文档库 最新最全的文档下载
当前位置:文档库 › 伽利略望远镜的原理及光路图

伽利略望远镜的原理及光路图

伽利略望远镜的原理及光路图

物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。

你可以用很低的费用制作一架伽利略式望远镜。从文化用品商店买一块直径、焦距大一些的眼镜片作为物镜和一块焦距、直径较小的透镜作为目镜。用胶水和小槽把两块镜片装在硬纸筒内,再做一个简单的台座,于是一架能够看到月亮上的群山、银河中的繁星和木星的卫星的望远镜便制成了。想想看,伽利略就是用这人发现的。但是切记,不要通过望远镜直接观察太阳,以免高温灼伤眼睛!伽利略的折射望远镜有一个令人讨厌的缺点,就是在明亮物体周围产生“假色”。“假色”产生的症结在于通常所谓的“白光”根本不是白颜色的光,而是由组成彩虹的从红到紫的所有色光混合而成的。当光束进入物镜并被折射时,各种色光的折射程度不同,因此成像的焦点也不同,模糊就产生了。

1611年,另一位天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式。但是

“假色”问题仍然未能解决。

利珀希不是天文学家,从未想过把自己的新装置对准天空。但是没过多久,关于他的发现的消息传开了。幸运地是,意大利的帕多瓦大学教授伽利略得知了此事。伽利略很快就制造了一台折射望远镜。他以平凸透镜作为物镜,凹透镜作为目镜。从待研究的物体发出的光照射到望远镜物镜的一个玻璃透镜上,物镜使光线折射并把它集中于称为焦点的一点上,在那里便形成了发光体的像。这个像被目镜的透镜放大,进入人眼。

望远镜的原理及发展历史

望远镜的原理及发展历史 望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。1608年荷兰人汉斯·利伯希发明了第一部望远镜。1609年意大利佛罗伦萨人伽利略·伽利雷发明了40倍双镜望远镜,这是第一部投入科学应用的实用望远镜。 17世纪初的一天,荷兰小镇的一家眼镜店的主人利伯希(Hans Lippershey),为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好象变大拉近了,于是在无意中发现了望远镜的秘密。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。据说小镇好几十个眼镜匠都声称发明了望远镜。 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。BOSMA博冠望远镜. 一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽马射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 常用的双筒望远镜还为减小体积和翻转倒像的目的,需要增加棱镜系统,棱镜系统按形式不同可分为别汉棱镜系统(RoofPrism)(也就是斯密特。别汉屋脊棱镜系统)和保罗棱镜系统(PorroPrism)(也称普罗棱镜系统),两种系统的原理及应用是相似的。个人使用的小型手持式望远镜不宜使用过大放大倍率,一般以3~12倍为宜,倍数过大时,成像清晰度就会变差,同时抖动严重,超过12倍的望远镜一般使用三角架等方式加以固定。 与此同时,德国的天文学家开普勒也开始研究望远镜,他在《屈光学》里提出了另一种天文望远镜,这种望远镜由两个凸透镜组成,与伽利略的望远镜不同,比伽利略望远镜视野宽阔。但开普勒没有制造他所介绍的望远镜。沙伊纳于1613年─1617年间首次制作出了这种望远镜,他还遵照开普勒的建议制造了有第三个凸透镜的望远镜,把二个凸透镜做的望远镜的倒像变成了正像。沙伊纳做了8台望远镜,一台一台地观察太阳,无论哪一台都能看到相同形状的太阳黑子。因此,他打消了不少人认为黑子可能是透镜上的尘埃引起的错觉,证明了黑子确实是观察到的真实存在。在观察太阳时沙伊纳装上特殊遮光玻璃,伽利略则没有

望远镜放大率的测定自组望远镜

伊犁师范学院物理科学与技术学院 2013届本科毕业论文 论文题目:望远镜放大率的测定--自组望远镜 作者姓名:车安宁 班级:物理09-2A班 专业:物理学 学号:003 指导教师:夏莉艳高级实验师 完成时间:2013年05月27日 物理科学与技术学院 二〇一三年五月 望远镜放大率的测定 ――自组望远镜 内容摘要 望远镜通常分为开普勒望远镜和伽利略望远镜,开普勒望远镜由两个凸透镜组成,伽利略望远镜由一个凸透镜、一个凹透镜组成。本论文采用由两个凸透镜组成的开普勒望远镜,分别用比较板法、成像法、视角直接比较法三种方法测量望远镜的放大率,并在实验的基础上,通过参阅大量资料,以及考虑实际成像情况,对实验中各参量的取值及其对实验产生的影响加以分析和探究。该实验测量精度不是很高,但是实验性强,可将其运用到中学物理课程的学习中去,为今后关于放大率测定的学生实

