文档库 最新最全的文档下载
当前位置:文档库 › 函数典型例题精析

函数典型例题精析

函数典型例题精析
函数典型例题精析

2.2 函数·例题解析

【例1】判断下列各式,哪个能确定y 是x 的函数?为什么? (1)x 2+y =1 (2)x +y 2=1

(3)y =

11

--x

x 解 (1)由x 2+y =1得y =1-x 2,它能确定y 是x 的函数.

(2)x y 1y y x 2由+=得=±.它不能确定是的函数,因为对1-x

于任意的x ∈{x|x ≤1},其函数值不是唯一的.

(3)y y x =

的定义域是,所以它不能确定是的函数.11

--?x

x 【例2】下列各组式是否表示同一个函数,为什么?

(1)f(x)|x|(t)(2)f(x)g(x)(x)

2

=,==,=?t x 22

(3)f(x)g(x)(4)f(x)g(x)=·,==·,=x x x x x x

+--+--11111122

解 (1)中两式的定义域部是R ,对应法则相同,故两式为相同函数. (2)、(3)中两式子的定义域不同,故两式表示的是不同函数.

(4)中两式的定义域都是-1≤x ≤1,对应法则也相同,故两式子是相同函数.

【例3】求下列函数的定义域:

(1)f(x)2

(2)f(x)(3)f(x)=++==

x x x x x x x --+----145

321021

5

2||

(4)f(x)(4x 5)

(1)x 10 4x 0

1x 4{x|1x 4}(2)3x 20x {x|x }

=+-由-≥-≥得≤≤.∴定义域是≤≤由->,得>,∴定义域是>8

1232

3||

x -???解

(3)10x x 210

|x|50

3x 7x 5{x|3x 7x 5}

2由--≥-≠得≤≤且≠,

∴定义域是≤≤,且≠??? (4)10 |x|0 4x 508x 00x x 8

[80)(0)()

由-≥≠-≠解得-≤<或<<或<≤∴定义域是-,∪,∪,8

5454545

4

8||x ?????

?

???

【例4】已知函数f(x)的定义域是[0,1],求下列函数的定义域:

(1)y f (2)y f(2x)f (3)y f ==+=()

()()

1

2

3

2x

x x

a

+

(1)01x 1x 1f(){x|x 1x 1}

由<

≤,得≤-或≥,∴的定义域是≤-或≥1

1

22x

x

(2)02x 1

0x 10x f(2x)f(x ){x|0x }(3)01

由≤≤≤+≤得≤≤∴++的定义域是≤≤≤≤2

313231

3

???

?

?x a

当>时,得≤≤,定义域为,当<时,得≤≤,的定义域为,若函数=的定义域是一切实数.

a 00x a f(x

a )[0a]

a 0a x 0f(x

a

)[a 0]

y 【例5】ax ax a

21

-+ 求实数a 的取值范围.

解 x ax ax 0

a 0 a 40

0a 222

∵∈,-+≥∴>Δ=-≤<≤.R 1

a

????

为所求a 的取值范围.

【例6】求下列函数的值域: (1)y =-5x 2+1

(2)y 3=+x +4

(3)y =x 2-5x +6,x ∈[-1,1) (4)y =x 2-5x +6,x ∈[-1,3]

(5)y (6)y =

=251

31222

x

x x x +-+

(7)y

(8)y 2x 3==-+412532413

22x x x x x -+-+-

(9)y =|x -2|-|x +1|

(1)∵x ∈R ,∴-5x 2+1≤1,值域y ≤1.

(2)x 433y 3(3)y x 5x 62

∵≥-,∴+≥,∴值域≥∵=-+=-

x x +-4521

4

2()

-,,在区间-,上为减函数,如图.-.∴值域∈,.

=-,

5

2

521

42?-[[()11)y 11)221y (212)(4)y x ∵-,,如图-,当=时,=-.当=-时,=.

