人员、模具维修人员和操作人员选配凸模和拉环。

(3)模具的工作部分参数。凸模:凸模圆弧R1.016±0.025mm,再拉伸凸模圆弧R2.286mm,罐底沟外侧壁圆弧R10.478±0.013mm。变薄拉伸环:凹模锥角α=5°,工作带宽度h=0.38+0.25mm。

3.3罐底成形模

罐底成形模结构如图6所示。

罐底凸模材料选用合金工具钢Crl2MoV,热处理硬度60~64HRC,其轮廓形状应与罐型设计一致。底压边模材料选用合金工具钢Cr5MoV,热处理硬度58~60HRC,其轮廓形状应与凸模相匹配。

4 结束语

(1)拉伸工序考虑的重要因素有:拉伸比、凸、凹模圆弧半径、凸、凹模间隙、铝材机械性能、润滑、作业参数。

(2)变薄拉伸工序中凹模锥角。的大小关系到变形区金属的流动性质、应力大小以及模具的受力情况,合理的取值范围为α=5°-8°。

(3)合适的罐型设计是轻量化技术能否实施的关键。研究表明,对于CCB-1A型罐,设计参数选择:底沟外壁夹角α1=32°,罐底沟内壁夹角α2=5°,凸模圆弧R=1.016mm,球面和罐底沟内壁圆弧R1=1.524mm,罐底球面半径R球=45.72mm,可以大大增加罐体强度。

全国数学建模竞赛易拉罐形状和尺寸的最优设计模型全国一等奖

易拉罐形状和尺寸的最优设计模型 (2006年获全国一等奖) 摘 要:本文主要考虑当容积一定时,如何设计易拉罐的形状和尺寸,使得所用材料最 省。首先对易拉罐进行测量,对问题二、问题三、问题四建立数学模型,并利用LINGO 软件结合所测的数据进行计算,得出最优易拉罐模型的设计。 模型一,对正圆柱体形状的易拉罐,当容积一定时,以材料体积最小为目标,建立 材料体积的函数关系式,并通过求二元函数条件极值得知,当圆柱高为直径两倍时,最 经济,并用容积为360 ml 进行验算,算得mm H 63.122=,mm R 58.30=与市场上净含量 为355ml 的测得的数据基本接近。 模型二,对上面部分为正圆台、下面部分为正圆柱的易拉罐同样在容积量一定时, 考虑所用材料最省,建立优化模型,并通过LINGO 软件仍用容积为360 ml 进行验算,算 得mm R 58.30=,mm r 33.291=,mm h 94.81=,mm h 8.1112=,高之和约为直径的两倍。 模型三,考虑到罐底承受的压力,根据力学上横梁支点的受力与拱桥设计的原理, 设计底部支架(环形)与一定弧度的拱面,同时利用黄金分割,将直径与高之比设为, 建立容积量一定时材料最省的优化模型,再将有关数据代入计算,得到结论,现行易拉 罐的设计从某种意义上不乏是最优设计。 关键词:优化模型 易拉罐 非线性规划 正圆柱 正圆台 一、问题重述 销量很大的饮料容器(即易拉罐)的形状和尺寸几乎都是一样的。这应该是某种意义 下的最优设计,而不是偶然。当然,对于单个的易拉罐来说,这种最优设计可以节省的 钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就 很可观了。 现针对以下问题,研究易拉罐的形状和尺寸的最优设计问题。 问题一:取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验 证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说 明;如果数据不是测量得到的,那么必须注明出处。 问题二:设易拉罐是一个正圆柱体。什么是它的最优设计其结果是否可以合理地说明所 测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。 问题三:设易拉罐的中心纵断面如图1所示,即上面部分是一个正圆 台,下面部分是一个正圆柱。什么是它的最优设计其结果是否可以合理 地说明你们所测量的易拉罐的形状和尺寸。 问题四:利用所测量的易拉罐的洞察和想象力,做出关于易拉罐形状和 尺寸的最优设计。 同时,以做本题以及以前学习和实践数学建模的亲身体验,写一篇 短文(不超过1000字,论文中必须包括这篇短文),阐述什么图1 是数学建模、它的关键步骤,以及难点。 二、问题分析

易拉罐灌装生产线

易拉罐灌装生产线 产品简介 南京轻工业机械集团自行研制和开发的150-500CPM易拉罐灌装生产线能适用于含气或不含气饮料和啤酒的易垃罐灌装,是目前唯一获得国家重点新产品成果奖的灌生产线。全线自动化程度高、性能稳定,是用户信得过产品,畅销国内外。 其中灌装和封口的一体化,由封口机带动灌装机同步传动,确保灌装液位的稳定,缩短灌装和封口之间的距离,从而降低罐内的含氧量。凡与物料接触的部分均采用不锈钢结构。通过简单变更可适用于各种不同罐型。采用特殊结构调整封盖辊上下前后间隙,十分可靠地保证封盖质量。 杀菌机或温罐机(含气饮料用)采用链网式传动,其强度好、耐高温、透水性好、输送平稳并采用PID温度控制系统,确保温控精度高,反应灵敏。 纸箱包装机是引进德国MEYPACK技术生产的全自动型包装设备,其中包括输罐、排列、装箱、纸箱成型、粘胶喷涂、电气自动控制等组成。通过简单变更可适于各种组合及罐型的包装,关键部位采用进口产品保证了整机稳定性、可靠性。 输送系统是通过生产线上单机运行状况来联锁控制罐子行进速度,使之不相互挤压造成堵罐变形等现象。 混合机是含气饮料的专用产品,采用全不绣钢结构,混合精度高,CO2溶解充分,主要部位采用进口设备,确保整机的稳定性。 包含单机 BPP34/126 杀菌机 1台 YPYF8型混合机 1台 YL32A 卸垛机 1台 YPYG18 易拉罐灌装机 1台 YPYF8 易拉罐封盖机 1台 YPGB28 纸箱包装机 1台 YPWP23/80 温罐机 1台 灌装机清洗系统 1台 该类产品还包括:150罐/分易拉罐生产线、300罐/分易拉罐生产线、500罐/分易拉罐生产线。

