文档库 最新最全的文档下载
当前位置:文档库 › (完整版)解析几何知识点总结

(完整版)解析几何知识点总结

(完整版)解析几何知识点总结
(完整版)解析几何知识点总结

抛物线的标准方程、图象及几何性质:0>p

1、定义:

2、几个概念:

① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的1

4

③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p

3、如:AB 是过抛物线)0(22

>=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证:

(1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥;

(4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则2

21p y y -=,2

214

1p x x =; (6)p

FB FA 2|

|1

|

|1=

+; (7)D O A ,,三点在一条直线上

(8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||2

1||AB EF =,||||||2

FB FA ME ?=;

1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。

注意: a PF PF 2||||

21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹;

2、 双曲线的标准方程

①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22

221y x a b

-= (a>0,b>0);

③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2

-ny 2

=1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线:

①求双曲线12

2

22

=-b y a x 的渐近线,可令其右边的1为0,即得022

22=-b y a x ,因式分解得到。②与双曲线1222

2

=-b y a x 共渐近线的双曲线系方程是λ=-2222b

y a x ;

4、等轴双曲线: 为2

22t y x =-,其离心率为2 5、共轭双曲线: 6、几个概念:

①焦准距:b 2

c ; ②通径:2b 2

a ; ③等轴双曲线x 2-y 2=λ (λ∈R,λ≠0):渐近线是y=±x,离心率为:2 ;④22

221x y a b

-=焦点三角形的面积:b 2

cot θ2 (其中∠F 1PF 2=θ);

⑤弦长公式:c 2

=a 2

-b 2

,而在双曲线中:c 2

=a 2

+b 2

,

8、双曲线中的定点、定值及参数的取值范围问题:

①定点、定值问题:通常有两种处理方法:第一种方法?是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法?是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法?根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式再得出参数的变化范围;第二种是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围。

关于椭圆知识点的补充: 1、椭圆的标准方程:

① 焦点在x 轴上的方程:22221x y a b += (a>b>0); ②焦点在y 轴上的方程:22

221y x a b

+= (a>b>0);

③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2

+ny 2

=1(m>0,n>0); ④、参数方程:cos sin x a y b φ

φ=??=?

2、椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)10(<

d =

e (椭圆的焦半径公式:|PF 1|=a+ex 0, |PF 2|=a-ex 0)

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距;定直线叫做准线。 常数叫做离心率。 注意: ||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹;

3、 焦准距:b 2

c ; 4、通径:2b 2

a ; 5、点与椭圆的位置关系; 6、22

221x y a b

+=焦点三角形的面积:b 2

tan θ2 (其中∠F 1PF 2=θ);

7、弦长公式:; 8、 椭圆在点P (x 0,y 0)处的切线方程:

00221x x y y

a b

+=; 9、直线与椭圆的位置关系:

凡涉及直线与椭圆的问题,通常设出直线与椭圆的方程,将二者联立,消去x 或y ,得到关于y 或x 的一元二次方程,再利用根与系数的关系及根的判别式等知识来解决,需要有较强的综合应用知识解题的能力。 10、椭圆中的定点、定值及参数的取值范围问题:

①定点、定值问题:通常有两种处理方法:第一种方法?是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法?是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。 ③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法?根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式(组)得出参数的变化范围;第二种?是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围

椭圆图象及几何性质:

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

第六章-空间解析几何要求与练习(含答案)

第六章 要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. 3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 7、了解空间曲线在坐标平面上的投影,会求其方程. 二、练习 1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB 的模;(3)AB 的方向余弦;(4)AB 方向上的单位向量. 解:(1)()3,8,2AB =-,AB 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的 分向量2k ;(2)AB = ;(3)AB ; (4)AB 382) i j k -++. 2、设向量a 和b 夹角为60o ,且||5a =,||8b =,求||a b +,||a b -. 解:()2 220||||||2||||cos60a b a b a b a b += +=++= ( ) 2 220||||||2||||cos60a b a b a b a b -= -=+-=7. 3、已知向量{2,2,1}a =,{8,4,1}b =-,求 (1)平行于向量a 的单位向量; (2)向量b 的方向余弦. 解(1)2223a = +=平行于向量a 的单位向量221 {,,}333±; (2)2849b =+=,向量b 的方向余弦为:841,,999 -. 4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求 (1)垂直于a 和b 的单位向量; (2)向量a 在b 上的投影;

