文档库 最新最全的文档下载
当前位置:文档库 › 北京中考专题复习几何综合

北京中考专题复习几何综合

北京中考专题复习几何综合
北京中考专题复习几何综合

知识框架

几何综合题型一般以基本图形(正方形、特殊平行四边形、等边、等腰、直

角三角形等)为载体,考查运用图形变换(平移、旋转、轴对称)分析图形中基本量之间的数量关系的探究过程。

涉及初中数学九大几何模型:

1、中点类辅助线

2、角平分线、垂直平分线类辅助线

3、相似模型

4、旋转之手拉手模型

5、旋转之对角互补模型

6、旋转之半角模型

7、旋转之构造等边三角形

8、旋转之费马点模型

9、最短距离问题

解题思路:从复杂的图形中“抽”出简单图形,在简单图形中进行逻辑推导,应用相关几何模型,找到解题思路。

知识梳理

中点类辅助线

见中点---倍长中线:

凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。

在△ABC中, AD是BC边中线。

方式1:直接倍长,(图1):延长AD到E,使DE=AD,连接BE

几何综合

例:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE 交AC于F,求证:AF=EF

方式2:间接倍长

1)(图2)作CF⊥AD于F,作BE⊥AD的延长线于E, 连接BE

2)(图3)延长MD到N,使DN=MD,连接CD

例:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF 与EF的大小.

方式3:平行线间线段有中点

如图:AD∥BE,F为DE中点。可构造8字全等△ADF≌△HEF。

例:如图,在矩形ABCD中,BD=BE,F为DE中点。试探究AF与CF之间的位置关系。

例:如图,在平行四边形ABCD中,BC=2AB,M为AD中点,CE⊥AB。

求证:∠EMD=3∠MEA。

见多个中点----构造中位线:

已知三角形的两边有中点,可以连接这两个中点构造中位线;

已知一边中点,可以在另一边上取中点,连接构造中位线;

已知一边中点,过中点作平行线可构造相似三角形.

例:如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD 的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。

见等腰三角形底边中点----连接顶点与中点,构造三线合一

直角三角形斜边中线:直角三角形中,有斜边中点时常作斜边中线;有斜边的倍分关系线段时,也常常作斜边中线

如图,在Rt△ABC中,D为斜边AB的中点,连接CD,则得CD=AD=BD,从而构造出等腰三角形。

角平分线、垂直平分线类辅助线 角平分线:

a 、对称性;

b 、角平分线上的点到角两边的距离相等。 对于有角平分线的题目辅助线的作法,一般有四种。

① 由角的平分线上的一点向角的一边或两边作垂线,利用角平分线性质。 ② 以角的平分线为轴,将图形翻折,在角的平分线两侧构造全等三角形。 ③ 当题设有角平分线及与角平分线垂直的线段,可延长这条线段与角的另一边相交,构成等腰三角形,利用等腰三角形的“三线合一”

④ 过角的一边上的点,作另一边的平行线,构成等腰三角形——“角平分线+平行,必出等腰 ”

例:如下图,在△ABC 中,∠A 的平分线AD 交BC 于点D ,且AB=AD ,CM⊥AD 交AD 的延长线于点M.

垂直平分线:

a 、对称性;

b 、垂直平分线上的点到线段两端点的距离相等。

例:如图,Rt △ ABC 中,∠ACB =90°,AD 平分∠BAC , 作AD 的垂直平分线EF 交AD 于点E ,交BC 的延长线于点F ,交AB 于点G ,交AC 于点H (1)依题意补全图形 (2)求证:∠BAD =∠BFG

(3)试猜想AB ,FB 和FD 之间的数量关系并进行证明

D A

B

C

相似模型

平行A字型、8字型:

斜交A字型、8字型:

共享型(母子型):

双共享型:

双A字型:

一线三等角型:

旋转之手拉手模型

手拉手全等

特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点 结论:(1)△ABC ≌△AB ’C ’ (2)∠BOB ’=∠BAB ’(3)OA 平分∠BOC ’

例:如图在直线ABC 的同一侧作两个等边三角形ABD ?与BCE ?,连结AE 与CD ,证明:(1) DBC ABE ???

(2) DC AE =

(3) AE 与DC 之间的夹角为?