∴值域∈-,52521

4

1

4

∈[13] 2.22x y x 1y 12y [12]

min max

(5)y 5(x +)y y {y|y y }

===-

∴≠.故值域∈∈且≠2512151

5

15

2525512525

x x x x ++-+()()R

(6)定义域为R

∵≠,∴由=,解得=,

又∵≥,∴≥解得-≤<,值域∈-,y 3y x x 00y 3y [3)

22312

123123

121

2

22x x y

y y

y -+------

(7)解:定义域x ≠1且x ≠2

由去分母整理得:4125

32

22x x x x -+-+

(y -4)x 2-3(y -4)x +(2y -5)=0 ① 当y -4≠0时,∵方程①有实根,∴Δ≥0, 即9(y -4)2-4(y -4)(2y -5)≥0 化简得y 2-20y +64≥0,得 y <4或y ≥16

当y =4时,①式不成立. 故值域为y <4或y ≥16.

(8)()4x 130x t t 0解法一由->,得≥

,设=,则≥.13

4

413x - ∴=.

那么=×-+=++≥x y 23t (t 1)3(t 0)2t t 22134

13

41

2

++

函数y 在t ≥0时为增函数(见图2.2-3).

∴++≥.

故所求函数值域为≥.

解法二∵=-+.

1

2

7

2

7

2

413

(t1)3

y

()y2x3

2

x-

∴=-+

=++

∴=++≥,即≥

2y4x624x13

(4x131)26

y(4x131)3y

2

-

-

-

1

2

7

2

7

2

(9)解:去掉绝对值符号,

f(x)

3(x2)

2x1(1x2)

3(x1)

->

-+-≤≤

<-

?

?

?

?

?

其图像如图2.2-4所示.

由图2.2-4可得值域y∈[-3,3].

说明求函数值域的方法:

1°观察法:常利用非负数:平方数、算术根、绝对值等.(如例1,2)

2°求二次函数在指定区间的值域(最值)问题,常用配方,借助二次函数

的图像性质结合对称轴的位置处理.假如求函数f(x)=ax2+bx+c(a>0),在给

定区间[m,n]的值域(或最值),分三种情况考虑:

(i)x n225()f(x)f(m)

f(x)f(n)

(ii)x[m n]225()f(x)f()

max

min

min

当对称轴=->时,如图.-甲,=,

=.

当对称轴=-∈,时,如图.-乙,=-,

b

a

b

a

b

a

2

22

f(x)f(m)f(n)

(iii)x m225()f(x)f(n) f(x)f(m)

max

max

min

是,两值较大者.

当对称轴=-<时,如图.-丙,=,

b

a2

3y(c0)y

°分离常数法:型如=既约分式,≠的值域为≠,

ax b

cx d

a

c

+

+

(如例5)可做公式用.

4y(a a

)y x

12

°判别式法:型如=、不同为零,不能约为型如=.可将函数解析式转化为关于的二次方程,用判别式

a x

b x c

a x

b x c

ax b

cx d

1

2

11

222

++

++

+

+

法求y的范围(如例6-7).

5y ax b

°型如=+±,可利用换元法或配方法将原函数化

cx d

+

为二次函数求值域.但要注意中间量t的范围(如例6-8).

6°分离有界变量法:从已知函数式中把有界变量解出来.利用有界变量

的范围,求函数y的值域(如例6-6).

7°图像法(如例6-9):

由于求函数值域不像求函数定义域那样有一定的法则和程序可寻,它要根

据函数解析式的不同特点灵活用各种方法求解.

【例7】(1)f(x1)2x4x f(1)

(2)f(x)

10(x0)

10x(x0)

f[f(7)]

2

已知+=-,求-

已知=

求-.

2

?

?

?

解(1)x11x

f(1)2()4()44

2

由+=-得=-,

∴-=---=+.

22

2222

解(2)∵f(-7)=10,∴f[f(-7)]=f(10)=100.

说明本例较简单,但主要用意是深刻理解函数符号f(x)的意义.求分段

函数值时,要注意在定义域内进行.

【例8】根据已知条件,求函数表达式.

