文档库 最新最全的文档下载
当前位置:文档库 › 语音情感识别的研究与实现

语音情感识别的研究与实现

语音情感识别的研究与实现
语音情感识别的研究与实现

天津师范大学

硕士学位论文

语音情感识别的研究与实现

姓名:金纯

申请学位级别:硕士

专业:计算机应用技术

指导教师:马希荣

20090320

语音识别输入系统

IBM语音识别输入系统(ViaVioce) V9.1 简体中文光盘版| 用嘴巴控制电脑... sjyhsyj 2009-8-28 12:13:271# 软件大小:276.08MB 软件语言:多国语言 软件类别:国外软件 / 汉字输入 运行环境:Win9x/NT/2000/XP/ 软件介绍: 该系统可用于声控打字和语音导航。只要对着微机讲话,不用敲键盘即可打汉字,每分钟可输入150个汉字,是键盘输入的两倍,是普通手写输入的六倍。该系统识别率可达95%以上。并配备了高性能的麦克风,使用便利,特别适合于起草文稿、撰写文章、和准备教案,是文职人员、作家和教育工作者的良好助手。 IBM潜心研究26年,他领导了世界的语音识别技术,其语音识别产品在全球销售已达一百万套以上。使用语音输入方式,您的工作空间更加自由舒畅: *即使您不会打字,也可迅速准备好文稿; *只要集中精力思考问题,无须琢磨怎样拼音,怎样拆字; *当您疲劳时,闭上眼、伸伸腰,双手方在脑后,然后轻松地说:开始听写吧... ... 注:价值超数千元的IBM的中文语音录入工具,有耳麦的朋友可以试一试,也可以当作学习普通话的工具,没有理由不下载使用它。 IBM ViaVoice语音输入系统详解 作者: 艾寒出处: 天极网 目前汉字输入的方式主要有四种:键盘输入,手写输入,扫描输入和我们现在要谈到的语音输入。让我们先来了解一下这四种输入方式。 键盘输入:键盘输入基本上是基于各种输入法,主要又分为字形输入法和拼音输入法。实际上字形输入法是不符合人的写作思维习惯,因为人们在措辞时,头脑中首先反映出的是即将这个词语的语音,所以字形输入法更适合专业录入人员使用。拼音输入法也分两种,一种以词语为输入单位,另一种以语句为输入单位,而后者不符合写作的思维习惯,因为人们在写作时是以词为思考单位。键盘输入法在输入速度有要求的情况下对于键盘操作、指法要求比较高; 手写输入:手写输入是最容易上手的输入方法,但是同样由于手写输入的先天不足,很难达到较高的输入速度; 扫描输入:扫描输入对于硬件要求比较高,主要是适用于资料的整理; 语音输入:语音输入对输入人员的键盘操作能力、指法要求很低,几乎可以说你只要会说汉语,就可以进行语音输入。 语音输入尤其是汉字语音输入经历了很长时间的研究和应用,到目前已经达到了一个相

基于安卓的语音情感识别系统设计与实现

基于安卓的语音情感识别系统设计与实现 语音情感识别技术是当前情感计算与语音信号领域的热点问题。作为人机交互之中的一个重要组成部分,在疾病诊断、刑侦破案、远程教育等领域也有日趋广泛的应用。作为人机交互之中的一个重要组成部分,语音情感识别技术却由于情感本身的定义不确定性与表征情感的特征的模糊性,使得语音情感识别技术成为了一个难题。为了解决语音情感识别技术中识别率不高且还不能做到人机交互应用的难题,本文主要进行了以下几点研究:1.引入非线性特征Teager能量算子,并将Teager能量算子与MFCC(Mel-Frequency Cepstral Coefficients,梅尔频域倒谱系数)相结合提取NFD_Mel(Nonlinear Frequency Domain Mel,非线性梅尔频域参数),实验结果表明该特征可以从非线性的角度提取特征,并与传统特征相结合可以有效提高识别率,在德国柏林情感数据库识别率达到了82.02%,相比不采用 NFD_Mel的传统方法,识别率提高了3.24%。2.我们创新性地提出了一种基于倒谱分离信号的非特定人语音情感识别方法:声门与声道信号都包含了丰富的情感信息,由于个人声道的差异,通常声道信息则更 多的包含了个人特征,这对于我们非特定人的情感识别工作产生了很多的干扰。基于非特定人的情感识别效果则不如特定人。为了克服现有技术的不足,我们创新性地提出了一种基于倒谱分离信号的非特定人语音情感识别方法,该方法利用倒谱分离信号,保留全部的声带信 息并摒弃一部分的声道信息,同时寻找最佳分离点,最后对处理后的 信号在复倒谱重构并提取特征,可以有效提高非特定人语音情感识别

语音识别综述

山西大学研究生学位课程论文(2014 ---- 2015 学年第 2 学期) 学院(中心、所):计算机与信息技术学院 专业名称:计算机应用技术 课程名称:自然语言处理技术 论文题目:语音识别综述 授课教师(职称): 研究生姓名: 年级: 学号: 成绩: 评阅日期: 山西大学研究生学院 2015年 6 月2日