验提供好的借鉴。 关键词:透镜放大率实验 A measure of the telescope magnification-- Assemble the telescope byself Abstract Telescope is usually divided into Kepler and Galileo. Kepler is composed of two convex lenses, Galileo telescope is composed of a convex lens, concave lens. This paper adopts the Kepler telescope consists of two convex lenses, respectively, comparison board , imaging method and angle of direct comparison method and other three approaches to measuring the magnification telescope. And on the basis of experiment, through the refer to a large number of data, considering the actual imaging, analyze and explore the experiment values of each parameter and its influence on the experiment. The experiment measurement precision is not high, but the pilot is strong. It can be used in the middle school physics course studying, and for the future provide a good reference about student experiment for the determination of magnification. keywords:telescope enlargement rate magnification 目录 引言 (1) 1、望远镜的构造及成像原理 (1) 1.1望远镜成像原理 (1) 1.2实验装置 (3) 2、比较板法测望远镜放大率 (4) 2.1实验装置及测量原理 (4) 2.2实验数据处理 (5) 3、成像公式法测望远镜放大率 (6)

天大光学工程实验课程02

实验二 望远系统的参数测量 一、实验目的 1.掌握望远系统的入瞳和出瞳距的测量方法 2.掌握望远系统放大率的测量方法 二、实验内容 掌握测量方法,做好测量前的准备工作,测量给定的望远镜的入瞳D,出瞳D′及出瞳距p′,计算望远系统的放大率r。 三、实验原理 1.入瞳D的测量 测量入瞳D。对于简单望远镜来说,孔径光阑和入射光瞳就是物镜镜框,其直径D可用量规或卡尺直接量出,也可采用测量显微镜如图2-1那样来进行测量,测量时注意要对镜框直径的两端逐个调焦、显微镜的横向移动量,就是入瞳光瞳的直径D。 图2-1 2.出瞳D′的测量: 测量原理如图所示,出瞳D′的大小用测量显微镜或倍率计进行测量,首先将待测望远镜调焦于无限远,再将待测望远镜安置在光具座上,接通平行光管电源,作为无穷远光源照亮望远物镜的外框,则在望远镜目镜后面可看到一亮斑,即为出瞳D′,用测量显微镜或倍率计测出D′的大小。测量原理如图2-2所示。

图2-2 3.出瞳距p′的测量: 在用测量显微镜测出瞳D′的大小时,记下测量显微镜在光具座导轨上的位置A,再移动显微镜至到能看清望远镜后表面(此时看到目镜后表面上有许多灰尘),记下显微镜在导轨上的位置B,则两位置差即为出瞳距p′。 则: p′=A-B 测量装置如图2-3所示 图2-3 4.望远镜放大率的测量: 望远系统放大率即为可见放大率或称为视角放大率,由几何光学可知r 表示视角放大率有如下关系: (2-2) 式中: w——望远镜物方视场角 w′——望远镜象方视场角

D——望远镜的入瞳直径 D′——望远镜的出瞳直径 f物——望远镜的物镜直径 f′ 目——望远镜的目镜直径 根据以上公式,只要任意测得对应的一组数据即能计算出望远系统的放大率P值。 四、实验设备 光具座、待测望远镜 五、实验步骤 1.测量入瞳和出瞳:由公式(2-2)可知视角放大率等于入瞳和出瞳之比。本法与前面望远镜的D和出瞳D′ 测量方法相同。 2.测量物方视场角w,和象方视场角w′ 利用公式E=tgw′/tgw而求出望远镜的视场角放大率,测量装置原理如图2-5所示。 图2-5 平行光管装有已知距离y的分划板。前置镜上装有角度置的分划板。前置镜上装有角度值的分划板,由于平行光管的分划板极准确的安装在就焦平面上。根据公式: tgw = y/2f′ 式中:f′——为已知平行光管的焦距。 y为已知刻线间隔的分划板上线距。故w就是被测望远镜的物方视场角。经被测望远镜后,通过前置镜可看到平行光管两条刻线的象。其夹角为2w′ 即为两倍的象方视场角。