(1)已知f(x)=3x 2-1,求①f(x -1),②f(x 2). (2)已知f(x)=3x 2+1,g(x)=2x -1,求f[g(x)].

(3)f(x 1)x 6x 7已知-=--.

求f(x).

(4)已知f(x)是二次函数且f(0)=2,f(x +1)-f(x)=x -1,求f(x).

(5)设周长为a(a >0)的等腰三角形,其腰长为x ,底边长为y ,试将y 表示为x 的函数,并求它的定义域和值域.

(1)分析:本题相当于x =x -1时的函数值,用代入法可求得函数表达式.

解 ∵f(x)=3x 2-1

∴f(x -1)=3(x -1)2-1=3x 2-6x +2 f(x 2)=3(x 2)2-1=3x 4-1

(2)分析:函数f[g(x)]表示将函数f(x)中的x 用g(x)来代替而得到的解析式,∴仍用代入法求解.

解 由已知得f[g(x)]=3(2x -1)2+1=12x 2-12x +4

(3)f(x 1)x 6x 7x 1x x 1f(x)分析:∵已知-=--,可将右端化为关于-的表达式,然后用代替-,就可求得表达式.这种方法叫凑配

法(或观察法).

解法一() f(x 1)x 6x 7

(x 1)4(x 1)12(x 11)f(x)x 4x 12(x 1)

22-=--=-----≥-∴=--≥-

解法二() t x 1t 1令=-,则≥-,

∴x =(t +1)2代入原式有f(t)=(t +1)2-6(t +1)-7 =t 2-4t -12 (t ≥-1) 即f(x)=x 2-4x -12 (x ≥-1)

说明 解法二是用的换元法.注意两种方法都涉及到中间量的问题,必须要确定中间量的范围,要熟练掌握换元法.

(4)分析:本题已给出函数的基本特征,即二次函数,可采用待定系数法求解.

解 设f(x)=ax 2+bx +c(a ≠0)

由f(0)=2,得c =2.由f(x +1)-f(x)=x -1,得恒等式2ax +

(a b)x 1x a b f(x)x x 2

2+=-,比较等式两边的同次幂的系数得=,=-,故所

求函数=-+123

2

123

2

说明 待定系数是重要的数学方法,应熟练掌握.

(5)解:∵2x +y =a ,∴y =a -2x 为所求函数式. ∵三角形任意两边之和大于第三边, ∴得2x +2x >a ,又∵y >0,

∴->,由>-><<

得函数的定义域为∈,a 2x 04x a a 2x 0x x (a 4)

????a a

a

422

由<<,得<-<,即得函数的值域为∈,.

a a a a

422

2

x 0a 2x y (0)

说明 求实际问题函数表达式,重点是分析实际问题中数量关系并建立函数解析式,其定义域与值域,要考虑实际问题的意义.

幂函数经典例题

例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,求实数t的值. 分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数.

故t =1且f (x )=x 85或t =-1且f (x )=x 2 5 . 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件 t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值范围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α 在 α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )

一次函数经典例题大全

一.定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 , ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型 例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。 解:一次函数的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。 变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型 例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。 解:设一次函数解析式为y=kx+b,由题意得 ,故这个一次函数的解析式为y=2x+4 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2) 有故这个一次函数的解析式为y=-2x+2 五. 斜截型 例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线;。当k1=k2,b1≠b2时,

直线y=kx+b与直线y=-2x平行,。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2 六. 平移型 例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。 解:易求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4 九. 对称型 若直线与直线y=kx+b关于 (1)x轴对称,则直线的解析式为y=-kx-b (2)y轴对称,则直线的解析式为y=-kx+b (3)直线y=x对称,则直线的解析式为 (4)直线y=-x对称,则直线的解析式为 (5)原点对称,则直线的解析式为y=kx-b 例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。 解:由(2)得直线l的解析式为y=-2x-1 十. 开放型 例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。 解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以 是双曲线,解析式为 (3)其它(略)

指对幂函数经典练习题

高一数学期末复习幂函数、指数函数和对数函数 1、若函数x a a a y ?+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13-=x y 3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c 4、若210,5100==b a ,则b a +2= ( ) A 、0 B 、1 C 、2 D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.