铝质易拉罐成形工艺

铝质易拉罐成形工艺 铝质易拉罐在饮料包装中占有非常大的比重。但是,小小的一个易拉罐的制造却融合了冶金、化工、机械、电子、食品等诸多行业的先进技术,成为铝深加工的一个缩影。随着饮料包装市场竞争的不断加剧,对于众多地制罐企业而言,如何在易拉罐生产中最大限度地减少板料厚度,减轻单罐质量,提高材料利用率,降低生产成本,是企业追求的重要目标。为此,以轻量化为特征的技术改造和技术创新正在悄然兴起。易拉罐轻量化涉及到许多关键性技术,其中罐体成形工艺和模具技术是十分重要的方面。 首先来说说罐体制造的工艺流程。CCB-1A型罐罐体的主要制造工艺流程如下:卷料输送→卷料润滑→落料、拉伸→罐体成形→修边→清洗/烘干→堆垛/卸→涂底色→烘干→彩印→底涂→烘干→内喷涂→内烘干→罐口润滑→缩颈→旋压缩颈。 在工艺流程中,落料、拉伸、罐体成形、修边、缩径、旋压缩径/翻边工序需要模具加工,其中以落料、拉伸和罐体成形工序与模具最为关键,其工艺水平及模具设计制造水平的高低,将直接影响易拉罐的质量和生产成本。 然后进行罐体制造工艺分析。 (1)落料一拉伸复合工序。拉伸时,坯料边缘的材料沿着径向形成杯,因此在塑性流动区域的单元体为双向受压,单向受拉的三向应力状态,如图1所示。由于受凸模圆弧和拉伸凹模圆弧的作用,杯下部壁厚约减薄10%,而杯口增厚约25%。杯转角处的圆弧大小对后续工序(罐体成形)有较大的影响,若控制不好,易产生断罐。因此落料拉伸工序必须考虑以下因素:杯的直径和拉伸比、凸模圆弧、拉伸凹模圆弧、凸、凹模间隙、铝材的机械性能、模具表面的摩擦性能、材料表面的润滑、拉 伸速度、突耳率等。突耳的产生主要由2个因素确定:一是金属材料的性能,二是拉伸模具的设计。突耳出现在杯的最高点同时也是最薄点,将会对罐体成形带来影响,造成修边不全,废品率增高。基于以上分析,确定拉伸工序选择的拉伸比m=36.55%,坯料直径Dp=140.20±0.0lmm,杯直径Dc=88.95mm。 (2)罐体成形工序。变薄拉伸工艺分析。典型的铝罐拉伸、变薄拉伸过程如图2所示,在拉伸过程中,集中在凹模口内锥形部分的金属是变形区,而传力区则为通过凹模后的筒壁及壳体底部。在变形区,材料处于轴向受拉、切向受压、径向受压的三向应力状态,金属在三向应力的作用下,晶粒细化,强度增加,伴有加工硬化的产生。在传力区,各部分材料受力状况是不相同的,其中位于凸模圆角区域的金属受力情况最为恶劣,其在轴向、切向两向受拉,径向受压,因而材料的减薄趋势严重,金属易从此处发生断裂,从而导致拉伸失败。为防止拉伸时筒壁变薄破裂,所以在拉伸是选择分次拉伸,即第1次变薄拉伸:20%~25%,第2次变薄拉伸:23%~28%,第3次变薄拉伸:35%~40%。

铝制易拉罐的发展

铝制易拉罐的发展 金属包装罐迄今已有70多年的历史。20世纪30年代初,美国就已经开始生产啤酒金属罐了,这种三片罐是用马口铁皮制作的,罐体上部呈圆锥状,最上面是冕状罐盖。其大体外形与玻璃瓶相差不太大,所以最初也是用玻璃瓶灌装线灌装的,直到上世纪50年代才有了专用灌装线。罐盖在50年代中期演变成平面形状,上世纪60年代又改进为铝制环形盖。 铝制饮料罐最早是在上世纪50年代末出现的,上世纪60年代初期二片DWI 罐正式问世。铝制易拉罐发展非常迅速,到本世纪末每年的消费量已有 1800多亿只,在世界金属罐总量(约4000亿只)上是数量最大的一类。用于制造铝罐的铝材消费量同样快速增长,1963年还近于零,1997年已达 360万吨,相当于全球各种铝材总用量的15%。 美国是世界铝饮料罐的最大生产国和消费国。美国铝罐使用数量1984年超过620亿只,1987年超过700亿只,1988年超过800亿只,1990年超过900亿只,1994年超过1000亿只。美国铝易拉罐主要用于包装饮料,如1992年饮料铝罐量为928亿只,占当年饮料罐总量 957亿只的97%,铁皮罐仅为29亿只、占3%。2001年美国啤酒和软饮料铝罐用量为近1000亿只,其中软饮料罐640亿只,啤酒罐330亿只。日本铝罐的产量已经连续多年增长,从1985年的30亿只分别增加到1987年的55亿只、1989年的81亿只、1991年的102亿只、1993年的 118亿只、1995年的159亿只和1997年的166亿只,铝罐的大部分是啤酒罐,如1997年为95亿只、占57%,碳酸饮料罐有35亿只、占 21%,其他饮料罐30亿只、占18%。从上世纪80年代中期以来,欧洲饮料罐市场一直呈现稳定增长之势。1990年,欧洲饮料罐消费量第一次超过200 亿只,1993年达250亿只,1995 年突破300亿只。1996年下降了2%,由上年的322亿只减为316亿只。1997年,欧洲饮料罐市场重又恢复了平稳增长,年增幅为5%,总消费量上升到335亿只,为历史最高水平。其中,清凉饮料罐185亿只、比上年增长5.1%,啤酒罐150亿只、比上年增长7%。欧洲饮料罐中铁皮罐和铝罐各约占一半。中南美洲的铝罐消费量也比较大,每年近200亿只。亚洲(日本除外)的铝罐年消费量也不下200亿只。中国铝易拉罐消费量现在每年有80多亿只。 数十年来,铝易拉罐的制造技术在不断改进。铝罐重量已经大为减少,上世纪60年代初期,每千只铝罐(包括罐身和罐盖)的重量达55镑(约合 25千克),上世纪70年代中期降至44.8镑(25千克),上世纪90年代后期又减到33镑(15千克),现已减为30镑以下,比40年前减少了近一半。1975年~1995年的20年间,1磅铝材制作的铝罐(容量为12盎司)的数量增加了35%。另据美国ALCOA公司的统计,每千只铝罐罐身所需要的铝材由1988年的25.8磅减少到1998年的22.5磅和2000年再减为22.3磅。美国制罐企业封缝机械和其他技

易拉罐组成分析

易拉罐组成分析 课程名称:化学教法实验 姓名:王贝 学号:2011121201 系别:化学系 专业:化学 班级:112班 指导教师:张四方 实验学期:2013至2014学年第二学期