语音识别综述 摘要随着大数据、云时代的到来,我们正朝着智能化和自动化的信息社会迈进,作为人机交互的关键技术,语音识别在五十多年来不仅在学术领域有了很大的发展,在实际生活中也得到了越来越多的应用。本文主要介绍了语音识别技术的发展历程,国内外研究现状,具体阐述语音识别的概念,基本原理、方法,以及目前使用的关键技术HMM、神经网络等,具体实际应用,以及当前面临的困境与未来的研究趋势。 关键词语音识别;隐马尔科夫模型;神经网络;中文信息处理 1.引言 语言是人类相互交流最常用、有效的和方便的通信方式,自从计算机诞生以来,让计算机能听懂人类的语言一直是我们的梦想,随着大数据、云时代的到来,信息社会正朝着智能化和自动化推进,我们越来越迫切希望能够摆脱键盘等硬件的束缚,取而代之的是更加易用的、自然的、人性化的语音输入。语音识别是以语音为研究对象,通过对语音信号处理和模式识别让机器自动识别和理解人类口述的语言。 2.语音识别技术的发展历史及现状 2.1语音识别发展历史 语音识别的研究工作起源与上世纪50年代,当时AT&T Bell实验室实现了第一个可识别十个英文数字的语音识别系统——Audry系统。1959年,J.W.Rorgie和C.D.Forgie采用数字计算机识别英文元音及孤立字,开始了计算机语音识别的研究工作。 60年代,计算机应用推动了语音识别的发展。这时期的重要成果是提出了动态规划(DP)和线性预测分析技术(LP),其中后者较好的解决了语音信号产生模型的问题,对后来语音识别的发展产生了深远的影响。 70年代,LP技术得到了进一步的发展,动态时间归正技术(DTW)基本成熟,特别是矢量量化(VQ)和隐马尔科夫(HMM)理论的提出,并且实现了基于线性预测倒谱和DTW技术的特定人孤立语音识别系统。 80年代,实验室语音识别研究产生了巨大的突破,一方面各种连接词语音识别算法被开发,比如多级动态规划语音识别算法;另一方面语音识别算法从模板匹配技术转向基于统计模型技术,研究从微观转向宏观,从统计的角度来建立最佳的语音识别系统。隐马尔科夫模型(HMM)就是其典型代表,能够很好的描述语音信号的时变性和平稳性,使大词汇量连

【CN109767790A】一种语音情感识别方法及系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910173689.0 (22)申请日 2019.02.28 (71)申请人 中国传媒大学 地址 100000 北京市朝阳区定福庄东街1号 (72)发明人 巩微 范文庆 金连婧 伏文龙  黄玮  (51)Int.Cl. G10L 25/63(2013.01) G10L 25/30(2013.01) G10L 25/45(2013.01) (54)发明名称 一种语音情感识别方法及系统 (57)摘要 本发明公开一种语音情感识别方法及系统。 所述识别方法包括:获取语音信号;预处理所述 语音信号,获得预处理语音信号;计算所述预处 理语音信号对应的语谱图;计算多个不同语段长 度的所述预处理语音信号的情感识别率,将所述 情感识别率最高对应的语段长度确定为最佳语 段长度;根据所述最佳语段长度对应的语谱图提 取所述语音信号的声学特征;将所述声学特征采 用卷积神经网络分类识别所述语音信号的情感。 采用基于语谱图和卷积神经网络的语音情感识 别方法提升了语音情感识别率。权利要求书3页 说明书6页 附图1页CN 109767790 A 2019.05.17 C N 109767790 A

1.一种语音情感识别方法,其特征在于,所述识别方法包括: 获取语音信号; 预处理所述语音信号,获得预处理语音信号; 计算所述预处理语音信号对应的语谱图; 计算多个不同语段长度的所述预处理语音信号的情感识别率,将所述情感识别率最高对应的语段长度确定为最佳语段长度; 根据所述最佳语段长度对应的语谱图提取所述语音信号的声学特征; 将所述声学特征采用卷积神经网络分类识别所述语音信号的情感。 2.根据权利要求1所述的一种语音情感识别方法,其特征在于,所述预处理所述语音信号,获得预处理语音信号具体包括: 将所述语音信号经过数字化处理,获得脉冲语音信号; 将所述脉冲语音信号采样处理,获得离散时间和连续幅值的脉冲语音信号; 将所述离散时间和连续幅值的脉冲语音信号量化处理,获得离散时间和离散幅值的脉冲语音信号; 将所述离散时间和离散幅值的脉冲语音信号进行预加重处理,获得预加重语音信号;将所述预加重语音信号进行分帧加窗处理,获得预处理语音信号。 3.根据权利要求1所述的一种语音情感识别方法,其特征在于,所述计算所述预处理语音信号对应的语谱图具体包括: 获取所述预处理语音信号的采样频率F s 、采样数据序列S g 和语段长度; 根据所述语段长度和窗函数的窗长N new 将所述预处理语音信号分为N段,获得N段语音信号; 根据所述语段长度和所述N段语音信号计算帧移N sfgtft ; 对第i帧语音信号S i 加窗处理,获得加窗语音信号S i ′, S i ′=S i ×hanning(N new ),其中i的取值为1,2,......,N; 将所述加窗语音信号S i ′进行傅里叶变换,获得傅里叶变换语音信号Z i ; 根据所述傅里叶变换语音信号Z i 的相位θi 计算所述第i帧语音信号S i 的能量密度函数|Z i |2;将所述窗函数进行N sfgtft 个帧移,获得第i+1帧语音信号S i+1的能量密度函数|Z i+1|2; 获得一个[N new /2]+1行、N列的矩阵R; 将所述矩阵R映射为灰度图,获得所述计算所述预处理语音信号对应的语谱图。 4.根据权利要求1所述的一种语音情感识别方法,其特征在于,所述将所述声学特征采用卷积神经网络分类识别所述语音信号的情感具体包括: 所述语谱图采用卷积神经网络的卷积层处理, 三维的所述语谱图转换为N个二维特征;其中,b j 为能够训练的偏差函数,k ij 为卷积核,x i 表示输入的第i段语谱图;y i 表示输出的第i段语谱图对应的二维特征; 将所述输出的第i段语谱图对应的二维特征y i 通过池化层处理,获得低分辨率声学特征y i ′; 所述卷积层与所述池化层之间设置有全连接层,所述全连接层中有激活函数,所述全 权 利 要 求 书1/3页2CN 109767790 A