指数函数、对数函数、幂函数练习题大全

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是 ( ) A .71 7 7)(m n m n = B . 33 39= C .4 343 3 )(y x y x +=+ D .31243)3(-=- 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

反函数例题讲解

反函数例题讲解 例1.下列函数中,没有反函数的是 ( ) (A) y = x 2-1(x <2 1-) (B) y = x 3+1(x ∈R ) (C) 1 -= x x y (x ∈R ,x ≠1) (D) ? ? ?<-≥-=).1(4)2(22x x x x y , 分析:一个函数是否具有反函数,完全由这个函数的性质决定. 判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数. 本题应选(D ). 因为若y = 4,则由 ? ? ?≥=-2422x x , 得 x = 3. 由 ? ? ?<=-144x x , 得 x = -1. ∴ (D )中函数没有反函数. 如果作出 ? ? ?<-≥-=).1(4)2(22x x x x y , 的图像(如图),依图 更易判断它没有反函数. 例2.求函数 211x y --=(-1≤x ≤0)的反函数. 解:由 211x y --=,得:y x -=-112 . ∴ 1-x 2 = (1-y )2, x 2 = 1-(1-y )2 = 2y -y 2 . ∵ -1≤x ≤0,故 22y y x --=. 又 当 -1≤x ≤0 时, 0≤1-x 2≤1, ∴ 0≤21x -≤1,0≤1-21x -≤1, 即 0≤y ≤1 . ∴ 所求的反函数为 22x x y --=(0≤x ≤1).

由此可见,对于用解析式表示的函数,求其反函数的主要步骤是: ① 把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ). ② 求给出函数的值域,并作为所得函数的定义域; ③ 依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y )为y = φ ( x ). 例3.已知函数 f ( x ) = x 2 + 2x + 2(x <-1),那么 f -1 (2 )的值为__________________. 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略). 依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f - 1 (2 )的值会简捷些. 令 x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 . ∴ x = 0 或 x =-2 . 又x <-1,于是舍去x = 0,得x =-2,即 f -1 (2 ) = -2 . 例4.已知函数 241)(x x f +=(x ≤0),那么 f ( x )的反函数f -1 ( x ) 的图像是 ( ) (A ((B (C

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

反函数_典型例题精析

2.4 反函数·例题解析 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1) =≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵= ≠-,∴≠,由=得-=--,∴=所求反函数为=≠.352112323521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----22 2 解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1 得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x

【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=--≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠, 31x x a ++ 若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313 -----ay y ax x (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3.

幂函数的典型例题.doc

经典例题透析 类型一、求函数解析式 例1.已知幕函数y = (nr-m-])x,,,2-2m~3,当xw(0, + 8)时为减函数,则幕函数y二___________________ . 解析:由于丁 =(加2—血—1)#宀2心为幕函数, 所以m2— \ = \,解得m = 2 ,或m = —\. 当ni = 2时,nr -2m-3 = -3 , y = x~3在(0, + 8)上为减函数; 当m = -l时,/7?2-2m-3 = 0, y = %° =1(x^0)在(0, + ?)上为常数函数,不合题意,舍去. 故所求幕函数为y = x-3. 总结升华:求慕函数的解析式,一般用待定系数法,弄明白需函数的定义是关键. 类型二、比较幕函数值大小 例2.比较下列各组数的大小. 4 4 _ 3 _ 3 (1)3」4万与兀了;(2)(-近门与(-73)^. 4 4_4 解:⑴由于幕函数y = ?亍(x>0)单调递减且3」4 <龙,???3.14万 > 兀了. _3 (2)由于y =兀5这个幕函数是奇函数.???f (-x) =-f (x) —_ 3 _ 3 _ 3 _ 3 _ _因此,(一血门二一(血)V,(―巧)V =—(內)V ,而y = (x>0)单调递减,且血 3 3 3 3 3 3 ???(血戸 >"门即(一血门v( 总结升华. (1)各题中的两个数都是“同指数”的幕,因此可看作是同一个幕函数的两个不同的函数值,从而可根据幕函数的单调性做出判断. (2)题(2)中,我们是利用幕函数的奇偶性,先把底数化为正数的幕解决的问题.当然,若直接利用x<0 上幕函数的单调性解决问题也是可以的. 举一反三 【变式一】比较O.805, O.905, 0.9皿的大小. 思路点拨:先利用幕函数)=兀"的增减性比较0?8°5与0.9°"的大小,再根据幕函数的图象比较0.9°"与0.9七5的大小. 解:y = x Q-5^.(0, + oo)上单调递增,且0.8 v 0.9 , .?,0.805 <0.905. 作出函数y = X05与歹=兀七5在第一象限内的图彖, 易知0.严< 0.9心.