易拉罐组成分析 姓名:王贝指导教师:张四方 (山西太原师范学院化学系山西太原 030031) 摘要本次设计实验的目的是探究易拉罐的主要成分;掌握定量测定沉淀重量的原理方法和技术;掌握硫氰化铁指示剂的作用原理及正确使用。巩固全自动电光分析天平、常压过滤、减压过滤的基本操作。 关键词易拉罐,铝,定性,定量 1 引言 随着人们生活水平的提高,对罐装饮料的需求愈来愈大。由于铝合金具有重量轻、强度高、耐腐蚀、易成行、能回收等一系列优点,成为一种理想的制罐材料。所以,探究易拉罐的主要成分就显得非常重要。 1.1常见易拉罐的合金成分 易拉罐的主要成分是铝、镁、锰、铁等。可设计适当的实验来进行验证[1]。 1.2常见离子的鉴定方法 ①铝既溶于酸,也溶于碱,可用碱来先溶处理后的易拉罐片,铝溶于过量碱后以AlO2-存在于溶液中,再向溶液中加酸,AlO2-变为Al(OH) 3 白色沉淀,酸过量白色沉淀溶解 ②Fe3+能与KSCN溶液生成血红色的络合物。在装有溶解于易拉罐的酸溶液的滤液中,加入稀硝酸,然后加入KSCN溶液。发生反应:Fe2+-e-=Fe3+ Fe3++SCN-=[Fe (SCN)]2+ ③Mn2+在碱性的条件下可与苯胺试剂反应,溶液呈深蓝色;与高碘酸反应溶液变 紫色,发生反应:2Mn2++5H 5IO 6 =2MrO4-(呈紫色)+5IO 3 -+11H-+7H 2 O

④Mg 2+能与镁试剂反应生成白色沉淀。镁离子遇镁试剂变为紫色。 ⑤铜不溶于稀盐酸,但可溶于稀硝酸,溶液为浅蓝色,加碱有蓝色沉淀生成。或者用焰色反应检验得到铜的颜色为绿色。 2 实验原理 2.1铝的定性分析原理 铝是两性金属。普通的铝既能溶于稀盐酸和稀硫酸中,也易溶于强碱中。 +=+3262AlCl HCl Al ↑23H ()[]↑+=++- -2423262H OH Al O H OH Al 由金属的性质可知,除铝外,易拉罐中剩余的几种金属均可以溶于稀盐酸和稀硫酸中,但是无法溶解强碱中。可以依据此原理定性检测易拉罐中存在金属 Al 。可用碱来先溶处理后的易拉罐片,铝溶于过量碱后以()[]- 4OH Al 存在于溶 液中。 2.2铁的定性分析原理 铁是活泼金属,与稀盐酸生成+2Fe ,+2Fe 可以被稀硝酸氧化为+3Fe , + 3Fe 能与KSCN 溶液生成血红色的络合物[2]。 由此原理,在装有溶解于易拉罐的酸溶液的滤液中,加入稀硝酸,然后加入KSCN 溶液。若出现血红色沉淀,可证明易拉罐中有少量金属铁。 2.3易拉罐中铝含量定量分析原理 铝易溶于强碱中,在强碱中生成()[]- 4OH Al 。查阅书籍可知,一般所谓的 ()3OH Al ,实际上32O Al 的水合物。如在铝盐溶液中加氨水或碱,得到白色胶状沉淀,其含水量不定,组成也不定,为水合氧化铝。这种水合氧化铝静置后,可慢慢失水转化为偏氢氧化铝,温度升高转化速度加快。因此,只有在含有 ()[]-4OH Al 的溶液中通入2CO 才能得到真正的()3OH Al 。反应方程式: ()[]2224=+- CO OH Al ()O H CO OH Al 2233++↓- 结晶的氢氧化铝与无定型的水合氢氧化铝不同,它难溶于酸,而且加热到373K 也不脱水,在573K 下加热两小时,才能转变成偏氢氧化铝[3]。 是由此原理,在实验中可以将易拉罐中的铝转化为()[]- 4OH Al ,再通过与二 氧化碳反应生成()3OH Al 进行测量。由于结晶的()3OH Al 在一定温度下也不发生脱水,因此可通过测量灼烧干燥后32O Al 的质量测定易拉罐中金属铝的含量。 3 实验仪器与药品

铝质易拉罐成形工艺及模具

摘要:对罐体拉伸工序、变薄拉伸工序和底部成形工序进行了分析,并对与这些工序相关的模具在设计和制造中存在的若干关键性技术进行了研究。 关键词:易拉罐;成形工艺;模具;变薄拉伸 1 引言 铝质易拉罐在饮料包装容器中占有相当大的比重。易拉罐的制造融合了冶金、化工、机械、电子、食品等诸多行业的先进技术,成为铝深加工的一个缩影。随着饮料包装市场竞争的不断加剧,对众多制罐企业而言,如何在易拉罐生产中最大限度地减少板料厚度,减轻单罐质量,提高材料利用率,降低生产成本,是企业追求的重要目标。为此,以轻量化(light-weighting)为特征的技术改造和技术创新正在悄然兴起。易拉罐轻量化涉及到许多关键性技术,其中罐体成形工艺和模具技术是十分重要的方面。 2 罐体制造工艺和技术 罐体制造工艺流程 CCB-1A型罐罐体的主要制造工艺流程如下:卷料输送→卷料润滑→落料、拉伸→罐体成形→修边→清洗/烘干→堆垛/卸→涂底色→烘干→彩印→底涂→烘干→内喷涂→内烘干→罐口润滑→缩颈→旋压缩颈。 在工艺流程中,落料、拉伸、罐体成形、修边、缩径、旋压缩径/翻边工序需要模具加工,其中以落料、拉伸和罐体成形工序与模具最为关键,其工艺水平及模具设计制造水平的高低,直接影响易拉罐的质量和生产成本。 罐体制造工艺分析 (1)落料一拉伸复合工序。拉伸时,坯料边缘的材料沿着径向形成杯,因此在塑性流动区域的单元体为双向受压,单向受拉的三向应力状态,如图1所示。由于受凸模圆弧和拉伸凹模圆弧的作用,杯下部壁厚约减薄10%,而杯口增厚约25%。杯转角处的圆弧大小对后续工序(罐体成形)有较大的影响,若控制不好,易产生断罐。因此落料拉伸工序必须考虑以下因素:杯的直径和拉伸比、凸模圆弧、拉伸凹模圆弧、凸、凹模间隙、铝材的机械性能、模具表面的摩擦性能、材料表面的润滑、拉伸速度、突耳率等。突耳的产生主要由2个因素确定:一是金属材料的性能,二是拉伸模具的设计。突耳出现在杯的最高点同时也是最薄点,将会对罐体成形带来影响,造成修边不全,废品率增高。