望远镜的工作原理

望远镜的工作原理 望远镜是如何工作的 1.1 光线的聚集和图像的形成 光学望远镜是利用了两种现象: 光线的反射,由镜面产生(图1)和光线的折射,由透镜产生(图2) 图1:光线通过平面反射 折射是光线从一种介质传播到另一种介质时产生的光线弯曲。它遵守Snell定律: n1sinθi=n2sinθr (1) 这里的n是折射率,是光线所穿过的材料的特征属性: n=1.0000 理想的真空 n=1.0002 空气 n=1.5 玻璃 n实际上是光线在真空中的速度与光线在介质中的速度的比值。图2是一个n2> n1的例子。 图2:光线在两种介质的边界发生折射 图3将告诉你如何制作一个透镜。标定的距离 f 是透镜的焦距,一个位于“无限远”处的物体将成像在透镜后面距离为 f 的地方。我们在第2节中将会知道,望远镜是一些光学元件的组合。许多设计都包含折射和反射光学元件,但是为了简化后面的介绍,我们举例的望远镜只包含透镜。实际上,就我们的目的而言,反射和折射是等效的,从某种意义上说,一个人在原则上可以建造一个只使用透

镜的系统或是只使用反射镜的系统,而这两者在光学上来说是不可分辨的。当我们拿一个透镜收集来自遥远天体的光线从而得到图像的时候,就已经建造了基本的天文折射望远镜。 图3:透镜的折射 1.2 成像的大小依赖焦距的长短 注意我们到现在为止描述的折射望远镜是没有目镜的,因此它将不允许一个人直接看到它已经产生的图像,因为人类的视觉系统不适用于已经汇聚了的光线。虽然如此,我们简单的仪器实际上是个望远镜。如果想看到像是如何形成和在哪里形成的,你可以拿一片白色的纸或者一张照相底片放在焦点上。图4显示的就是两颗在天空中角距为θ的星,和它们正在被观察的样子。 图4:焦平面 由于相似三角形中θ是不改变的,所以星在图像上的分离大小与它们在天空中角距是成正比的。 图5:角距离转化为线距离 同时,从图5中可以看出: tanθ=d/fobj (2) 这里d是所成图像中星星们之间的线距离,fobj是透镜的焦距。现在,(物理学家们总爱耍一些这样的小把戏),因为这些星必然都很远,θ是如此之小, tan θ≈θ。这样, θ=d/fobj ==》1/fobj=θ/d

测定望远镜的角放大率

测定望远镜的角放大率 【实验目的】 1.熟悉望远镜的构造及其放大原理 2.学会一种测定望远镜放大率的方法 【实验仪器】 望远镜、米尺及标尺 【实验原理】 望远镜是用途极为广泛的助视光学仪器。主要用来帮助人眼观察远处的目标。它的作用在于增大被观察物体对人眼的张角,起着视角放大的作用。望远镜的视角放大率定义为 M =用仪器时虚像所张的视角/不用仪器时物体所张的视角 (1) 望远镜的的光学系统是由物镜和目镜两部分组成的。如图所示,实物PQ 经过物镜L 0成倒立实像P'Q ’,于目镜Le 的物方焦点F E 的内侧,再经目镜L E 成放大的虚像P ’’Q ’'于人眼的明视距离处。理论计算可得显微镜的放大率为: M=M 0M e (2) 式中M 0是物镜的放大率,Me 是目镜的放大率,f 0',f E '分别是物镜和目镜的像方焦距,⊿是显微镜的光学间隔(=F 0'F E ,现代显微镜均有定值,通常是17或19cm),s 0=-25cm ,为正常人眼的明视距离。一般f 0'取得很短(高倍的只有1--2mm),而f E '在几个厘米左右。通常物镜和目镜的放大率,是标在镜头上的。 图1