幂函数练习题及答案

幂函数练习题及答案 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是??( ) A .y x =43? B.y x =32 C .y x =-2 ? D.y x =- 14 2.函数2 -=x y 在区间]2,2 1 [ 上的最大值是???( ) A. 4 1 ?B.1-?C.4 D.4- 3.下列所给出的函数中,是幂函数的是? ?( ) A.3 x y -=?B.3 -=x y ? C.3 2x y =?D.13 -=x y 4.函数3 4x y =的图象是? ( ) A. B. C. D . 5.下列命题中正确的是? ? ( ) A.当0=α 时函数αx y =的图象是一条直线 B.幂函数的图象都经过(0,0)和(1,1)点 C.若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D.幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1x y =图象满足 ? ( ) A.关于原点对称 B.关于x 轴对称 C .关于y 轴对称 ? D.关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A.是奇函数又是减函数 B.是偶函数又是增函数 C.是奇函数又是增函数 ?D .是偶函数又是减函数 8.函数 2422-+=x x y 的单调递减区间是 ( )

A .]6,(--∞ ? B .),6[+∞- C.]1,(--∞ ? D.),1[+∞- 9. 如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A.102431<<<<<αααα B.104321<<<<<αααα C.134210αααα<<<<< D .142310αααα<<<<< 10. 对于幂函数5 4 )(x x f =,若210x x <<,则 )2( 21x x f +,2 ) ()(21x f x f +大小关系是( ) A.)2( 21x x f +>2)()(21x f x f + ?B. )2(21x x f +<2) ()(21x f x f + C . )2( 21x x f +=2 ) ()(21x f x f + ? D. 无法确定 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数y x =- 3 2 的定义域是 . 12.的解析式是?? . 13.9 42 --=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 . 14.幂函数),*,,,()1(互质n m N k n m x y m n k ∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为 . 三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) . 15.(12分)比较下列各组中两个值大小 (1)06072088089611 611 53 53 ..(.)(.).与;()与-- 1α 3α 4α 2α

函数·典型例题精析

2.2 函数2例题解析 【例1】判断下列各式,哪个能确定y 是x 的函数?为什么? (1)x 2+y =1 (2)x +y 2=1 (3)y =11 --x x 解 (1)由x 2+y =1得y =1-x 2,它能确定y 是x 的函数. (2)x y 1y y x 2由+=得=±.它不能确定是的函数,因为对1-x 于任意的x ∈{x|x ≤1},其函数值不是唯一的. (3)y y x =的定义域是,所以它不能确定是的函数.11 --?x x 【例2】下列各组式是否表示同一个函数,为什么? (1)f(x)|x|(t)(2)f(x)g(x)(x)2=,==,=?t x 2 2 (3)f(x)g(x)(4)f(x)g(x)=2,==2,=x x x x x x +--+--111 11122 解 (1)中两式的定义域部是R ,对应法则相同,故两式为相同函数. (2)、(3)中两式子的定义域不同,故两式表示的是不同函数. (4)中两式的定义域都是-1≤x ≤1,对应法则也相同,故两式子是相同函数. 【例3】求下列函数的定义域: (1)f(x)2 (2)f(x)(3)f(x)=++==x x x x x x x --+----145 3210215 2||