60 (4) DFB AGB ??? (5) CFB EGB ??? (6) BH 平分AHC ∠ (7)

AC GF //

手拉手相似

特点:由两个相似三角形所组成,并且一组等角的顶点为公共顶点 结论:(1)△AOC ∽△BOD (2)∠AEB=∠AOB

例:如图,两个正方形ABCD 与DEFG,连结CE 、AG,二者相交于点H 。 求:(1)AG=CE (2)AG 与CE 之间的夹角为多少度? (3)HD 平分∠AHE

旋转之对角互补模型

对角互补,邻边相等。 (全等型—90°)

【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB

【结论】:①CD=CE ;②

OD+OE=2OC ;③2△OCE △OCD △DCE OC 2

1

S S S =

+= O

A

B

C

E D

N

O

M

A

B

C

E D

※当∠DCE 的一边交AO 的延长线于D 时:

以上三个结论:①CD=CE ;②OE-OD=2OC ;③2△OCD △OCE OC 2

1

S S =-

(全等型—120°) (全等型—任意角)

【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB

【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 4

3

S S S =+=

对角互补模型总结:

①常见初始条件:四边形对角互补,注意两点:四点共圆有直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③注意OC 平分∠AOB 时,

∠CDE=∠CED=∠COA=∠COB 如何引导?

A

O B

C

D

E

旋转之半角模型

角含半角要旋转:构造两次全等

【条件】:①正方形ABCD ;②∠EAF=45°;

【结论】:①EF=DF+BE ;②△CEF 的周长为正方形ABCD 周长的一半; 也可以这样:

【条件】:①正方形ABCD ;②EF=DF+BE ; 【结论】:①∠EAF=45°;

【条件】:①正方形ABCD ;②∠EAF=45°;

【结论】:①EF=DF-BE ;

【条件】:①Rt △ABC ;②∠DAE=45°;

【结论】:222DE CE BD =+;

若∠DAE 旋转到△ABC 外部时,结论2

22DE CE BD =+仍然成立

F

E

D C

B

A G

F

E

D C

B

A A

B

C D E A

B

C

D E F

旋转之构造等边三角形

等边三角形是一个具有丰富性质的完美图形,这些性质为我们解几何题提供了新的理论依据,所以寻找、发现等边三角形是解一些几何题的关键.

例:在四边形ABCD 中,∠ABC=60°,AB=BC ,∠ADC=30°

证明:222

AD CD BD +=。

分析:待证结论让我们联想到勾股定理,需要通过添加辅助线将AD 、CD (作为直角边)和BD (作为斜边)集中到一个直角三角形中。

B

B

B

例: 如图,△ABC 是等边三角形,D ,E 分别是AC ,BC 边上的点,且AD = CE ,连接BD ,AE

相交于点F

(1)∠BFE 的度数是

(2)如果21=AC AD

,那么=BF AF (3)如果时,请用含n 的式子表示AF ,BF 的数量关系,并证明

例: 如图,正方形ABCD ,将边CD 绕点C 顺时针旋转60°,得到线段CE ,连接DE ,AE ,BD 交于点F

(1)求∠AFB 的度数 (2)求证:BF=EF

(3)连接CF ,直接用等式表示线段

AB ,CF ,EF 的数量关系

n

AC

AD

1

=

A

D

B

F

E

旋转之费马点模型

“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点.

若给定一个三角形△ABC 的话,从这个三角形的费马点P 到三角形的三个顶点A、B、C 的距离之和比从其它点算起的都要小.这个特殊点对于每个给定的三角形都只有一个.

问题:如图1,如何找点P 使它到△ABC 三个顶点的距离之和PA+PB+PC 最小?

图文解析:

如图1,把△APC 绕C 点顺时针旋转60°得到△A′P′C,

连接PP′.

则△CPP′为等边三角形,CP= PP′,P A =P′A′,

∴P A+PB+PC=P′A′+ PB+ PP′ B C′.

∵点A′可看成是线段CA 绕 C 点顺时针旋转60°而得到

的定点,BA′为定长。

∴当B、P、P′、A′ 四点在同一直线上时,P A+PB+PC 最小。

∴∠APC=∠A′ P′C=180°-∠CP′P=180°-60°=120°,

∠BPC=180°-∠P′PC=180°-60°=120°,

∠APC=360°-∠BPC-∠APC=360°-120°-120°=120°.