高中解析几何知识点

曲线与方程 (2)求曲线方程的基本方法 直线 一、直线的倾斜角与斜率 1、倾斜角的概念:(1)倾斜角:当直线 与x 轴相交时,取x 轴作为基准,x 轴正向与直线 向上方向之间所成的角 叫做直线 的倾斜角。 (2)倾斜角的范围:当 与x 轴平行或重合时,规定它的倾斜角 为0°因此0°≤ <180°。 2、直线的斜率 (1)斜率公式:K=tan ( ≠90°) (2)斜率坐标公式:K=12 1 2x x y y -- (x1≠x 2) (3)斜率与倾斜角的关系:一条直线必有一个确定的倾斜角,但不一定有斜率。当 =0°时,k=0;当0°< <90°时,k >0,且 越大,k 越大;当 =90°时,k 不存在;当90°< <180°时,k <0,且 越大,k 越大。 二、两直线平行与垂直的判定 1、两直线平行的判定: (1)两条不重合的直线的倾斜角都是90°,即斜率不存在,则这两直线平行; (2)两条不重合的直线,若都有斜率,则k1=k2 1 ∥2 2、两直线垂直的判定:

已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程. 已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为11 12122121(,) y y x x x x y y y y x x --=≠≠--, 由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式 已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1 =+b y a x 叫做直线 的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距. 关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 已知平面上两点111222(,),(,)P x y P x y ,则22122121()()PP x x y y =-+-. 特殊地:(,)P x y 与原点的距离为 22 OP x y =+. 直线名称 已知条件 直线方程 使用范围 点斜式 111(,),P x y k 11() y y k x x -=- k 存在 斜截式 b k , y kx b =+ k 存在 两点式 ) ,(11y x (),22y x 11 2121 y y x x y y x x --= -- 12x x ≠ 12y y ≠ 截距式 b a , 1x y a b += 0a ≠ 0b ≠

空间解析几何考题

《 空 间 解 析 几 何 》 试卷A 班级: 姓名: 学号: 分数: 我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。 试卷共 5 页,请先查看试卷有无缺页,然后答题。 一.选择题(每小题3分,共10分) 1. 平面的法式方程是 ( ). A. 0=+++D Cz By Ax B. 1=++r z q y p x C. ()0,1cos cos cos 0cos cos cos 2 2 2 >=++=-++p p z y x γβαγβα其中 D. ()0,1cos cos cos 0 cos cos cos 2 22>=++=+++p p z y x γβαγβα其中 2. 两向量 21,n n 互相垂直的充要条件是 ( ). A. 021=?n n B. 021=?n n C. 21n n λ=. D. 以上都不对 3. 平面 0:11111=+++D z C y B x A π 与平面 0:22222=+++D z C y B x A π 互相垂直 的充要条件是 ( ). A. 2 12 12 1C C B B A A == B. 0212121=++C C B B A A C. 021212121=+++D D C C B B A A D. 以上都不对. 4. 1 11 11 11: n z z m y y l x x l -= -= -与2 22 22 22: n z z m y y l x x l -= -= -是异面直线,则必有 ( ). A.0212121=++n n m m l l B. 0212121≠++n n m m l l C. 021212122 2 1 11 =---z z y y x x n m l n m l D. 02 1212122 2 1 11 ≠---z z y y x x n m l n m l . 5. 若向量γβα ,,线性无关,则在该向量组中必有 ( ) A. 每个向量都可以用其它向量表示。 B. 有某个向量可以用其它向量表示。