易拉罐形状和尺寸的最优设计

淮海工学院 毕业论文 题目:易拉罐形状和尺寸的最优设计 作者:吴杰学号:0903102228 系(院):数理科学系 专业班级:信息与计算科学032 指导者:谭飞(高等数学教研室主任)评阅者: 2007年5月连云港

毕业论文中文摘要

毕业论文文摘要

目录 1 引言 (1) 1.1易拉罐的发展和前景 (1) 1.2 实际调研 (2) 1.3基本设计方案 (2) 2可口可乐易拉罐的优化设计 (3) 2.1模型的假设 (4) 2.2数据测量 (4) 2.3符号说明 (5) 2.4 模型的建立与求解 (5) 2.4.1 模型一的建立与求解 (5) 2.4.2 模型二的建立与求解 (7) 2.4.3 模型三的建立与求解 (9) 2.5 模型的评价与推广 (11) 结论 (13) 致谢 (14) 参考文献 (15) 图1 罐体主要尺寸图 (4) 图2 圆柱罐体剖面图 (5) 图3 柱台罐体剖面图 (7) 图 4 罐体受压性能图 (10) 表 1 罐体主要尺寸 (4) 表 2 罐体物理性能 (10)

1 引言 1.1易拉罐的发展和前景 铝质易拉罐具有许多优点,如重量轻、密闭性好、不易破碎等,被大量用作啤酒、碳酸类饮料、果汁等食品的包装材料。1963 年,易拉罐在美国得以发明,它继承了以往罐形的造型设计特点,在顶部设计了易拉环。这是一次开启方式的革命,给人们带来了极大的方便和享受,因而很快得到普遍应用。到了1980年,欧美市场基本上全都采用了这种铝罐作为啤酒和碳酸饮料的包装形式。经过30多年来的发展已在全球形成庞大的生产规模,供求关系已出现严重的失衡。即使是易拉罐技术发展最快,消费水平最高的美国,近年来罐厂生产能力的提高比消费需求增长快,生产能力年增2%,而需求量年增1%,同样出现年生产能力超过需求10亿只的局面。随着设计和生产技术的进步,铝罐趋向轻量化,从最初的60克降到了1970年的21~15克左右。 国内的易拉罐业始于80年代,当时年产仅24亿只,随着原罐厂进行重大技术改造的完成以及国外罐业投资者的资本输入,到目前全国易拉罐年生产能力超过100亿只。 近年来,我国铝质易拉罐产量逐年增长,年消耗量约为60~70亿只。据业内专家预测,到2010年,全国易拉罐用铝将达到29万吨。据中国饮料协会预测,到2010年,碳酸饮料产量将达到800万吨,如果罐装率按20%计算,易拉罐用量将达到124亿只。尽管国内易拉罐需求量逐年上升,但供求关系严重失衡已是不可回避的事实。 为了生存,罐厂每年都出现“内耗”式的压价销售,这一方面导致罐厂本身处于亏损运营状态,另一方面阻碍了中国罐业向前发展。竞争的结果,表面上看饮料、啤酒厂是受益者,但从长远看包装品制造商因无力进行技改大幅度降低成本,而作为使用包装品的饮料、啤酒业也难以使自己产品的包装成本降低下来因而阻碍了消费,最终也是受害者。 国外罐业者在降低成本方面主要有二条途径,一是规模经济。国外罐业经过三十多年的发展,生产已形成集团化,具有相当大规模,在这样的基础上不断增置设备或提高生产速度再扩大规模是轻而易举的事。而国内罐厂的规模与国外相比都较小,又由于近年来大多数罐厂处于亏损运营,因而再花费一大笔资金去再引进技术和设备扩大规模是较为困难。此外在目前这种供求严重失衡的状况再扩大规模,无疑将需求关系进一步恶化。显然,靠这一途径降低成本不适合国内现状。 其次是降低原辅材料的成本。依靠科技进步降成本可以达到事半功倍。罐业是集冶金、化工、机械、电子等行业科技于一体,降低原辅材料成本就是依靠这些行业的科技进步。(1)减薄铝板材厚度。(2)改变罐形。根据国外某材料厂家报告,在美国的罐厂用铝板材料厚度每减薄0.01mm,每千罐可节省约0.22美元,易开盖口颈从404规格缩小至401规格可节省材料12.5%,罐从206口颈缩为204全套可节约材料用量6.7%,再降至202又可节约13.6%,最好水平到19.4%。为了确保罐原有的各项性能指标要求,相应采用许多新工艺,诸如采用罐底二次成型技术,可使罐底耐压力提高26%。在国外有许多罐业服务的专业性厂家,从铝板材、模具、电子化工设备等制造行业形成一条龙,每当罐业提出某