情感语音识别开题报告

太原理工大学信息工程学院 本科毕业设计(论文)开题报告 毕业设计(论文)题目 语音情感识别及其特征提取的研究 学生姓名付建梅导师姓名张雪英 专业通信工程 报告日期2011.4 班级0701 指导教 师意见 签字年月日 专业(教 研室)主 任意见 年月日系主任 意见 年月日

1. 国内外研究现状及课题意义 1.1课题研究意义 现在社会,人类跟计算机的交往越来越受到研究者的重视。自然和谐的人机界面的沟通应该能理解用户的情绪和意图,对不同用户、不同环境、不同任务给予不同的反馈和支持。情感计算研究就是试图创建一种能感知、识别和理解人的情感,并针对人的情感做出智能、灵敏、友好反应的计算系统,即赋予计算机像人一样地观察、理解和生成各种情感特征的能力,使计算机能够更加自动适应操作者。实现这些,首先必须能够识别操作者的情感,而后根据情感的判断来调整交互对话的方式。 情感计算研究内容主要包括脸部表情处理、情感计算建模方法、情感语音处理、姿态处理、情感分析、自然人机界面、情感机器人等。情感计算,受到越来越多的国内外学者和研究机构的重视。美国的各大信息技术实验室正加紧进行情感计算系统的研究。例如,麻省理工学院媒体实验室的情感计算小组研制的情感计算系统,通过记录人面部表情的摄像机和连接在人身体上的生物传感器来收集数据,然后由一个“情感助理”来调节程序以识别人的情感。目前国内的情感计算研究重点在于,通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建个人的情感计算系统。情感计算已经应用到生活中的各个领域:在信息家电和智能仪器中增加自动感知人们情绪状态的功能,可以提供更好的服务:在信息检索过程中,通过情感分析解析功能,则可提高智能信息检索的精度和效率:在远程教育平台中,情感计算技术的应用能提升教学效果;利用多模式的情感交换技术,还可以构筑更贴近人们生活的智能空间和虚拟场景。此外,情感计算还能应用在机器人、智能玩具、可视会议、唇读系统、可视电话系统的应用场合,在传输语音信号的时候能够显示视频动画,将有助于人类特别是听力有障碍的人对语音的理解。 正是基于以上课题对于科研、社会的重要意义,我的毕业论文的主要任务是建立带有情感的音视频数据库,研究音频信号中能体现情感的特征,分析哪些特征可以有效地表达情感,进行特征提取并进行情感识别实验。这些工作是为后面进行带有感情的音视频合成动画系统建立基础。 1.2国内外研究现状 语音信号处理中,语音识别作为一个重要的研究领域,已经有很长的研究历史,其中语音特征提取与情感识别又是其中的一个重要方面。 在1972 年,Williams 发现人的情感变化对语音的基音轮廓有很大的影响,这是国外最早开展的语音情感方面的研究之一。1990 年,麻省理工学院多媒体实验室构造了一个“情感编辑器”对外界各种情感信号进行采样,如人的语音信号、脸部表情信号等来识别各种情感。1996 年日本东京Seikei 大学提出情感空间的概念并建立了语音情感模型。2000 年,Maribor 大学的Vladimir Hozjan 研究了基于多种语言的语音情感识别。2009 年4月,日本产业技术综合研究所(AIST)研制一个具有丰富表情的新型女性机器人“HRP-4C”。通过对主人语音信号的识别,机器人可以做出喜、怒、哀、乐和惊讶的表情等。在国内,语音情感识别的研究起步较晚。2001 年,东南大学赵力等人提出语音信号中的情感识别研究。2003 年,北京科技大学谷学静等人将BDI Agent 技术应用与情感机器人的语音识别技术研究中。另外,2003 年12 月中科院自动化所等单位在北京主办了第一届中国情感计算及智能交互学术会议,2005 年10 月又在北京主办了首届国际情感计算及智能交互学术会议。

语音情感识别

人机交互中的语音情感识别 一.研究内容及其意义 随着信息技术的高速发展和人类对计算机的依赖性不断增强,人机交互(Human-Computer Interaction)能力越来越受到研究者的重视。如何实现计算机的拟人化,使其能感知周围的环境和气氛以及对象的态度、情感的内容,自适应地为对话对象提供最舒适的对话环境,尽量消除操作者和机器之间的障碍,已经成为下一代计算机发展的目标。显然,人的大脑所表现出来的心智现象不仅仅体现在“智”的方面,而且还体现在“心”的方面。人工智能已经不仅仅把研究重点放在对人脑智能实现上,而且也开展了对情感和意识方面的研究。一般认为情感是通过语言、姿态、音乐和行为等表达模式来进行交流的,而其中语音信号中的情感信息处理的研究正越来越受到人们的重视。 包含在语音信号中的情感信息是一种很重要的信息资源,它是人们感知事物的必不可少的部分信息。例如,同样一句话,由于说话人表现的情感不同,在听着的感知上就可能会有较大的差别。然而传统的语音信号处理技术把这部分信息作为模式的变动和差异噪声通过规则化处理给去掉了。实际上,人们同时接受各种形式的信息,怎样利用各种形式的信息以达到最佳的信息传递和交流效果,是今后信息处理研究的发展方向。 语音之所以能够表达情感,是因为其中包含能体现情感特征的参数。研究认为,某种特定的情感状态所引起的语音参数变化在不同的人之间是大致相同的,仅有微小差别。因而,情感的变化能够通过语音的特征参数来反映,研究从语音中提取这些情感参数就显得非常重要。通常认为情绪所引起的生