解析几何常用知识点总结

“解析几何”一网打尽 (一)直线 1.[)?? ? ??≠≠--= =∈2112122tan 0x x x x y y k l ,,,直线的倾斜角πααπα 2.直线的方程 (1)点斜式 11() y y k x x -=- (直线l 过点 111(,) P x y ,且斜率为k ). (2)斜截式 y k x b =+(b 为直线l 在y 轴上的截距). (3)一般式 0A x B y C ++=(其中A 、B 不同时为0). 特别的:(1)已知直线纵截距,常设其方程为或;已知直线横截距,常设其方程为 (直线斜率k 存在时,为k 的倒数)或.知直线过点,常设其方程为 或 (2)直线在坐标轴上的截距可正、可负、也可为0. 直线两截距相等 直线的斜率为-1或直线过原点; 直线两截距互为相反数 直线的斜率为1或直线过原点; 直线两截距绝对值相等 直线的斜率为或直线过原点. (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合. 3、几个距离公式 (1)两点间距离公式: 1122(,)(,)A x y B x y A B =点点 (2)00(,)x y P 到直线0A x B y C ++= 的距离为d = 特别地,当直线L: 0x x =时,点P (00,x y )到L 的距离0d x x =-; 当直线L: 0y y =时,点P (00,x y )到L 的距离0d y y =-. (3). 两平行线间的距离公式:设1122:0,:0,l A x B y C l A x B y C d ++=++==则4.两直线的位置关系:; ;重合 5.三角形的重心坐标公式 :△ABC 三个顶点的坐标分别为11A (x ,y )、22B (x ,y )、33C (x ,y ),则△ABC 的重心的坐标是123 123 (, )3 3 x x x y y y G ++++. b y k x b =+0x =0x x m y x =+m 0y =00(,) x y 00 ()y k x x y =-+0 x x =???1±1 2121212121()0 l l k k k k A A B B ⊥?=-?+=、都存在时{ { 12 1221121212 1221 //()k k A B A B l l k k b b A C A C ==? ? ≠≠、都存在时

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

向量代数与空间解析几何-期末复习题-高等数学下册

第七章 空间解析几何 一、选择题 1.在空间直角坐标系中,点( 1,— 2, 3 )在[D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2 2 2.方程2x y 2在空间解析几何中表示的图形为 [C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 X —1 y + 1 z +1 ” _x + y _1 = 0 3.直线11 j 与 >2 : — —> 的夹角是[C ] 4 2 3 x+y+z-2=0 A Ji n n A.— B. — C.— D. 0 4 3 2 4.在空间直角坐标系中,点(1, 2,3 )关于xoy 平面的对称点是[D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) A. 2 2 2 a b (a ?b) B. a 2 b 2=(a b)2 C. 2 2 (a 叱)=(a b) 2 2 2 2 D. (a *b) (a b) =a b 已知a,b 为不共线向量,则以下各式成立的是 D 5.将xoz 坐标面上的抛物线 z =4x 绕z 轴旋转一周,所得旋转曲面方程是 [B ] A. z 2 二 4(x y) B. z 2 _ _4.. x 2 y 2 C. y 2 z 2 =4x D. 2 2 y z = 4x 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是 2 C. 3 关于 [B ] A 1 1 A. B.— 3 3 7.在空间直角坐标系中,点( B. (1,-2,3) D. (1,2,-3) A. (-1,2,3) C. (-1,-2,3) 1,2,3) 2 D.— 3 yoz 平面的对称点是[A ] 2 2 8.方程—2 弓二z , a 2 b 2 表示的是[B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D.球面 9.已知 a ={0, 3, 4}, b ={2, 1, -2}, 则 proj a b =[ C ] A. 1 3 B. 3 C. -1 D. 1 10.

《空间解析几何2》教学大纲.

《空间解析几何2》教学大纲 课程编号:12307229 学时:22 学分:1.5 课程类别:限制性选修课 面向对象:小学教育专业本科学生 课程英语译名:In terspace An alytic Geometry (2) 一、课程的任务和目的 任务:本课程要求学生熟练掌握解析几何的基本知识和基本理论,正确地理解和使用向 量代数知识,并解决一些实际问题。深刻理解坐标观念和曲线(面)与方程相对应的观念,熟练掌握讨论空间直线、平面、曲线、曲面的基本方法,训练学生的空间想象能力和运算能力。 目的:通过本课程的学习,使学生掌握《空间解析几何》的基本知识、基本思想及基本方法,培养学生的抽象思维能力及空间想象力,培养学生用代数方法处理几何问题的能力,提高学生从几何直观分析问题和和解决问题的能力。为学习《高等代数》及《数学分析》及后继课程打下坚实基础,为日后胜任小学教学工作而作好准备。 二、课程教学内容与要求 (一)平面与空间直线(14学时) 1.教学内容与要求:本章要求学生熟练掌握平面与空间直线的各种形式的方程,能判别空间有关点、直线与平面的位置关系,能熟练计算它们之间的距离与交角。 2?教学重点:根据条件求解平面和空间直线的方程,及点、直线、平面之间的位置关系 3?教学难点:求解平面和空间直线的方程。 4.教学内容: (1)平面的方程(2课时):掌握空间平面的几种求法(点位式、三点式、点法式、一般式)。 (2)平面与点及两个平面的相关位置(2课时):掌握平面与点的位置关系及判定方法;掌握空间两个平面的位置关系及判定方法。 (3)空间直线的方程(2课时):掌握空间直线的几种求法(点向式、两点式、参数式、一般式、射影式)。 (5)直线与平面的相关位置(2课时):掌握空间直线与平面的位置关系及判定方法。 (6)空间两直线的相关位置(2课时):掌握空间两直线的位置关系及判定方法。 (7)空间直线与点的相关位置(2课时):掌握直线与点的位置关系及判定方法。 (8)平面束(2课时):掌握平面束的定义(有轴平面束和平行平面束),并能根据题意求平面束的方程。 (二)特殊曲面(8学时)