铝的各种型号

根据铝板含有的金属元素不同,铝板大概可以分为9个大类,也就是可以分9个系列,下面逐步大概介绍一下 一.1000系列代表1050 1060 1070 1000系列铝板又被称为纯铝板,在所有系列中1000系列属于含铝量最多的一个系列。纯度可以达到99.00%以上。由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。目前市场上流通的大部分为1050以及1060系列。1000系列铝板根据最后两位阿拉伯数字来确定这个系列的最低含铝量,比如1050系列最后两位阿拉伯数字为50,根据国际牌号命名原则,含铝量必须达到99.5%以上方为合格产品。我国的铝合金技术标准(gB/T3880-2006)中也明确规定1050含铝量达到99.5%.同样的道理1060系列铝板的含铝量必须达到99.6%以上。 二.2000系列铝板代表2A16(LY16)2A06(LY6)2000系列铝板的特点是硬度较高,其中以铜原属含量最高,大概在3-5%左右。2000系列铝板属于航空铝材,目前在常规工业中不常应用。我国目前生产2000系列铝板的厂家较少。质量还无法与国外相比。目前进口的铝板主要是由韩国和德国生产企业提供。随着我国航空航天事业的发展,2000系列的铝板生产技术将进一步提高。 三.3000系列铝板代表3003 3003 3A21为主。又可以称为防锈铝板我国3000系列铝板生产工艺较为优秀。3000系列铝板是由锰元素为主要成分。含量在1.0-1.5之间。是一款防锈功能较好的系列。常规应用在空调,冰箱,车底等潮湿环境中,价格高于1000系列,是一款较为常用的合金系列。 四.4000系列铝板代表为4A01 4000系列的铝板属于含硅量较高的系列。通常硅含量在4.5-6.0%之间。属建筑用材料,机械零件,锻造用材,焊接材料;低熔点,耐蚀性好产品描述: 具有耐热、耐磨的特性 五.5000系列代表5052.5005.5083.5A05系列。5000系列铝板属于较常用的合金铝板系列,主要元素为镁,含镁量在3-5%之间。又可以称为铝镁合金。主要特点为密度低,抗拉强度高,延伸率高。在相同面积下铝镁合金的重量低于其他系列.故常用在航空方面,比如飞机油箱。在常规工业中应用也较为广泛。加工工艺为连铸连轧,属于热轧铝板系列故能做氧化深加工。在我国5000系列铝板属于较为成熟的铝板系列之一。 六.6000系列代表6061 主要含有镁和硅两种元素,故集中了4000系列和5000系列的优点6061是一种冷处理铝锻造产品,适用于对抗腐蚀性、氧化性要求高的应用。可使用性好,接口特点优良,容易涂层,加工性好。可以用于低压武器和飞机接头上。 6061的一般特点:优良的接口特征、容易涂层、强度高、可使用性好,抗腐蚀性强。 6061铝的典型用途:飞机零件、照相机零件、耦合器、船舶配件和五金、电子配件和接头、装饰用或各种五金、铰链头、磁头、刹车活塞、水利活塞、电器配件、阀门和阀门零件。

我国易拉罐的发展趋势

我国易拉罐的发展趋势 我国的易拉罐业始于80年代,当时年产仅24亿只。近几年,我国的制罐产业迅速发展,易拉罐的需求也在逐年攀升。目前,国内易拉罐的年消费量在80亿罐左右。 易拉罐需求量逐年上升,易拉罐的材料也在不断地革新中。传统的铝制易拉罐仍将占主要市场,前几年出现的纸制易拉罐也引发了一场材料革命,而钢制易拉罐优势也会渐渐凸显 出来。 铝制易拉罐仍占主要市场 铝易拉罐最早出现于20世纪50年代后期,发展速度非常快,并且在饮料包装容器中占有相当大的比重。随着啤酒和饮料制造行业整体水平的提高,世界铝易拉罐的用量正在逐年增长。到本世纪末,全球每年铝易拉罐的消费量已达1800亿只,当前年需求量在2100亿 只左右,占全球金属容器产量的一半还多。 从全球范围来看,全球铝易拉罐市场主要分布在发达国家和地区,全球铝易拉罐的消费比例大约为:北美53%,欧洲(包括澳大利亚、新西兰)19%,南美14%,亚洲14%。从2 0世纪80年代中期以来,欧洲铝易拉罐市场一直呈现稳定增长的趋势,年增幅为5%。在北美,美国是铝易拉罐最主要的产地和消费地,铝易拉罐和易拉罐用铝带材的生产已经比较成熟,并且保持平稳增长。近年来,中南美洲的铝罐消费量也比较大,每年近200亿只; 而亚洲(日本除外)的铝罐年消费量也不下200亿只。 相对于发达国家,我国人均铝易拉罐的消费量还很低,年均只有80多罐/人,而美国已超过400罐/人。因此,我国的铝易拉罐市场发展潜力十分巨大。 由于铝制易拉罐工艺复杂,原材料要求苛刻,我国铝制易拉罐四分之三依靠进口,且国产罐所用的原材料也全部依赖进口,每年共需消耗10亿美元,成为继进口轿车、彩电、冰 箱之后的第四大耗汇大户。 随着国际铝价不断攀升,铝制易拉罐厂家生存日益艰难,我国 25 家铝制制罐企业中已有 3 家先后倒闭。另外,有实验表明,易拉罐在加工过程中,保护性涂料一旦脱落,会导致罐内壁铝合金与饮料接触,铝元素会逐渐溶化,特别是罐中装有带酸性或碱性饮料时对人体危害最大。再加上铝制易拉罐污染环境,国家已出台相应政策,明确表示不再批准新建铝制易拉罐生产线。在此背景下,钢制易拉罐和纸制易拉罐应运而生,成为铝制易拉罐的可替 代产品。

铝质易拉罐成形工艺及模具

铝质易拉罐成形工艺及模具 摘要:对罐体拉伸工序、变薄拉伸工序和底部成形工序进行了分析,并对与这些工序相关的模具在设计和制造中存在的若干关键性技术进行了研究。 关键词:易拉罐;成形工艺;模具;变薄拉伸 1 引言 铝质易拉罐在饮料包装容器中占有相当大的比重。易拉罐的制造融合了冶金、化工、机械、电子、食品等诸多行业的先进技术,成为铝深加工的一个缩影。随着饮料包装市场竞争的不断加剧,对众多制罐企业而言,如何在易拉罐生产中最大限度地减少板料厚度,减轻单罐质量,提高材料利用率,降低生产成本,是企业追求的重要目标。为此,以轻量化(light-weighting)为特征的技术改造和技术创新正在悄然兴起。易拉罐轻量化涉及到许多关键性技术,其中罐体成形工艺和模具技术是十分重要的方面。 2 罐体制造工艺和技术 2.1罐体制造工艺流程 CCB-1A型罐罐体的主要制造工艺流程如下:卷料输送→卷料润滑→落料、拉伸→罐体成形→修边→清洗/烘干→堆垛/卸→涂底色→烘干→彩印→底涂→烘干→内喷涂→内烘干→罐口润滑→缩颈→旋压缩颈。 在工艺流程中,落料、拉伸、罐体成形、修边、缩径、旋压缩径/翻边工序需要模具加工,其中以落料、拉伸和罐体成形工序与模具最为关键,其工艺水平及模具设计制造水平的高低,直接影响易拉罐的质量和生产成本。 2.2罐体制造工艺分析 (1)落料一拉伸复合工序。拉伸时,坯料边缘的材料沿着径向形成杯,因此在塑性流动区域的单元体为双向受压,单向受拉的三向应力状态,如图1所示。由于受凸模圆弧和拉伸凹模圆弧的作用,杯下部壁厚约减薄10%,而杯口增厚约25%。杯转角处的圆弧大小对后续工序(罐体成形)有较大的影响,若控制不好,易产生断罐。因此落料拉伸工序必须考虑以下因素:杯的直径和拉伸比、凸模圆弧、拉伸凹模圆弧、凸、凹模间隙、铝材的机械性能、模具表面的摩擦性能、材料表面的润滑、拉伸速度、突耳率等。突耳的产生主要由2个因素确定:一是金属材料的性能,二是拉伸模具的设计。突耳出现在杯的最高点同时也是最薄点,将会对罐体成形带来影响,造成修边不全,废品率增高。 基于以上分析,确定拉伸工序选择的拉伸比m=36.55%,坯料直径Dp=140.20±0.0lmm,杯直径Dc=88.95