理上的变化会对语音带来直接的影响,而与人的生理唤醒程度相关的特征参数(声学参数如音强、平均基音、语速等)能够更好地反映语音中的情感 ,如恐惧和生气所引起的生理颤动会带来相应的基频摆动;不高兴会导致声道的紧张从而引起语音信号频谱发生变化。另外,语音情感识别中所采用的识别方法也会对结果产生影响。 目前,关于情感信息处理的研究正处在不断的深入之中,而其中语音信号中的情感信息处理的研究正越来越受到人们的重视,如美国、日本、欧洲、韩国等许多国家的一些研究单位都在进行情感语音处理研究工作。语音情感识别有着非常广泛的应用前景。比如,用于自动远程电话服务中心,及时发现客户的不满情绪;用于远程教学和婴儿教育,及时识别学生的情绪并做出适当的处理,从而提高教学质量;也可以用于刑事侦察中自动检测犯罪嫌疑人的心理状态以及辅助测谎等。 二.国内外的研究现状 语音情感识别是语音信号处理领域崛起的新秀,相关研究至今已有二十余年的研究历史,对提升智能人机交互水平和丰富多媒体检索方式有着重要的实际意义。 在1972年Williams发现人的情感变化对语音的基因轮廓有很大的影响,这是国外最早开展的语音情感方面的研究之一。1990年MIT多媒体实验室构造了一个“情感编辑器”对外界各种情感信号进行采样,如人的语音信号、脸部表情信号等来识别各种情感[1]。1996年日本东京Seikei大学提出情感空间的概念并建立了语音情感模型。2000年,Maribor大学的Vladimir Hozjan研究了基于多种语言的语音情感识别[2]。2009年4月,日本产业技术综合研究所(AIST)研制

基于深度学习的语音情感识别建模研究

基于深度学习的语音情感识别建模研究 随着计算机技术的发展和人工智能的普及,语音情感识别研究收到学界和工业届的广泛关注。目前的情感识别任务大多采用人工提取多种声学特征并物理降维,构建特征工程的方法,提升识别结果。本文旨在探究语音中情感信息的表达,了解语音中情感信息的变与不变, 从语音中提炼出情感的本质特征,并搭建最合适的表征情感信息的网络结构。基于以上研究重点,本文内容包括以下几个部分:1.研究了基于传统声学特征的情感识别网络在大量的声学特征中,对现有数据做统计分析筛选出声学特征及其统计特征,搭建有效且完备的情感特征工程。从物理意义上出发,筛选合理的表达情感的特征并验证它们的有效性;从数学统计层面考虑,使用卡方检验做特征选择,去除特征集合的冗余信息,提高网络训练效率,构建完备的特征工程。2.研究了基于语谱图的深度学习情感识别网络语谱图几乎包含了所有的语音特征,二维频谱结构既可以体现谐波等激励源特征,又可以分析倒谱、共振峰等声道特性。深度神经网络引入非线性信息,具有自主学习输入数据特征的优点。搭建基于语谱图的深度学习情感识别网络,选用局部感知和跳跃连接的ResNet网络,并基于卷积核权重系数做出改进。再此基础上,搭建ResNet-LSTM网络,对ResNet网络学出的高层情感特征进行时序建模。3.引入了注意力机制,研究了低级描述符和高层语义信息的特征融合将经过验证的可以表征情感信息的声学特征集 合作,与ResNet-LSTM网络学习到的语音信号的高层语义信息进行融合,将融合后的特征经过DN-N网络分类输出,增加深度学习的解释性

和人工辅助。此外,引入注意力机制,探索语音中的关键帧信息。将学习到的注意力作为权重系数加入到人工提取的低级描述符特征中,并将它应用于特征融合实验。本文主要从情感的产生和感知层面出发,落实到特征和网络两个研究重点上展开工作,产生上探究如何构建具有情感表征意义的完备的特征集合,感知上从网络结构入手,尝试搭建具有情感认知的网络结构,并通过注意力机制讨论语音情感的局部关键性,结合产生、感知、和局部特性探讨语音情感的表达。

宝马中文声控语音识别控制系统

BMW中文声控系统 声控启动语音控制支持方言专车专用 宝马中文声控系统市场前景 在庞大的汽车销量的基础上,车载语音系统已成为现代汽车的重要亮点之一,但是由于技术的局限性,国内车载语音系统的发展始终比较缓慢,在国外广泛发展的车载语音控制系统在国内却处于技术空白阶段。现在,Qdis-isods让这种情况得到了根本性的改变。 qdis品牌联合众多院校精英,由多名各领域资深人士参与研发,根据中国市场特点以及中国用户使用习惯进行特殊定制,成功推出Qdis-isods系列产品,为广大车主提供车载语音控制的解决方案和专业服务。加载Qdis-isods车载语音系统后,用户用自己的声音即可完成相关操作,而不再只是使用传统的指定命令。 Qdis-isods系列产品支持中国多种方言,声音识别准确率高并支持多人识别,一举攻克了之前的技术难题,让车载语音系统全面进入中国市场。以前需要手动操作的控制,现在您和爱车直接对话就能实现,而且还能语音识别并控制后装增配的产品,满足客户多种智能语音操作的需求。随着车联网技术的发展,汽车的互联性会越来越强,我们可以把语音技术扩展到除终端和嵌入式系统以外的所有设备上,从而完成更复杂的识别控制任务。我们依然在不断创新实践,以谋求更多的成功案例。 Qdis-isods车载语音系统可以完美支持各类车型,金鼓德达将以一贯优秀的无损加装技术,让您在驾驶生活中发现更多乐趣。QDIS-ISODS系列,爱车从此智能! 一、BMW中文声控系统主要功能 1.语音识别启动引擎 语音指令随时学习,支持所有方言,指令内容可以自由定义; 不影响原车启动键启动功能; 可以同时利用方向盘按键组合为密码启动; 语言指令和方向盘密码可以任意修改; 2.语音指令控制原车 语音指令随时学习,支持所有方言,指令内容可以自由定义;