03级空间解析几何期末试卷B

2003--2004学年第一学期补考试题(卷) 03级数教《空间解析几何》 一、选择题:本大题共10个小题,每小题2分,共20分。在每小题给出的四 个选项中,只有一项是符合题目要求的。 1、若a ,b ,c 共面, c ,d ,e 共面,则a , c , e ( ) (A )不一定共面 (B )一定共面 (C )一定不共面 (D )一定共线 2、关于零矢量的描述不正确的是 ( ) (A )模不定 ( B )方向不定 ( C )模为零 ( D )模定方向不定 3、i i j j k k ?+?+?= ( ) (A )0 (B )3 (C )1 (D )0 4、若a ,b ,c 两两互相垂直,且模均为1,则a +b +c 的模为 ( ) (A (B )3 (C )0 (D )1 5、平面的法式方程中的常数项必满足 ( ) (A )≤0 (B )≥0 (C )< 0 (D )>0 6、将平面方程Ax+By+Cz=0化为法式方程时,法式化因子的符号 ( ) (A )任意 (B )与B 异号 (C )与A 异号 (D )与C 异号 7、直线通过原点的条件是其一般方程中的常数项D 1,D 2必须满足 ( ) (A )D 1=D 2=0 (B )D 1=0,D 2≠0 (C )D 1≠0,D 2=0 (D )D 1≠0,D 2≠0 8、两平面2x+3y+6z+1=0与4x+6y+12z+1=0之间的距离是 ( ) (A )0 (B )1 2 (C )1 7 (D ) 114 9、设一直线与三坐标轴的夹角为,,λμν则下列式子中不成立的是 ( ) (A )2 2 2 sin sin sin 1λμν++= (B )2 2 2 cos cos cos 2λμν++= (C )222cos cos cos 1λμν++= (D ) 222sin ()sin ()sin ()1πλπμπν-+-+-= 10、下列方程中表示双曲抛物面的是 ( ) (A )222x y z += (B )2232x y z -= (C )222x y z -= (D )222x y z += 二、填空题:本大题共10小题,每小题2分,共20分。把答案填在题中横线上。 1、平行于同一直线的一组矢量叫做 矢量。 2、三矢量不共面的充要条件是 。 3、 叫方向余弦。 4、两矢量a ⊥b 的充要条件是 。 5、给定直线000 : x x y y z z l ---== XYZ 和平面:0Ax By Cz D π+++=,则l π与平行的充要条件是 。 6、给定直线 111 1111: x x y y z z l X Y Z ---==与2222222 :x x y y z z l ---==XYZ则12l l 与异面的充要条件是 。 7、在空间过一点且与定曲线相交的一族直线所产生的曲面叫做 。 8、在直角坐标系下,单叶双曲面的标准方程是 。 9、柱面,锥面,椭球面,单叶(双叶)双曲面,椭圆(双曲)抛物面是直纹曲面的 有 。 10、单叶双曲面过一定点的直母线有 条。 三、判断题:本大题共10小题,共10分,正确的打”√”,错误的打”×”。 1、若a ,b 共线, b ,c 共线,则a ,c 也共线。 ( ) 2、自由矢量就是方向和模任意的矢量。 ( ) 3、若a ⊥b , 则|a +b |=|a -b |。 ( ) 4、若a ,b 同向,则|a -b |=|a |+|b |。 ( ) 5、若a ,b 反向,则|a +b |=|a |-|b |。 ( ) 6、两坐标面xoy 与yoz 所成二面角的平分面方程是x+y=0。 ( ) 7、第Ⅴ卦限内点(x,y,z)的符号为(+,+,-)。 ( ) 8、(a ,b ,c )=(c ,b ,a )。 ( ) 9、点到平面的离差等于点到平面的距离。 ( ) 10、将抛物线220 y pz x ?=?=?绕z 轴旋转所得曲面方程为222x y pz +=( ) 四、解答题:本大题共5小题,共50分,解答应写出文字说明,证明过程或演算步骤。