中国易拉罐(二片罐)行业市场现状分析(上海环盟)

中国易拉罐(二片罐)行业市场现状分析

中国易拉罐(二片罐)行业市场现状分析 (3) 4.1 中国铝制易拉罐行业发展现状分析 (3) 4.1.1 中国易拉罐行业的发展历程 (3) 4.1.2 易拉罐行业特征 (4) 4.1.3 替代品的竞争 (5) 4.1.4 铝包装行业竞争对手分析 (5) 4.1.5 广东的易拉罐厂商 (6) 4.2 2012-2017年9月中国二片罐行业发展概况 (6) 4.2.1 中国二片罐生产能力及产量 (6) 4.2.2 中国易拉罐罐料市场分析 (8) 4.2.3 中国钢制二片罐的发展分析 (10) 4.3 2012-2017年9月易拉罐市场发展状况分析 (11) 4.3.1 欧洲研制成功二片罐饮料无菌生产流水线 (11) 4.3.2 成都宝钢“钢制两片罐”正式投产 (12) 4.3.3 昇兴股份二片罐首获百事可乐订货合同 (13) 4.3.4 我国金属包装两片罐生产制造达到国际先进水平 (14) 4.3.5 宝翼制罐成为国内首家同时拥有钢制、铝制两片罐产线企业 (14) 4.3.6 兰州新区开建西北首个易拉罐生产线项目 (15) 4.4 中国二片罐总体运行规模分析 (16) 4.4.1 2012-2017年9月二片罐行业资产与负债状况 (16) 4.4.2 2012-2017年9月中国二片罐行业产值情况 (17) 4.4.3 2012-2017年9月中国二片罐行业市场规模 (18) 4.4.4 2012-2017年9月中国二片罐行业利润总额 (19) 4.5 中国二片罐行业成本费用构成 (19) 4.5.1 2012-2017年9月中国二片罐行业销售成本 (19) 4.5.2 2012-2017年9月中国二片罐行业销售费用 (20) 1

制罐类冲压与模具

铝质易拉罐成形工艺及模具 铝质易拉罐成形工艺及模具 摘要:对罐体拉伸工序、变薄拉伸工序和底部成形工序进行了分析,并对与这些工序相关的模具在设计和制造中存在的若干关键性技术进行了研究。关键词:易拉罐;成形工艺; 模具;变薄拉伸 1 引言 铝质易拉罐在饮料包装容器中占有相当大的比重。易拉罐的制造融合了冶金、化工、机械、电子、食品等诸多行业的先进技术,成为铝深加工的一个缩影。随着饮料包装市场竞争的不断加剧,对众多制罐企业而言,如何在易拉罐生产中最大限度地减少板料厚度,减轻单罐质量,提高材料利用率,降低生产成本,是企业追求的重要目标。为此,以轻量化(light-weighting)为特征的技术改造和技术创新正在悄然兴起。易拉罐轻量化涉及到许多关键性技术,其中罐体成形工艺和模具技术是十分重要的方面。 2 罐体制造工艺和技术 2.1罐体制造工艺流程 CCB-1A型罐罐体的主要制造工艺流程如下:卷料输送→卷料润滑→落料、拉伸→罐体成形→修边→清洗/烘干→堆垛/卸→涂底色→烘干→彩印→底涂→烘干→内喷涂→内烘干→罐口润滑→缩颈→旋压缩颈。 在工艺流程中,落料、拉伸、罐体成形、修边、缩径、旋压缩径/翻边工序需要模具加工,其中以落料、拉伸和罐体成形工序与模具最.为关键,其工艺水平及模具设计制造水平的高 低,直接影响易拉罐的质量和生产成本。 2.2罐体制造工艺分析 (1)落料一拉伸复合工序。拉伸时,坯料边缘的材料沿着径向形成杯,因此在塑性流动区域的单元体为双向受压,单向受拉的三向应力状态,如图1所示。由于受凸模圆弧和拉伸凹模圆弧的作用,杯下部壁厚约减薄10%,而杯口增厚约25%。杯转角处的圆弧大小对后续工序(罐体成形)有较大的影响,若控制不好,易产生断罐。因此落料拉伸工序必须考虑以下因素:杯的直径和拉伸比、凸模圆弧、拉伸凹模圆弧、凸、凹模间隙、铝材的机械性能、模具表面的摩擦性能、材料表面的润滑、拉伸速度、突耳率等。突耳的产生主要由2个因素确定:一是金属材料的性能,二是拉伸模具的设计。突耳出现在杯的最高点同时也是最薄点,将会对罐体成形带来影响,造成修边不全,废品率增高。 基于以上分析,确定拉伸工序选择的拉伸比m=36.55%,坯料直径Dp=140.20±0.0lmm,

宝钢包装:关于新建马来西亚铝制易拉罐生产线项目的公告

证券代码:601968 证券简称:宝钢包装公告编号:2020-025 上海宝钢包装股份有限公司 关于新建马来西亚铝制易拉罐生产线项目的公告 本公司董事会及全体董事保证本公告内容不存在任何虚假记载、误导性陈述或者重大遗漏,并对其内容的真实性、准确性和完整性承担个别及连带责任。 上海宝钢包装股份有限公司(以下简称“宝钢包装”或“公司”)于2020年5月22日召开了第五届董事会第三十二次会议,会议审议并通过了《关于新建马来西亚铝制易拉罐生产线项目的议案》,公司拟在马来西亚新建制罐厂,根据《上海证券交易所股票上市规则》、《公司章程》等规定,本次项目投资事项在公司董事会决策权限内,亦不属于关联交易和重大资产重组事项,无需提交股东大会审议。现将相关情况公告如下: 一、项目背景 为落实公司海外发展战略,优化布局,强化与现有生产基地的区域协同,进一步拓展东南亚市场,公司计划在马来西亚新建易拉罐生产基地。 二、项目概况 1、该项目选址在马来西亚雪兰莪州,将新建一条铝制易拉罐生产线及相关配套设施,项目一期设计产能8亿罐/年。 2、项目建设总投资估算为6,584万美元(约人民币46,088万元)。 3、为配合项目建设的顺利开展,公司以全资子公司完美包装工业有限公司(以下简称“香港公司”)为投资主体,在马来西亚雪兰莪州注册成立全资子公司马来西亚宝钢制罐有限公司(暂定名) 。宝钢包装对香港公司进行等额增资。 4、项目建设资金由马来西亚制罐自筹。 三、对上市公司的影响 本着“先市场、后工厂”的稳健拓展原则,该项目的实施有利于满足公司战略客户的需求,优化公司在海外的战略布局,和进一步拓展东南亚市场,寻求“一带一路”沿线新的的发展机会。