因此,当△ABC 的每一个内角都小于120°时,所求的点P 对三角形每边的张角都是120°,所以三角形的费马点也称为三角形的等角中心.当有一内角大于或等于120°时,所求的P 点就是钝角的顶点.

费马点问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问

题的方法是运用旋转变换.

例:四边形 ABCD 是正方形,△ABE 是等边三角形,M 为对角线 BD(不含 B 点)上任意一点,将 BM 绕点 B 逆时针旋转 600 得到 BN,连接 EN、AM、CM.

(1)求证:△AMB≌△ENB;

(2)当 M 点在何处时,AM+BM+CM 的值最小,并说明理由;

最短距离问题

三角形----两边之和大于第三边型

1.直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小。

2.直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。

3.点P是∠MON内的一点,分别在OM,ON上作点A,B。使△PAB的周长最小。

两点之间的距离----线段最短型

4.点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的周长最小。

点到直线的距离----垂线段最短型

5. .如图,点A是∠MON内的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最小。

典例精讲

【2018西城期末】如图1,在Rt △AOB 中,∠AOB =90°,∠OAB =30°,点C 在线段OB 上, OC =2BC ,AO 边上的一点D 满足∠OCD =30°.将△OCD 绕点O 逆时针旋转α度(90°<α<180°)得到△OC D '',C ,D 两点的对应点分别为点

C ',

D ',连接AC ',BD ',取AC '的中点M ,连接OM .

(1)如图2,当C D ''∥AB 时,α=________°,此时OM 和BD '之间的位置关系为________;

(2)画图探究线段OM 和BD '之间的位置关系和数量关系,并加以证明.

【2018海淀期末】在△ABC 中,∠A =90°,AB =AC .

(1)如图1,△ABC 的角平分线BD ,CE 交于点Q

,请判断“QB =”是否正确:________(填“是”或“否”);

(2)点P 是△ABC 所在平面内的一点,连接P A ,PB ,且PB

=P A .

①如图2,点P 在△ABC 内,∠ABP =30°,求∠P AB 的大小;

②如图3,点P 在△ABC 外,连接PC ,设∠APC =α,∠BPC =β,用等式表示α,β之间的数量关系,并证明你的结论.

图1 图2 图3

P

P

E

D

Q

B C

A

B C

A

B C

A

【2018昌平期末】已知,△ABC 中,∠ACB =90°,AC =BC ,点D 为BC 边上的一点.

(1)以点C 为旋转中心,将△ ACD 逆时针旋转90°,得到△BCE ,请你画

出旋转后的图形;

(2)延长AD 交BE 于点F ,求证:AF ⊥BE ;

(3)若

,BF =1,连接CF ,则CF 的长度为 .

备用图

A

A

C

D

B

B

D

C

【2018丰台期末】如图,∠BAD =90°,AB =AD ,CB =CD ,一个以点C 为顶点的45°角绕点C 旋转,角的两边与BA ,DA 交于点M ,N ,与BA ,DA 的延长线交于点E ,F ,连接AC .

(1)在∠FCE 旋转的过程中,当∠FCA =∠ECA 时,如图1,求证:AE =AF ; (2)在∠FCE 旋转的过程中,当∠FCA ≠∠ECA 时,如图2,如果∠B =30°,CB =2, 用等式表示线段AE ,AF 之间的数量关系,并证明.

E

M

N

F A

C

E

M

N

F

A C

图2

图1

【2018门头沟期末】如图27-1有两条长度相等的相交线段AB 、CD ,它们相交的锐角中有一个角为60°,为了探究AD 、CB 与CD (或AB )之间的关系,小亮进行了如下尝试:

(1)在其他条件不变的情况下使得AD BC ∥,如图27-2,将线段AB 沿AD 方

向平移AD 的长度,得到线段DE ,然后联结BE ,进而利用所学知识得到AD 、CB 与CD (或AB )之间的关系:____________________;(直接写出结果)

(2)根据小亮的经验,请对图27-1的情况(AD 与CB 不平行)进行尝试,写

出AD 、CB 与CD (或AB )之间的关系,并进行证明;

(3)综合(1)、(2)的证明结果,请写出完整的结论: ____-______________________.