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

向量代数与空间解析几何期末复习题高等数学下册

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141: 1+= +=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=

C. x z y 422=+ D. x z y 422±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程22 222x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知a ={0, 3, 4}, b ={2, 1, -2},则=b proj a [ C ] A. 3 B.3 1- C. -1 10.已知,a b 为不共线向量,则以下各式成立的是 D A. 222()a b a b =? B. 222()a b a b ?=? C. 22()()a b a b ?=? D. 2222()()a b a b a b ?+?= 11.直线1l 的方程为0 3130290 x y z x y z ++=?? --=?,直线2l 的方程为

空间解析几何简介

153 自测题七解答 一、填空题(本题共2小题,每空3分,满分33分) 1.点)4,1,2(--位于第( Ⅵ )卦限;关于y 轴的对称点是( (2,1,4) );到z O x 平面的距离是( 1 ). 2.下列方程:(1)0222=--z y x ;(2)044222=+-+xy z y x ;(3) z y x 364922-=+; (4) 1=x ;(5)364922=+z x ;(6)1222=+-z y x 中, 方程( (4) )和( (5) )表示柱面;方程( (1) )和( (6) )表示旋转曲面;方程( (6) )表示旋转双曲面;方程( (3) )表示椭圆抛物面;方程( (1) )表示锥面;方程( (2) )表示两个平面. 二、单项选择题(本题共4小题,每小题3分,满分12分) 1.下列点在球面02222=-++z z y x 内部的是〖 C 〗. (A ) )2,0,0(; (B ) )2,0,0(-; (C ) ()5.0,5.0,5.0; (D ) ()5.0,5.0,5.0-. 2.方程组22 1,492.x y y ?+=???=? 在空间解析几何中表示〖 B 〗. (A ) 椭圆柱面; (B ) 两平行直线; (C ) 椭圆; (D ) 平面. 3.圆? ??=--+=++-+-09336)1()7()4(222z y x z y x 的中心M 的坐标为〖 A 〗. (A ) )0,6,1(; (B ) )1,7,4(-; (C ) )0,1,6(; (D ) )1,6,0(. 提示:只有点)0,6,1(到球心)1,7 ,4(-(球心)1,7,4(-到平面的距离). 4.下列平面通过z 轴的是〖 D 〗. (A ) 013=-y ;(B ) 0632=--y x ;(C ) 1=+z y ;(D ) 03=-y x . 三、(本题满分15分) 求过点)2,0,1(1M 、)3,1,0(2M 且平行于z 轴的平面方程. 解 因为平面平行于z 轴,所以设平面的方程为0Ax By D ++=(缺z 项). 又点)2,0,1(1M 、)3,1,0(2M 在平面上,所以00A D B D +=??+=?,得A D B D =-??=-?. 则平面方程为0Dx Dy D --+= (0D ≠),即 10x y +-=. 四、(本题满分15分)求母线平行于x 轴,且通过曲线???=+-=++0 162222222z y x z y x 的柱面方程.

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

解析几何知识点总结

抛物线的标准方程、图象及几何性质:0>p

1、定义: 2、几个概念: ① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的1 4 ; ③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p 3、如:AB 是过抛物线)0(22 >=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证: (1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥; (4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则2 21p y y -=,2 214 1p x x =; (6)p FB FA 2| |1 | |1= +; (7)D O A ,,三点在一条直线上 (8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||2 1||AB EF =,||||||2 FB FA ME ?=;