铝合金分类及用途

铝合金的分类一系:1000系列铝合金代表1050、1060 、1100系列。在所有系列中1000系列属于含铝量最多的一个系列。纯度可以达到99.00%以上。由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。目前市场上流通的大部分为1050以及1060系列。1000系列铝板根据最后两位阿拉伯数字来确定这个系列的最低含铝量,比如1050系列最后两位阿拉伯数字为50,根据国际牌号命名原则,含铝量必须达到99.5%以上方为合格产品。我国的铝合金技术标准(gB/T3880-2006)中也明确规定1050含铝量达到99.5%.同样的道理1060系列铝板的含铝量必须达到99.6%以上。二系:2000系列铝合金代表2024、2A16(LY16)、2A02(LY6)。2000系列铝板的特点是硬度较高,其中以铜原属含量最高,大概在3-5%左右。2000系列铝棒属于航空铝材,目前在常规工业中不常应用。三系:3000系列铝合金代表3003 、3A21为主。我国3000系列铝板生产工艺较为优秀。3000系列铝棒是由锰元素为主要成分。含量在1.0-1.5之间,是一款防锈功能较好的系列。四系:4000系列铝棒代表为4A01 4000系列的铝板属于含硅量较高的系列。通常硅含量在4.5-6.0%之间。属建筑用材料,机械零件,锻造用材,焊接材料;低熔点,耐蚀性好,产品描述: 具有耐热、耐磨的特性五系:5000系列铝合金代表5052、5005、5083、5A05系列。5000系列铝棒属于较常用的合金铝板系列,主要元素为镁,含镁量在3-5%之间。又可以称为铝镁合金。主要特点为密度低,抗拉强度高,延伸率高。在相同面积下铝镁合金的重量低于其他系列.在常规工业中应用也较为广泛。在我国5000系列铝板属于较为成熟的铝板系列之一。六系:6000系列铝合金代表6061 主要含有镁和硅两种元素,故集中了4000系列和5000系列的优点6061是一种冷处理铝锻造产品,适用于对抗腐蚀性、氧化性要求高的应用。可使用性好,容易涂层,加工性好。七系:7000系列铝合金代表7075 主要含有锌元素。也属于航空系列,是铝镁锌铜合金,是可热处理合金,属于超硬铝合金,有良好的耐磨性. 目前基本依靠进口,我国的生产工艺还有待提高。八系:8000系列铝合金较为常用的为8011 属于其他系列,大部分应用为铝箔,生产铝棒方面不太常用。九系:9000系列铝合金是备用合金。 铝合金典型用途 1050 食品、化学和酿造工业用挤压盘管,各种软管,烟花粉 1060 要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途1100 用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具 1145 包装及绝热铝箔,热交换器 1199 电解电容器箔,光学反光沉积膜 1350 电线、导电绞线、汇流排、变压器带材 2011 螺钉及要求有良好切削性能的机械加工产品 2014 应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚板和挤压材料,车轮与结构元件,多级火箭第一级燃料槽与航天器零件,卡车构架与悬挂系统零件 2017 是第一个获得工业应用的2XXX系合金,目前的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件 2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件 2036 汽车车身钣金件 2048 航空航天器结构件与兵器结构零件 2124 航空航天器结构件 2218 飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮和压缩机环2219 航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270~300℃。焊

自制无线网卡天线(一)易拉罐和漏斗篇

一、易拉罐天线: 需要准备得工具和原料如下: 1、剪子一把 2、靓工刀一把 3、普通电工胶带适量 4、空易拉罐一只(铁壳铝壳均可,可乐雪碧都可以) 这几样工具都是通常家庭得常备工具 啥?你找不到易拉罐? FT,马上给我到楼下去买一罐雪碧上来,一口气喝完它。 工具和原料备齐以后,咱们就要吧。 首先把易拉罐清洗干净,把里头得水倒掉。接着用靓工刀沿着易拉罐接缝得地儿慢慢切开,参考图片 接下来找到和这条接缝180度相对得还有一点一边,也用靓工刀慢慢切开 接着用剪子慢慢地沿着底边剪半个圆过去,另一头则剪还有一点半个圆,参考图片: 做好以后自己处理一下,主要是清理一下边缘(易拉罐非常锋利)预防日后得使用中弄伤了手。 在罐子底部和顶部开两个孔,和你原来得AP天线非常一下,直径大小可能大于天线一点就行了,套到AP天线上去试一下,必须可以自如地套进去,自然此时候没办法固定,罐子这原因是孔比天线大,只能松松地靠在天线上。:) 将贴不错得半个罐子套到原来得AP天线上试一下松紧程度,可能以能够套进天线而且保持必须得固定能力为准。如果太松得话就再贴部分胶带上去。再试一下旋转这半个罐子,要做到能够旋转自如。象下面相片中是可以得松紧程度: OK 成功 成效大伙尝试一下就了解了,信号有特明显得提升 二、奶粉罐天线: DIY精神是利用手头得资源,发挥第一得做用,咱们身边非常多得金属罐子,奶粉罐是最常见得了。 下面介绍下DIY 奶粉罐天线得过程: 根据测试,首先确定自己DIY得数据: 各数据如下: 中心频点=2.445G 圆筒直径=127mm 圆筒长度=111mm 振子长度=31mm 振子距圆筒底部边距=37mm 你必须能问这数值是哪里来得?微波天线得制做精度很高,起码要达到毫米级,要不非常容易以至天线不可用,由于每个人获得得圆筒不一样,这有一个圆筒天线得通用计算器,可以精确得计算各参数,以此使这款天正在制做上达到实用化! 通用计算器:/antenna2calc.php 从图片可以看出,馈线得屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,自然振子是馈线得芯线了,芯线与金属筒是绝缘得,这点必须得要小心! 非常多爱好者都Like在圆筒加装N座或BNC座,接着在馈线得连接处做对应得N头或BNC 头,用在连接。可mr7感到虽说该办法对使用十分便利,可同时也对信号造成了损耗(估计1-2DBI),特别在2.4G得频段愈加明显!正是这个原因,mr7决定把屏蔽网直接焊在