服务机器人的语音情感识别与交互技术研究

万方数据

万方数据

1468 小型微型计算机系统2010年 4技术应用 4.1机器人平台介绍 本文将语音情感识别技术应用在国家”八六三“高技术 研究发展计划项目”家庭生活支援多机器人系统”的语音子 系统中,验证了语音情感特征提取和情感识别方法的有效性.该机器人的头部能够实现眼球的转动、眼睑的闭合、嘴的闭合、头部的转动等并能做出基本的表情.机器人的结构设计和系统设计完全根据生理学人体结构来设计,控制系统采用上下位机结构.机器人的移动部分使用两轮差动机构进行驱动,并且配有两个6自由度的手臂,可以进行复杂操作.上位机采 电源L 毪。 -——z==一 —包QQ翻 麦克风卜上位监控PC -—====—??J 摄像头卜 ............一 ———1—一I 工业现场总线 l 自囱审豳豳囱囱 图2机器人平台构成 Fig.2 Theslructureofrobot p/afform 用工业PC机,主要负责导航、身体的协调控制、语音情感的识别、语音识别和语音合成等工作;下位机是基于现场总线的集散式控制模块,主要负责传感器信息接收及初级处理、电机驱动和运动控制等工作.监控模块与各执行机构之间通过传感系统进行联系,上位机和下位机通过局域网进行连接和通信.用户可以通过网络、手机、无线麦克风等方式实现对该机器人的控制,以此满足各种家庭信息的需求.通过下位监控模块的感知,机器人上位监控程序针对不同的语音输人识别出不同的情感状态,从而做出不同的情感表达和交互.如图2为机器入平台构成. 图3实验系统主界面 Hg.3 Themaininterfaceofexperimentalsystem 4.2机器人语音情感识别系统实验过程 本实验主要完成机器人对语音信号的情感的识别,使人 与机器人之间可以完成情感和语音的交互,同时可使机器人听从人的指挥完成一定的任务.如图3为语音情感识别实验系统主界面. 在语音情感识别实验中,首先邀请8名大学生参加录音。 录音者均为表演专业学生.所录制语料经过4名非录音者进行听辨实验,去除了其中30%左右情感类型不明显的语料, 挑选出共计550条语料用于测试,其中包含高兴,伤心,生气, 害怕,惊讶5类情感语料各110句左右,组成了录制情感语音数据库,录制格式为llKHz,16bit的单声道WAV音频格式;然后进行语音信号的特征提取并通过本文隐马尔可夫模型识别方法对语音中的情感进行识别和计算;同时语音识别模块会识别出语音中包含的文字信息,这样机器人可以根据文字和情感信息来与用户进行更人性化的交流.4.3实验结果分析与比较 表l实验结果表明,伤心的识别率为86.4%,生气的识 别率为73.6%,其他三种情感的识别率略低,平均识别率为69.8%,还是比较理想的. 表1语音情感识别实验结果 Table1 Theresultof experiment 文献[14]研究了基音频率、振幅能量和共振峰等目前常 用的情感特征在语音情感识别中的作用,重点研究了加1。C 和AMFCC,将处理后的频谱特征参数同原有的BP人工神经网络模型有效地结合起来,形成完整的语音情感识别系统。取得了64.4%的平均识别率.该方法对于生气、高兴、伤心、害怕的识别率分别达到了64.5%、54.9%、83.3%、55.0%。而本 图4语音交互模块框图 Fig.4 The diagramofspeechinteractionmodule 文中的识别方法对这几种情感的识别率都有所提高,平均识 别率也提高了5.4%.文献[15]利用模糊熵理论来分析语音信号情感特征参数相对于识别情感模式的不确定度,提出了 一种利用模糊熵对情感参数有效性进行度量的方法,并将参 数有效性分析结合模糊综合判别对情感语音信号作情感识 万方数据