(4)f(x)(4x 5)(1)x 10 4x 0 1x 4{x|1x 4}(2)3x 20x {x|x }=+-由-≥-≥得≤≤.∴定义域是≤≤由->,得>,∴定义域是>812323|| x -???解 (3)10x x 210 |x|503x 7x 5{x|3x 7x 5} 2由--≥-≠得≤≤且≠,∴定义域是≤≤,且≠??? (4)10 |x|0 4x 508x 00x x 8[80)(0)()由-≥≠-≠解得-≤<或<<或<≤∴定义域是-,∪,∪,854545454 8||x ?????? ??? 【例4】已知函数f(x)的定义域是[0,1],求下列函数的定义域: (1)y f (2)y f(2x)f (3)y f ==+=()()()123 2x x x a + 解(1)01x 1x 1f(){x|x 1x 1}由<≤,得≤-或≥,∴的定义域是≤-或≥1 122x x

反函数典型例题精析.doc

学习必备 欢迎下载 2. 4 反函數·例題解析 【例 1】求下列函數的反函數: (1)y = 3x 5 (x ≠- 1 ) . 2x 1 2 (2)y = x 2 - 2x + 3, x ∈ ( -∞, 0] . 1 (3)y = x 2 1 (x ≤ 0) . x +1 ( -1≤x ≤ 0) (4)y = - x (0<x ≤1) 解 (1) ∵ y = 3x 5 (x ≠- 1 ),∴ y ≠ 3 , 2x 1 2 2 由 y = 3x 5 得 (2y - 3)x =- y - 5, 2x 1 ∴ x = y 5 所求反函数为 y = y 5 (x ≠ 3 ). 3 2y 3 2y 2 解 (2)∵ y =(x -1) 2 + 2, x ∈ (-∞, 0]其值域為 y ∈ [2,+∞ ), 由 y = (x - 1) 2 + 2(x ≤ 0) ,得 x -1=- y 2,即 x = 1- y 2 ∴反函数为 f 1 (x) = 1- x 2, (x ≥ 2) . 解 (3)∵y = 1 ,它的值域为 0<y ≤1, x 2 (x ≤ 0) 1 由 y = 2 1 得 x =- 1 y , x 1 y ∴反函数为 f 1 (x) =- 1 x (0 <x ≤1) . x 解 (4)由y = x 1(-1≤ x ≤ 0), 得值域 0≤y ≤1,反函数 f 1 (x) = x 2 -1(0≤x ≤1). 由 y =- x (0<x ≤1), 得值域- 1≤ y < 0,反函数 f 1 (x) =x 2 ( -1≤x < 0), x 2 -1 (0≤ x ≤ 1) 故所求反函数为 y = 2 ( - ≤ < . x 1 x 0)

次函数与幂函数典型例题

二次函数与幂函数 1.求二次函数的解析式. 2.求二次函数的值域与最值. 3.利用幂函数的图象和性质分析解决有关问题. 【复习指导】 本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用. 基础梳理 1.二次函数的基本知识 (1)函数f (x )=ax 2+bx +c (a ≠0)叫做二次函数,它的定义域是R . (2)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,对称轴方程为x = -b 2a ,顶点坐标是? ?? ?? -b 2a , 4ac -b 2 4a . ①当a >0时,抛物线开口向上,函数在? ????-∞,-b 2a 上递减,在?????? -b 2a ,+∞上递增,当x =-b 2a 时,f (x )min =4ac -b 2 4a ; ②当a <0时,抛物线开口向下,函数在? ????-∞,-b 2a 上递增,在?????? -b 2a ,+∞上递减,当x =-b 2a 时,f (x )max =4ac -b 2 4a . ③二次函数f (x )=ax 2+bx +c (a ≠0)当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ |a | . (3)二次函数的解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+h (a ≠0); ③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.幂函数