图27-1

图27-2

2017年北京中考数学一模28题“几何综合题”

2017年北京中考数学一模28题“几何综合题” 西城28.在△ABC 中,AB =BC ,BD ⊥AC 于点D . (1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F . ①求证:△BEF 是等腰三角形; ②求证:()BF BC BD += 2 1 ; (2)点E 在AB 边上,连接CE . 若()BF BC BD += 2 1 ,在图2.中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路 图1 图2 朝阳28.在△ABC 中,∠ACB =90°,AC <BC ,点D 在AC 的延长线上,点E 在BC 边上,且BE =AD , (1) 如图1,连接AE ,DE ,当∠AEB =110°时,求∠DAE 的度数; (2) 在图2中,点D 是AC 延长线上的一个动点,点E 在BC 边上(不与点C 重合),且BE =AD ,连接AE , DE ,将线段AE 绕点E 顺时针旋转90°得到线段EF ,连接BF ,DE . ①依题意补全图形; ②求证:BF =DE . D D 图1 图2

东城28. 在等腰△ABC中, (1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________; (2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE. ①根据题意在图2中补全图形; ②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论, 形成了几种证明的思路: 思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB; 思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB; 思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG; …… 请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可) (3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明) 图1 图2 图3

中考数学专题突破几何综合

2016年北京中考专题突破几何综合 在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律. 求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算. 1.[2015·北京] 在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D 不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH. (1)若点P在线段CD上,如图Z9-1(a). ①依题意补全图(a); ②判断AH与PH的数量关系与位置关系,并加以证明. (2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果 .........) 图Z9-1 2.[2014·北京] 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F. (1)依题意补全图Z9-2①; (2)若∠PAB=20°,求∠ADF的度数; (3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.

图Z9-2 3.[2013·北京] 在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D. (1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示); (2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明; (3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值. 图Z9-3 4.[2012·北京] 在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ. (1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数; (2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围. 图Z9-4

北京中考数学几何综合题分类讲解

初三数学二模各区县试题归类评析之几何综合题分类讲解 关于二模几何综合题的分类 关于几何综合题的解题方法与技巧 一、关注背景图形和变换操作 1.点的轴对称垂直平分线等线段或等腰△ 2.点或线段的旋转等腰△ 3.共顶点的相似△旋转全等或相似 二、关注特殊条件 例如:中点等腰△三线合一;RT△斜边中线;倍长中线;中位线 三、关注问题 1.角度的计算或两角的关系:三角形或四边形内角和或外角;八字模型,飞镖模型;辅助圆 2.线段的关系:两条线段的关系;三条线段的关系 3.线段的计算:相似,勾股定理,三角函数,解斜△ 经典例题 例1(17海淀期中).在Rt△ABC中,斜边AC的中点M关于BC的对称点为 点O,将△ABC绕点O顺时针 旋转至△DCE,连接BD,BE,如图所示. (1)在①∠BOE,②∠ACD,③∠COE中,等于旋转角的是________(填出 满足条件的角的序号); (2)若∠A=α,求∠BEC的大小(用含α的式子表示); (3)点N是BD的中点,连接MN,用等式表示线段MN与BE之间的数量关系,并证明. E D N M B C A O

例2(18海淀二模). 如图,在等边ABC △中,,D E 分别是边,AC BC 上的点,且 CD CE = ,30DBC ∠

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

初中数学中考几何综合题

中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是 BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2.

北京市中考数学专题突破九:几何综合(含答案)

北京市中考数学专题突破九:几何综合(含答案)

专题突破(九)几何综合 在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律.求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算. 2011-2015年北京几何综合题考点对比

年份20112012201320142015 考点平行四 边形的 性质、 从特殊 到一 般、构 造图形 (全等 三角形 或等边 三角形 或特殊 平行四 边形) 旋转变 换、对 称变 换、构 造全等 三角形 全等三 角形的 判定与 性质、 等边三 角形的 性质, 等腰直 角三角 形旋转 的性质 以轴对 称和正 方形为 载体, 考查了 等腰三 角形、 全等三 角形、 勾股定 理、圆 及圆周 角定理 以正方 形为载 体,考 查了平 移作 图,利 用轴对 称图形 的性质 证明线 段相等 及写出 求线段 长的过 程

1.[2015·北京]在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH. (1)若点P在线段CD上,如图Z9-1(a). ①依题意补全图(a); ②判断AH与PH的数量关系与位置关系,并加以证明. (2)若点P在线段CD的延长线上,且∠AHQ =152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果 .........)