语音情感识别研究进展综述

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.wendangku.net/doc/df5784137.html, Journal of Software,2014,25(1):37?50 [doi: 10.13328/https://www.wendangku.net/doc/df5784137.html,ki.jos.004497] https://www.wendangku.net/doc/df5784137.html, +86-10-62562563 ?中国科学院软件研究所版权所有. Tel/Fax: ? 语音情感识别研究进展综述 韩文静1, 李海峰1, 阮华斌2, 马琳1 1(哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨 150001) 2(清华大学计算机科学与技术系,北京 100084) 通讯作者: 韩文静, E-mail: hanwenjing07@https://www.wendangku.net/doc/df5784137.html, 摘要: 对语音情感识别的研究现状和进展进行了归纳和总结,对未来语音情感识别技术发展趋势进行了展望. 从5个角度逐步展开进行归纳总结,即情感描述模型、具有代表性的情感语音库、语音情感特征提取、语音情感识 别算法研究和语音情感识别技术应用,旨在尽可能全面地对语音情感识别技术进行细致的介绍与分析,为相关研究 人员提供有价值的学术参考;最后,立足于研究现状的分析与把握,对当前语音情感识别领域所面临的挑战与发展趋 势进行了展望.侧重于对语音情感识别研究的主流方法和前沿进展进行概括、比较和分析. 关键词: 人机交互;情感计算;情感描述模型;情感语音库;情感声学特征;语音情感识别 中图法分类号: TP391文献标识码: A 中文引用格式: 韩文静,李海峰,阮华斌,马琳.语音情感识别研究进展综述.软件学报,2014,25(1):37?50.https://www.wendangku.net/doc/df5784137.html,/ 1000-9825/4497.htm 英文引用格式: Han WJ, Li HF, Ruan HB, Ma L. Review on speech emotion recognition. Ruan Jian Xue Bao/Journal of Software, 2014,25(1):37?50 (in Chinese).https://www.wendangku.net/doc/df5784137.html,/1000-9825/4497.htm Review on Speech Emotion Recognition HAN Wen-Jing1, LI Hai-Feng1, RUAN Hua-Bin2, MA Lin1 1(School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China) 2(Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China) Corresponding author: HAN Wen-Jing, E-mail: hanwenjing07@https://www.wendangku.net/doc/df5784137.html, Abstract: This paper surveys the state of the art of speech emotion recognition (SER), and presents an outlook on the trend of future SER technology. First, the survey summarizes and analyzes SER in detail from five perspectives, including emotion representation models, representative emotional speech corpora, emotion-related acoustic features extraction, SER methods and applications. Then, based on the survey, the challenges faced by current SER research are concluded. This paper aims to take a deep insight into the mainstream methods and recent progress in this field, and presents detailed comparison and analysis between these methods. Key words: human-computer interaction; affective computing; emotion representation model; emotional speech corpora; emotion-related acoustic feature; speech emotion recognition 人类之所以能够通过聆听语音捕捉对方情感状态的变化,是因为人脑具备了感知和理解语音信号中的能 够反映说话人情感状态的信息(如特殊的语气词、语调的变化等)的能力.自动语音情感识别则是计算机对人类 上述情感感知和理解过程的模拟,它的任务就是从采集到的语音信号中提取表达情感的声学特征,并找出这些 声学特征与人类情感的映射关系.计算机的语音情感识别能力是计算机情感智能的重要组成部分,是实现自然 ?基金项目: 国家自然科学基金(61171186, 61271345); 语言语音教育部微软重点实验室开放基金(HIT.KLOF.2011XXX); 中央 高校基本科研业务费专项资金(HIT.NSRIF.2012047) 收稿时间:2013-05-08; 定稿时间: 2013-09-02; jos在线出版时间: 2013-11-01 CNKI网络优先出版: 2013-11-01 13:49, https://www.wendangku.net/doc/df5784137.html,/kcms/detail/11.2560.TP.20131101.1349.001.html

汉语连续语音识别中声学模型

第六届全国人机语音通讯学术会议,267-271页,2001年11月20-22日,深圳 汉语连续语音识别中声学模型基元比较汉语连续语音识别中声学模型基元比较:: 音节音节、、音素音素、、声韵母 李净,徐明星,张继勇,郑方,吴文虎,方棣棠 语音技术中心,智能技术与系统国家重点实验室, 清华大学计算机科学与技术系, 北京, 100084 [lijing, xumx, zjy, fzheng, wuwh]@https://www.wendangku.net/doc/df5784137.html,, fangdt@https://www.wendangku.net/doc/df5784137.html, https://www.wendangku.net/doc/df5784137.html, 摘要 本文研究的是汉语连续语音识别中声学模型基元的选 择问题。根据汉语语音的特点,本文分别采用音节、 音素和声韵母等三种语音识别基元进行声学建模。为 了描述连续语音中的协同发音现象,本文针对音素和 声韵基元,设计了相应的问题集,利用基于决策树的 状态共享策略建立了上下文相关音素模型 (Triphone )和上下文相关声韵模型(TriIF ),并对 几种声学基元进行了对比。实验结果表明,对于上下 文无关模型,音素和声韵模型都要劣于音节模型,而 对于上下文相关模型,Triphone 和TriIF 模型与音节 模型相比,识别性能有了很大提高,其音节误识率分 别降低了8.5%和23.6%。 1. 引言 声学建模是连续语音识别中声学层面处理的关键步骤。声学模型用来描述识别基元对应的特征矢量序列的产生过程。通过声学建模,可以估计待识别特征矢量序列所对应的语音识别基元,从而完成特征矢量序列到语音识别基元的识别转换。 基元的选择是声学建模中一个基本而重要的问题。在汉语连续语音识别中,可以选择的基元包括:词(Word )、音节(Syllable )、半音节(Semi-Syllable )、声韵母(Initial/Final )、音素(Phone )等。识别基元的选择一般是基于语音学知识的,但是,基元也可以通过数据驱动的方式来产生,使用这种方式确定的基元可能在语音学上没有什么明确的意义,但也可以达到很好的性能。 对于词,在小词表语音识别系统中,或者命令与控制(Command & Control )系统中,使用词作为识别基元是适当的。但是,在连续语音识别中将词作为识别基元是不合适的。首先,在连续语音识别系统中,词条的数目比较多,一般都要使用几千或者几万 条词条,所以声学模型的规模必然很大。这不但会增 加存储的开销,还会极大地增加搜索的复杂度。其 次,当词表以外的词条,即OOV (Out Of Vocabulary )问题出现时,声学模型处理起来比较困 难。第三,要对这么多基元进行训练,必然需要一个 很大的数据库,并且要尽量覆盖词表中的词条,这一 点是很难达到的。所以,在汉语连续语音识别系统 中,采用类似于词这样较长的语音段作为识别基元是 不合适的。 对于音节,在汉语中,无调音节约有400个,如果考虑音调,有1300多个有调音节[1]。在进行上下文无关的声学建模时,使用有调或者无调音节是可以的,而且还可以取得相当好的性能,因为音节作为识别基元时,它很好地刻划了音节内部的变化。但是,在连续语音识别中,音节间的协同发音现象是比较严重的,因此,必须采用适当的方式来描述这种现象。一般地,上下文相关信息应在声学建模中加以考虑,这样,识别基元就会变成上下文相关的基元。如果采用音节作为识别基元,当考虑上下文信息时,基元数目会变得非常庞大,这将会使声学模型的规模变得无法接受。同时,由于基元数目过大,也会引起训练数据稀疏的问题,从而难以对模型参数给出较为准确的估计。所以,在进行上下文相关建模时,不适宜采用 音节模型。 音素在汉语中有三十多个(本文中定义的音素数目为35个)。音素基元在英语连续语音识别系统中得到了广泛的应用,并取得了很好的识别性能[2][3]。由此可见,音素也是一个很好的选择。但音 素并没有反映出汉语语音的特点,而且,相对于声韵母,音素显得更加不稳定,这一方面给手工标注带来了困难,同时,也给声学描述带来困难。 对于半音节和声韵母,它们在形式和数量上十分接近。半音节就是将音节分为两部分,而声韵母的划分更依赖于汉语语音学的知识。可以说,声韵母基元是适合汉语特点的一种识别基元,使用这种基元,还可以有很多语言学知识可以利用,从而进一步提高声 学模型的性能。声韵母作为识别基元具有以下优点: ? 汉语中的汉字是单音节的,而汉语中的音节是声韵结构的,这种独特而规则的结构,使对音节、以及词条的表示变得比较规则和统一; ? 使用声韵母作为识别基元,上下文相关信息也变得比较确定。比如,与声母相接的只能是韵母或者静音,而与韵母相接的也只能是声母或静音,而且,韵母左边相接的声母只能是与其搭配起来能够成汉语音节的那些声母。所以,上下文相关的声韵母基元的数目并不是基元数目的立方,而是远远小于这个数值的。