高中数学 函数知识点总结与经典例题与解析

函数知识点总结 知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数

反函数·典型例题精析

2.4 反函數·例題解析 【例1】求下列函數得反函數: 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域為y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为 =-,≥. y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222 【例2】求出下列函數得反函數,並畫出原函數与其反函數得圖像. 解 (1)∵已知函數得定義域就是x ≥1,∴值域為y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 它們得圖像如圖2.4-2所示. (1)求它得反函數;(2)求使f -1(x)=f(x)得實數a 得值. (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3. 或解 由f(x)=f -1(x),那麼函數f(x)與f -1(x)得定義域与值域相同,定義域就是{x|x ≠a,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3. 【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax b cx d ++ 試求a 、b 、c 、d 滿足什麼條件時,它得反函數仍就是自身. 令x =0,得-a =d,即a +d =0. 事實上,當a +d =0時,必有f -1(x)=f(x),

因此所求得條件就是bc -ad ≠0,且a +d =0. 【例5】設點M(1,2)既在函數f(x)=ax 2+b(x ≥0)得圖像上,又在它得反函數圖像上,(1)求f -1(x),(2)證明f -1(x)在其定義域內就是減函數. 解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.???????? ??--1373137313737373 x 【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x x x -+-++-+----12 1212112212 111 解法(二) 由函數y =f(x)與其反函數y =f -1(x)之間得一一對應關 系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12 【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a --1 1 1 因為原函數得圖像與其反函數得圖像關於直線y =x 對稱, ∴函數y =f(x)得圖像關於直線y =x 對稱.

高三数学专题复习总结-(幂函数)经典

高三数学专题复习总结-(幂函数)经典 1 / 1 2 高三数学专题复习 (幂函数)经典 1.设? ????? --∈3,2,1,21,1,2α,则使幂函数a y x =为奇函数且在(0,)+∞上单调递增的a 值的个数为( ) A .0 B .1 C .2 D .3 2.设11,0,,1,2,32a ? ?∈-???? ,则使函数a y x =的定义域为R 且为奇函数的所有a 的值有( ) A .1个 B .2个 C .3个 D .4个 3.对于幂函数f(x)=45x ,若0<x 1<x 2,则12( )2x x f +,12()()2 f x f x +的大小关系是( ) A. 12( )2x x f +>12()()2f x f x + B. 12()2x x f +<12()()2 f x f x + C. 12()2x x f +=12()()2 f x f x + D. 无法确定 4.设函数y =x 3与21()2x y -=的图像的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 5.下列说法正确的是( ) A .幂函数的图像恒过(0,0)点 B .指数函数的图像恒过(1,0)点 C .对数函数的图像恒在y 轴右侧 D .幂函数的图像恒在x 轴上方 6.若0>>n m ,则下列结论正确的是( ) A. 22m n < B. 22 m n < C. n m 22log log > D. 11m n > 7.若函数32)32()(-+=m x m x f 是幂函数,则m 的值为( ) A .1- B .0 C .1 D .2 8.幂函数y f x =()的图象经过点1 42 (,),则(2)f ( ) A. 14 B. 12 - 9.幂函数35m y x -=,其中m N ∈,且在(0,)+∞上是减函数,又()()f x f x -=, 则m =( ) A.0 B.1 C.2 D.3 10.已知幂函数()m f x x =的图象经过点(4,2),则(16)f =( )

函数的基本性质(考点加经典例题分析)

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值2 1 ,x x ,当 2 1x x <时,都有))()()(()(2 1 2 1 x f x f x f x f ><或,那么就 说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )() 0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2-=的左侧单调减小,右侧单调增加; 当0

6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数12-=x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1)()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对 称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤

反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x 5= ,x [,]22ππ ∈- 解:x =arcsin 5 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx =5 ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =或x =π- (2)1 sin x 4 =-,x [,]22ππ∈- 解:1x arcsin 4=- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsina =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,再用诱导公式 处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x =x =π- (3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+

相关文档