2018 初三数学中考复习 几何作图 专项复习练习题 含答案

2018 初三数学中考复习 几何作图 专项复习练习题 1.下列尺规作图,能判断AD 是△ABC 边上的高是( B ) 2. 如图,已知在Rt △ABC 中,∠ABC =90°,点D 是BC 边的中点,分别以B ,C 为圆心,大于线段BC 长度一半的长为半径画弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连结BE ,则下列结论:①ED ⊥BC ,②∠A =∠EBA , ③EB 平分∠AED ,④ED =12AB 中,一定正确的是( B ) A .①②③ B .①②④ C .①③④ D .②③④ 3.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半 径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长 为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( D )

①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △ABC =1∶3. A .1个 B .2个 C .3个 D .4个 4. 任意一条线段EF ,其垂直平分线的尺规作图痕迹如图所示.若连结EH ,HF ,FG ,GE ,则下列结论中,不一定正确的是( B ) A .△EGH 为等腰三角形 B .△EGF 为等边三角形 C .四边形EGFH 为菱形 D .△EHF 为等腰三角形 5.如图,分别以线段AC 的两个端点A ,C 为圆心,大于12 AC 的长为半径画弧,两弧相交于B ,D 两点,连结BD ,AB ,BC ,CD ,DA ,以下结论:①BD 垂直平分AC ,②AC 平分∠BAD,③AC =BD ,④四边形ABCD 是中心对称图形.其中正确的有( C ) A .①②③ B .①③④ C .①②④ D .②③④ 6.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于 点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12 MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )

2020北京中考数学几何解答样题库

2020北京中考数学几何解答样题库 01如图1,等边三角形ABC 中,D 为BC 边上一点,满足BD CD <,连接AD ,以点A 为中心将射线AD 顺时针旋转60?,与ABC 的外角平分线BM 交于点E . (1)依题意补全图1; (2)求证:AD AE =; (3)若点B 关于直线AD 的对称点为F ,连接CF . ①求证://AE CF ; ②若BE CF AB +=成立,直接写出BAD ∠的度数为 ° 02△ABC 中,AB =BC ,∠ABC =90°,将线段AB 绕点A 逆时针旋转α(0°<α <90°) 得到线段AD .作射线BD ,点C 关于射线BD 的对称点为点E .连接AE ,CE . (1)依题意补全图形; (2)若α=20°,直接写出∠AEC 的度数; (3)写出一个α的值,使AE =2时,线段CE 的长为31-,并证明.

3△ABC中,AB=BC,∠ABC=90°,将线段AB绕点A逆时针旋转α(0°<α <90°)得到线段AD.作射线BD,点C关于射线BD的对称点为点E.连接AE,CE.(1)依题意补全图形; (2)若α=20°,直接写出∠AEC的度数; ,并证明. (3)写出一个α的值,使AE=2时,线段CE的长为31

4点C 为线段AB 上一点,以AC 为斜边作等腰ADC Rt Δ,连接BD ,在ABD Δ外侧,以BD 为斜边作等腰Rt BED △,连接EC . (1)如图1,当30DBA =?∠时: ① 求证:AC BD =; ② 判断线段EC 与EB 的数量关系,并证明; A 图1 (2) 如图2,当°45<∠<°0DBA 时,EC 与EB 的数量关系是否保持不变? 对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路: 想法1: 尝试将点D 为旋转中心. 过点D 作线段BD 的垂线,交BE 延长线于点G ,连接 CG ;通过证明三角形ADB Δ≌CDG Δ全等解决以上问题; 想法2: 尝试将点D 为旋转中心. 过点D 作线段AB 的垂线,垂足为点G ,连接EG .通过证明ADB Δ∽GDE Δ解决以上问题; 想法3:尝试利用四点共圆. 过点D 作AB 垂线段DF ,连接EF ,通过证明D 、F 、B 、E 四点共圆,利用圆的相关知识解决以上问题. 请你参考上面的想法,证明EC =EB (一种方法即可) 图2 E A C

重庆中考数学几何证明题--(专题练习+答案详解)

2015年重庆中考数学24题专题练习 1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点. (1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF. (1)当CE=1时,求△BCE的面积; (2)求证:BD=EF+CE. 4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥CA,交CD于点F,连接OF. (1)求证:OF∥BC; (2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6. (1)求线段CD的长; (2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.