LVA语音情感深层分析系统

语音情感深层分析系统 从询问对象口中得到真实的信息一直是调查的重要环节。为此也出现了许多 种手段,从传统的询问讯,心理分析,测谎技术乃至药物。有经验的审讯人员可 以通过嫌疑人的一些下意识的动作(手指的搅动,眼珠的转动等)判断嫌疑人说 的是否是真实。但这种手段极大地依赖于侦查人员本身的素质,成为一个高明的 审讯人员需要大量的实践经验和长时间的学习,即使经过这些过程,也不是所有 人员都能成为高明审讯人员。而且这种方式受很多主观因素制约。审讯人员的感觉,嫌疑人的心理素质等等各种因素都会影响最终结果。 测谎仪通过测量嫌疑人的生理体征的变化(心率,血压,呼吸速率,皮电等)来判断嫌疑人是否有欺骗的行为,这种方法有一定的客观性。需要相关的辅助设备,对场地,人员的要求都比较严格导致其不能够大规模,普遍的使用。测谎仪 的测试的是生理变化,而生理变化的产生由很多因素引起。无辜的人有可能焦虑,恐惧,生理体征的变化。有经验的罪犯也会通过各种手段混淆测试结果。 语音情感深层分析系统技术建立在人类的发声机制深刻了解的基础上。人类 的发声机制是非常复杂的处理过程,相当数量的肌肉和身体器官参与,并且采用 一定的方式将其在精确的时间内同步。首先,大脑会理解一个给定的情景并且评 估由于说话而带来的影响。然后决定发言时,空气会从肺部被挤压向上到声带, 导致声带在特定频率振动产生声音,振动的空气继续流向大脑操纵的舌头,牙齿 和嘴唇而产生声音,成为我们能理解的单词或词组。大脑会严密的监测这个处理 过程,以保证所发出的声音唯一的表达了意图,能够被理解以及能够被倾听者听到。语音情感深层分析系统正是利用专有和独特的技术,发现以时声音为媒介的 大脑活动“痕迹”。这项技术基于这样的理念,一个人说话时的声音波形能够反 映出大脑对事件的认知和诠释的改变。 语音情感深层分析系统的核心源于信息生成算法,精确的检测从较高频率(RHFR)和较低频率范围(RLFR)内的微小的变化。绝大部分我们能够理解,听 到的以及能够分析的声音都处于这两个范围之内。基于独特的算法区分不同的压 力和类型、认知过程和情感反应。使用129个音频参数精确发现和测量声波中无 意识的变化并创建一个基调以便标示谈话者的情绪图谱。用来理解一个人在谈话 时的精神状态和情感结构。能够识别不同型的压力,认知过程和情感反应。通过 研究这些信息可以深刻理解个人思维;什么让他困惑;什么让他兴奋;他回答中 哪一部分是他不确定的;哪些信息是他格外关注,哪一部分是他比较敏感的问题。通过分析谈话中的关键声音属识别出性标示,可以识别出精神状态。分析各种不 同的压力类型,认知过程和情感反应。检测出欺骗的企图、犯罪意图和大致的可 信度。 语音深层分析系统不需要在谈话对象身体上安置感应器。只需要获得谈话人 清晰地语音即可。也不许要编制专门的试题。可以即时的分析询问;也可以谈话 录音后剪辑分析,使用5-8个问题,10分钟时间。通过后期降噪,剪辑和屏蔽通 过系统运行分析得出初始值再加以对案件