废旧易拉罐制明矾

废旧易拉罐制明矾 【实验目的】 (1)了解绿色化学理念,学习变废为宝,合理利用废旧易拉罐 (2)了解明矾的制备方法 (3)熟悉普通过滤,抽滤,蒸发结晶等操作 【实验原理】 绿色化学又称“环境无害化学”“环境友好化学”“清洁化学”,是指:在制造和应用化学产品时应有效利用(最好可再生)原料,消除废物和避免使用有毒的和危险的试剂和溶剂。明矾:K2SO4·12H2O,又称白矾,钾矾,钾明矾,无色立方晶体,外表呈八面体,密度1.757g/cm3,熔点92.5C,溶于水,不溶于乙醇。 明矾有抗菌作用,收敛作用,可用作中药,制备铝盐,发酵粉,油漆,鞣料,澄清剂,媒染剂,造纸,防水剂等,还可用于食品添加剂。 易拉罐:铝制易拉罐主要成分有铝,硅以及少量的锰 铝是两性元素,既能溶于酸,又能溶于强碱,将其溶于浓氢氧化钾溶液后得可溶性的四羟基合铝酸钾K[Al(OH)4],再用稀H2SO4调节pH值,可将之转化为氢氧化铝Al(OH)3,氢氧化铝可溶于硫酸,生成硫酸盐。硫酸铝能同碱金属硫酸盐如K2SO4在水溶液中结合生成溶解度较小的同晶复盐,即明矾。冷却溶液时,明矾结晶出来。整个过程涉及的化学方程式有:2Al+2KOH+2H2O==2KAlO2+3H2↑ 2KAlO2+H2SO4+2H2O==2Al(OH)3↓+K2SO4 18H2O+K2SO4+2Al(OH)3+3H2SO4==2KAl(SO4)2·12H2O 利用Al2(SO4)3,K2SO4,KAl(SO4)2在水中溶解度的差异进行分离,用无水乙醇进行溶剂置换使明矾结晶出来。 【实验仪器与试剂】 仪器:100mL烧杯,25mL量筒,10mL量筒,三角漏斗,布氏漏斗,抽滤瓶,表面皿,蒸发皿,电子台秤,磁力搅拌加热器。 试剂:H2SO4(3mol/L),KOH(1mol/L),1:1的H2SO4,K2SO4(s),无水乙醇,pH试纸,易拉罐 【实验步骤】 氢氧化铝的制备 取废旧易拉罐的铝片,打磨并剪碎。 称取1.0g的剪碎的易拉罐,取40mL KOH溶于100mL烧杯中,水浴加热(反应激烈,防止溅出),分批加入碎易拉罐,并不断搅拌至无气泡产生。反应完毕后,趁热用普通三角漏斗过滤 在上述溶液中逐渐加入3mol/L的H2SO4,调节溶液pH为7~8。此时溶液中生成大量的白色氢氧化铝沉淀,用布氏漏斗抽滤并用蒸馏水洗涤。 KAl(SO4)3·12H2O的合成与结晶 取过滤后的固体于蒸发皿,加入1:1H2SO4 8mL,加热溶解,再加入3.2g K2SO4(补充溶液中的K2SO4),加热溶解。 将所得溶液在空气中自然冷却,加入5mL无水乙醇,待结晶完全后,抽滤,用1:1的水-乙醇洗涤晶体 用滤纸将晶体吸干,称重并计算产率

铝制易拉罐项目实施方案

铝制易拉罐项目 实施方案 泓域咨询 规划设计/投资分析/产业运营

报告说明— 易拉罐是一种源于美国的瓶装饮料或啤酒的包装瓶,一般是由轻质、柔软的铝质材料制成,作为包装瓶,易拉罐最大的优点在于密封性好、干净卫生、重量轻。易拉罐在饮料工业、啤酒业和其它食品行业市场需求较高,尤其是在罐装啤酒和饮料行业中占有很重要的地位。 该铝制易拉罐项目计划总投资2898.59万元,其中:固定资产投资2242.38万元,占项目总投资的77.36%;流动资金656.21万元,占项目总投资的22.64%。 达产年营业收入6309.00万元,总成本费用5025.34万元,税金及附加58.60万元,利润总额1283.66万元,利税总额1519.32万元,税后净利润962.75万元,达产年纳税总额556.58万元;达产年投资利润率 44.29%,投资利税率52.42%,投资回报率33.21%,全部投资回收期4.51年,提供就业职位117个。 在有色金属行业中,铝,无论在储量、产量、用量等方面均属前位。铝,从矿石到金属,再到制成品成本极高,耗能巨大。而由废弃金属铝再回收利用,无论从节约资源、缩短生产流程周期,还是从环境保护、改善环境等方面都具有重大意义。

第一章基本信息 一、项目概况 (一)项目名称及背景 铝制易拉罐项目 铝制易拉罐主要用于碳酸饮料和啤酒等具有内压的液体包装。从1985 年重庆长江电工厂全铝易拉罐生产线投产,打开中国生产此类产品的先河。在这二十多年中铝加工业尽最大努力研发与生产铝罐体带材(3104合金),特别是西南铝业做了许多工作,前前后后生产了约18万吨3104带材,终 因受装备制约未能形成批量生产,直到2005年2000mm(1+40)式热轧线投产中国才开始罐体料的批量生产。 随着国民经济的发展和人民生活水平的日益提高,我国饮料工业发展 迅猛,特别是饮料品种,已经由上个世纪70年代以前单一的玻璃瓶装汽水,发展到今天碳酸饮料、天然饮料百花争艳的局面。饮料包装业也随之出现 多元化趋势,打破了过去单一的玻璃容器垄断市场的格局,金属、塑料、 纸等材质相继应用在饮料包装上,金属易拉罐、PET瓶、PP瓶、利乐包、 康美包、屋顶包、黑白膜等包装粉墨登场。 (二)项目选址 某临港经济开发区

相关文档