6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°. (1)若AB=6cm,,求梯形ABCD的面积; (2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF. 7、已知:如图,ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E. (1)求证:AE=ED; (2)若AB=BC,求∠CAF的度数.

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

中考数学几何压轴题辅助线专题复习

中考压轴题专题几何(辅助线) 精选1.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.精选2.如图,△ABC中,∠C=60°,∠CAB与∠CBA的平分线AE,BF相交于点D, 求证:DE=DF. 精选3.已知:如图,⊙O的直径AB=8cm,P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC. (1)若∠ACP=120°,求阴影部分的面积; (2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,∠CMP的大小是否发生变化若变化,请说明理由;若不变,求出∠CMP的度数。 精选4、如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4,点O是斜边AB上一动点,以OA为半径作⊙O与AC边交于点P, (1)当OA=时,求点O到BC的距离; (2)如图1,当OA=时,求证:直线BC与⊙O相切;此时线段AP的长是多少 (3)若BC边与⊙O有公共点,直接写出OA的取值范围; (4)若CO平分∠ACB,则线段AP的长是多少 . 精选5.如图,已知△ABC为等边三角形,∠BDC=120°,AD平分∠BDC, 求证:BD+DC=AD. 精选6、已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(第6题图) (1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1:4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化若变化,说明理由;若不变,求出线段EF的长度. 精选7、如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF. (1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立若成立,加以证明;若不成立,请说明理由; (2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少

最新中考数学几何综合压轴题专题分类训练(含参考答案)

最新中考数学几何综合压轴题专题分类训练 第1课时 与全等相关的证明和计算 1.已知:如图,在?ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O. (1)求证:△ABE≌△CDF; (2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由. 2.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E,F. (1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO.

3.已知Rt△OAB中,∠AOB=90°,扇形OEF中,∠EOF=30°,且OA=OB=OE.将Rt△AOB 的边与扇形OEF的半径OE重合,拼接成图1所示的图形,现将扇形OEF绕点O按顺时针方向旋转,得到扇形OE′F′,设旋转角为α(0°<α<180°). (1)如图2,当0°<α<90°,且OF′∥AB时,求α; (2)如图3,当α=120°时,求证:AF′=BE′. 4.(·唐山路北区模拟)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB 边是靠近点C的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN. (1)求证:AM=BN; (2)当MA∥CN时,试求旋转角α的余弦值.

第2课时 解三角形和三角形相似 1.(·北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)若∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 2.(·白银)如图,已知EC∥AB, ∠EDA=∠ABF. (1)求证:四边形ABCD为平行四边形; (2)求证:OA2=OE·OF.

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

北京市2018年中考数学二模试题汇编几何综合题无答案_171

几何综合题 2018昌平二模 27.如图,在△ABC 中,AB =AC >BC ,BD 是AC 边上的高,点C 关于直线BD 的对称点为点E ,连接BE . (1) ①依题意补全图形; ②若∠BAC =α,求∠DBE 的大小(用含α的式子表示); (2) 若DE =2AE ,点F 是BE 中点,连接AF ,BD =4,求AF 的长. (备用图) 2018朝阳二模 27.如图,在△ABC 中,AB=AC ,∠BAC =90°,M 是BC 的中点,延长AM 到点D ,AE = AD ,∠EAD =90°,CE 交AB 于点F ,CD =DF . (1)∠CAD = 度; (2)求∠CDF 的度数; (3)用等式表示线段CD 和CE 之间的数量关系,并证明. D C B A D C B A

2018东城二模 27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP . (1) ∠BPC 的度数为________°; (2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD . ①依题意,补全图形; ②证明:AD +CD =BD ; (3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积. 2018房山二模 27. 已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连接CB . (1)直接写出∠D 与∠MAC 之间的数量关系; (2)① 如图1,猜想AB ,BD 与BC 之间的数量关系,并说明理由; ② 如图2,直接写出AB ,BD 与BC 之间的数量关系; (3)在MN 绕点A 旋转的过程中,当∠BCD =30°,BD= 2 时,直接写出BC 的值. 图1 图2

中考数学几何专题训练

专题八圆

8.正多边形的有关计算: (1)中心角n ,半径R N ,边心距r n ,边长a n ,内角n ,边数n;公式举例: (1) n = n 360 ;