1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。 注意: a PF PF 2|||| 21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; 2、 双曲线的标准方程 ①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22 221y x a b -= (a>0,b>0); ③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2 -ny 2 =1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线: ①求双曲线12 2 22 =-b y a x 的渐近线,可令其右边的1为0,即得022 22=-b y a x ,因式分解得到。②与双曲线122 2 2 =-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x ; 4、等轴双曲线: 为2 22t y x =-,其离心率为2 5、共轭双曲线: 6、几个概念: ①焦准距:b 2 c ; ②通径:2b 2 a ; ③等轴双曲线x 2-y 2=λ (λ∈R,λ≠0):渐近线是y=±x,离心率为:2 ;④22 221x y a b -=焦点三角形的面积:b 2 cot θ2 (其中∠F 1PF 2=θ); ⑤弦长公式:c 2 =a 2 -b 2 ,而在双曲线中:c 2 =a 2 +b 2 ,

空间解析几何试题

空间解析几何试卷 一、填空题(本大题共计30分,每空3分。请把正确答案填在横线上) 1. 设向量{}{}1,1,2,0,1,1=--=→→b a ,则→→b a 在上的射影是_____________,→ a 是 _______________. 2. 设向量{}3,5,4-=→a ,向量225共线,反向且模为与→→a b ,那么向量→b 的坐标是 ________________. 3. 已知向量{ }{}3,2,,1,1,1x b a ==→→, 如果→→b a ,垂直, 那么x =_________. 4. 已知向量{}{},0,3,2,1,0,1=-=→→b a {}2,1,0=→c ,则由这3个向量张成的平行六面体的体积是_________. 5. 直线z y x -=-+= -3212与直线2 112-+=-=z y x 间的距离是_____________. 6. 若直线123z y a x ==- 与平面x-2y+bz=0平行,则a,b 的值分别是______________. 7. 经过直线? ??=-+-=-+0201z y x y x 且与直线z y x 2==平行的平面的方程是_________________. 8. 空间曲线???+==-+1 022x z z y x 在y x 0坐标面上的射影曲线和射影柱面的方程分别 是_____________________________. 9. 顶点在原点、准线为抛物线???==1 22z x y 的锥面方程是________________(请用 x y x ,,的一个方程表示). 10. 曲线?????==-0 19422y z x 绕x 轴旋转后产生的曲面方程是__________________,此曲面表示______________曲面.

高中数学必修2解析几何公式知识点总结

高中数学必修2解析几何知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

高等数学期末复习-向量代数与空间解析几何

高等数学期末复习 第八章 向量代数与空间解析几何 一、容要求 1、了解空间直角坐标系,会求点在坐标面、坐标轴上的投影点的坐标 2、掌握向量与三个坐标面夹角余弦关系 3、会运用定义和运算性质求向量数量积 4、会运用定义和运算性质求向量的向量积 5、掌握向量数积和向量积的定义形式 6、掌握向量模的定义与向量数量积关系 7、掌握向量的方向余弦概念 8、掌握向量的平行概念 9、掌握向量的垂直概念 10、能识别如下空间曲面图形方程:柱面,球面、锥面,椭球面、抛物面,旋转曲面,双 曲面 11、掌握空间平面截距式方程概念,会化平面方程为截距式方程和求截距 12、会求过三点的平面方程,先确定平面法向量 13、会用点法式求平面方程,通常先确定平面法向量 14、会求过一点,方向向量已知的直线对称式方程,通常先确定直线方向向量 15、会用直线与平面平行、垂直的方向向量法向量关系确定方程中的参数 16、掌握直线对称式方程标准形式,能写出直线方向向量 二、例题习题 1、点)2,4,1(-P 在yoz 面上的投影点为( ); (容要求1) A. )2,4,1(-Q B. )2,0,1(-Q C. )0,4,1(-Q D. )2,4,0(Q 解:yoz 面不含x ,所以x 分量变为0,故选D 2、设向量a 与三个坐标面zox yoz xoy ,,的夹角分别为321,,θθθ(2 ,,0321π θθθ≤ ≤),则 =++322212cos cos cos θθθ( ) (A) 0 (B) 1 (C) 2 (D); 3 解:由作图计算可知,222 123cos cos cos 2θθθ++=,所以选C 。(容要求2) 3、设向量a 与三个坐标面zox yoz xoy ,,的夹角分别为321,,θθθ(2 ,,0321π θθθ≤ ≤),则 =++322212cos cos cos θθθ ; 解:222 123cos cos cos 2θθθ++=,所以填2。(容要求2) 4、向量)3,1,1(-=a ,)2,1,3(-=b ,则=?b a ( ); A. 0 B. 1 C. 2 D. )2,11,5(---

相关文档
相关文档 最新文档