语音识别的研究现状和应用前景

语音识别的研究现状和应用前景 语音识别技术并不是一夜之间冒出来的神话,早在三四十年前,在美国的一些大学和研究单位,就已经有人开始从事这一方向的研究,并有一些相关论文发表;七十年代前后,研究的脉络日渐清晰,于是贝尔实验室和国际商用机器公司(I BM)等都先后建立了专门的研究机构。今天这两家公司在这一领域都已取得了显著的成果,并且在商业上应用成功,但贝尔实验室主要是偏重于电信方面应用的语音识别系统,如电话查询等;而I BM则偏重于商务应用,因而在连续语音识别上取得了不小的成功。 不谈商业方面的应用,事实上,很多家公司都提供语音识别的引擎 (En gi ne),并且都表示能支持微软的SA PI。看一看 SA PI4.0 SU ITE 就不难发现,微软在这方面的研究并不逊于任何一家公司,只是很奇怪它居然没有将成果商业化。微软同时提供了一系列引擎,如 Spee ch R e cog ni ti on ( 语音识别)、C omm and & C ont rol( 发布指令并控制)、Ph one Qu ery ( 电话语音识别)、T ext to spee ch( 文本语音转换) 等。 今天,许多用户已经能享受到语音技术的优势了,可以对计算机发送命令,或者要求计算机记录下用户所说的话,以及将文本转换成声音朗读出来。尽管如此,距离真正的人机自由交流的前景似乎还远。目前,计算机还需要对用户作大量训练才能识别用户的语音。并且,识别率也并不总是尽如人意。换言之,语音识别技术还有一段路需要走,要做到真正成功的商业化,它还必须在很多方面取得突破性进展,这实际就是其技术的未来走向。 就算法模型方面而言,需要有进一步的突破。 目前能看出它的一些明显不足,尤其在中文语音识别方面,语言模型还有待完善,因为语言模型和声学模型正是听写识别的基础,这方面没有突破,语音识别的进展就只能是一句空话。目前使用的语言模型只是一种概率模型,还没有用到以语言学为基础的文法模型,而要使计算机确实理解人类的语言,就必须在这一点上取得进展,这是一个相当艰苦的工作。此外,随着硬件资源的不断发展,一些核心算法如特征提取、搜索算法或者自适应算法将有可能进一步改进。可以相信,半导体和软件技术的共同进步将为语音识别技术的基础性工作带来福音。 就自适应方面而言,语音识别技术也有待进一步改进。 目前,象IB M 的V i aV oi ce 和A si a works 的 SPK都需要用户在使用前进行几百句话的训练,以让计算机适应你的声音特征。这必然限制了语音识别技术的进一步应用,大量的训练不仅让用户感到厌烦,而且加大了系统的负担。并且,不能指望将来的消费电子应用产品也针对单个消费者进行训练。因此,必须在自适应方面有进一步的提高,做到不受特定人、口音或者方言的影响,这实际上也意味着对语言模型的进一步改进。现实世界的用户类型是多种多样的,就声音特征来讲有男音、女音和童音的区别,此外,许多人的发音离标准发音差距甚远,这就涉及到对口音或方言的处理。如果语音识别能做到自动适应大多数人的声线特征,那可能比提高一二个百分点识别率更重要。事实上,V i aV oi ce 的应用前景也因为这一点打了折扣,只有普通话说得很好的用户才可以在其中文版连续语音识别方面取得相对满意的成绩。

语音识别概述

语音识别项目概述 1.语音识别概述与分类 语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。 根据识别的对象不同,语音识别任务大体可分为3类,即孤立词识别(isolated word recognition),关键词识别(或称关键词检出,keyword spotting)和连续语音识别。 孤立词识别的任务是识别事先已知的孤立的词,如“开机”、“关机”等; 连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话; 连续语音流中的关键词检测针对的是连续语音,但它并不识别全部文字,而只是检测已知的若干关键词在何处出现。 根据针对的发音人,可以把语音识别技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。 注:在特定人语音识别中,不同的采集通道会使人的发音的声学特性发生变形,因此需要构造各自的识别系统。 2.项目概述 近年来,随着汽车产业的发展和汽车的普及,人们对车辆性能要求的不断提高,舒适性和便利性成为了当代社会汽车产业产业所追求的一致目标。因而车载电子产品的种类和功能也日益增加,越来越便于车主的使用,然而随之而来的也造成了操作的繁琐性,甚至于存在一定安全隐患。车载设备以服务用户为目的,因此人们需要一种更方便、更自然、更加人性化的方式与控制系统交互,而不再满足于复杂的键盘和按钮操作。基于听觉的人机交互是该领域的一个重要发展方向。目前主流的语音识别技术是基于统计模式。然而,由于统计模型训练算法复杂,运算量大,一般由工控机、PC机或笔记本来完成,这无疑限制了它的运用。嵌入式语音交互已成为目前研究的热门课题。嵌入式语音识别系统和PC机的语音识别系统相比,虽然其运算速度和内存容量有一定限制,但它具有体积小、功耗低、可靠性高、投入小、安装灵活等优点,特别适用于智能家居、机器人及消费电子等领域。结合这一应用背景,本项目以语音识别模块LD3320为核心,结合Avr系列的MCU控制器,提出了一种方便现代生活的智能车载语音识别控制系统,以满足现代车辆车主在车内工作、休息、娱乐以及行车安全等方面的要求。本项目以语音识别技术为基础,利用语音命令作为人机接口,来实现对车上装备的音频和视频播放器、空调、电动车窗、移动电话、车载导航系统、卫星电台等电子产品进行智能控制的功能。

相关文档