(2)有关计算在Rt ΔAOC 中进行. (2) n 1802n ? = α 二 定理: 1.不在一直线上的三个点确定一个圆. 2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角 三 公式: 1.有关的计算: (1)圆的周长C=2πR ;(2)弧长L= 180 R n π;(3)圆的面积S=πR 2 . (4)扇形面积S 扇形 =LR 2 1 360R n 2=π; (5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 圆柱侧(2)圆锥的侧面积:S 圆锥侧 =LR 21 =πrR. (L=2πr ,R 是圆锥母线长;r 是底面半径) 四 常识: 1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心 两边中垂线的交点 三角形的外接圆的圆心; 三角形的内心 两内角平分线的交点 三角形的内切圆的圆心.

A B C 第5 A B C 第6 O E 4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径) 直线与圆相交 d <r ; 直线与圆相切 d=r ; 直线与圆相离 d >r. 5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r ) 两圆外离 d >R+r ; 两圆外切 d=R+r ; 两圆相交 R-r <d <R+r ; 两圆内切 d=R-r ; 两圆内含 d <R-r. 6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线. 圆中考专题练习 一:选择题。 1. (2010红河自治州)如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的 度数为( ) ° ° ° ° 2、(11哈尔滨).如上图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ). (A )22 (B )32 (C )5 (D )53 3、(2011陕西省)9.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有( ) A 1个 B 2个 C 3个 D 4个 4、(2011),安徽芜湖)如图所示,在圆O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( ) A .19 B .16 C .18 D .20 5、(11·浙江湖州)如图,已知在Rt △ABC 中,∠ BAC =90°,AB =3, BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所 得圆锥的侧面积等于 ( )

初中数学中考几何综合题[1]

页眉内容 中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

2020北京中考数学几何逻辑推理样题库

2020北京中考数学几何逻辑推理样题库 01.对于题目:“如图1,平面上,正方形内有一长为12 、宽为6 的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14. 乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14. 丙:如图4,思路是当x为矩形的长与宽之和的 倍时就可移转过去;结果取n=13. 2 甲、乙、丙的思路和结果均正确的是. 02.四边形ABCD的对角线AC,BD交于点O,点M,N,P,Q分别为边AB,BC,CD,DA的中点.有下列四个推断, ①对于任意四边形ABCD,四边形MNPQ都是平行四边形; ②若四边形ABCD是平行四边形,则MP与NQ交于点O; ③若四边形ABCD是矩形,则四边形MNPQ也是矩形; ④若四边形MNPQ是正方形,则四边形ABCD也一定是正方形. 03.如果四边形有一组对边平行,且另一组对边不平行,那么称这样的四边形为梯形,若梯 形中有一个角是直角,则称其为直角梯形. 下面四个结论中, ①存在无数个直角梯形,其四个顶点分别在同一个正方形的四条边上; ①存在无数个直角梯形,其四个顶点在同一条抛物线上; ①存在无数个直角梯形,其四个顶点在同一个反比例函数的图象上; ①至少存在一个直角梯形,其四个顶点在同一个圆上. 所有正确结论的序号是.

4 . ? A B C D 中 , 对角线 A C 、 B D 相交于 点 O , E ①对于动点 E ,四边形 AEC F 始终是平行四边形; ①若①ABC <90°,则至少存在一个点 E ,使得四边形 AECF 是矩形; ①若 AB >AD ,则至少存在一个点 E ,使得四边形 AECF 是菱形; ①若①BAC = 45°,则至少存在一个点 E ,使得四边形 AECF 是正方形. 以上所有正确说法的序号是 . 05. 06.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合),对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是 . 07. 如图,分别过第二象限内的点P 作x ,y 轴的平行线,与y ,x 轴分别交于点A ,B ,与双曲线 分别交于点C ,D .下面三个结论, ①存在无数个点P 使S △AOC =S △BOD ; ②存在无数个点P 使S △POA =S △POB ; ③存在无数个点P 使S 四边形OAPB =S △ACD . 所有正确结论的序号是 .

中考数学综合专题训练【几何综合题

中考数学综合专题训练【几何综合题 中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线

解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解 决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形 1

初中数学几何图形综合题

初中数学几何图形综合题 必胜中学2018-01-30 15:15:15 题型专项几何图形综合题 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.

类型1操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC;

相关文档
相关文档 最新文档