组成望远镜的两透镜的光学间隔近乎为零,即物镜的像方焦点与目镜的像方焦点几乎重合。望远镜可分两类:若目镜和物镜的像方焦距均为正,即两个都是凸透镜,则为开普勒望远镜;若物镜的像方焦距为正,(凸透镜)目镜的像方焦距为负(凹透镜),则为伽利略望远镜。如图2所示为开普勒望远镜的光路示意图。远处物体pQ经物镜L0后在物镜像方焦平面上成一个倒立的实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离。像P'Q'一般是缩小的,近乎位于目镜的物方焦平面上,经目镜L E放大后成虚像P’’Q’’于观察者眼睛的明视距离与无穷远之间。 图2 由理论计算可得望远镜(⊿=0)的放大率为: M=-f0'/f e' (3)上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大率越大。对开普勒望远镜(f0'>0,f E'>0),放大率M为负值,系统成倒立的像;而对伽利略望远镜(f0'>0,f E'<0),放大率M 为正值,系统成正立的像。因为实际观察时,物体并不真正位于无穷远,像也不无穷远,但(3)式仍然近似适用。 用望远镜观察物体时,一般视角都非常小,因此视角之比可用其正切值之比代替,于 是光学仪器的放大率M可以近似的写成 M = tgα0/tgαE(4)测定望远镜放大率的最简便的方法如图3所示。设长度为l0的目的物PQ直接置于观察者的明视距离处,其视角为αE,从显微镜中最后看到的虚像P’’Q’’亦在明视距离处,其长度为-l,视角为-α0,于是 M = tgα0/tgαE=l/l0(5)

透镜,通过伽利略望远镜观察到的是

透镜,通过伽利略望远镜观察到的是 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 开普勒望远镜是由物镜和目镜两组凸透镜组成的,不同的是物镜的焦距长,而目镜的焦距短,如下图甲所示。利用这一结构,先通过物镜使物体成一倒立、缩小的实像,然后用目镜把这个实像再放大(正立、放大的虚像),就能看清很远处的物体了,这就是望远镜的原理(见下图乙)。伽利略望远镜通过望远镜看远处的物体时,并不是成放大的像,而是使视角变大了,所以才看清远处的物体用开普勒望远镜观察较远的物体,物镜使远处的物体所成的像在物镜的焦点处附近。伽利略望远镜这一实像又要仵目镜中成放大的虚像,实像就必须落在目镜的焦距以内。凶此,望远镜的物镜与目镜的距离应不大于两凸透镜的焦距之和。实际望远镜物镜的前焦点和目

镜的后焦点重合存一起 物镜成倒立的实像,目镜成正立的虚像。因此,眼睛看到的像相对于原物是倒着的。当从望远镜中看到物体偏下时,应将物镜镜头上移,才能使被观察的物体处于视野的中央。 显微镜和望远镜看到的像都是放大的吗? 用显微镜观察物体时,要将被观察物体放在物镜一倍焦距和二倍焦距之间,经过物镜得到一个倒立、放大的实像,实像的位置存日镜一倍焦距内,再经其放大,最后得到比原物体放大许多倍的虚像。该虚像和物体比较是倒立的,为便于观察,需将物体倒放。而天文望远镜距离被观察物体(如天体)很远,物体和物镜的距离远大于物镜的二倍焦距,经过物镜成一倒立、缩进小的实像,其作用相当于将被观察物体移近,再经目镜将得到的实像放大,最后得到的虚像比原物体小得多,该虚像和物体比较是倒立的。

各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢

显微镜和望远镜的工作原理

xx 光学显微镜是为了使肉眼看不清楚的标本影像,人们设想经过一种装置,使肉眼能够观察到该标本组织形态和其间的结构。这种设想的装置就被后人创造问世了。当前广泛应用在各种微小物体的观察、测定、分析、分类、鉴定等。在波长范围上也不限於可见光波段(4000~7000)而且(>2000)到红外(1~2u)以及用眼睛观察、显微、摄影和一般辐射检测器放大。 显微镜的分类是根据照明方法,有透射型与反射(落射)型二种。透射型显微镜是应用透射照明通过透明物体的打光方法。反射型显微镜是以物镜上方打光到(落射照明)不透明的物体上。另一种分类方法,系根据观察方法的差异,分为明视野显微镜、暗视野显微镜、相位差显微镜、偏光显微镜、干涉相位差显微镜、萤光显微镜等。每种显微镜一般又各有透射型和反射型二种。在这些显微镜中,特别是明视野显微镜是构成所有显微镜中组成最基本的基础。通过这种显微镜观察的物体,穿过透过(吸收)率、反射率,因场所不同而各不相同,这种物体被称为随照明光强度(振幅)变化振幅物体,无色透明物体只有在照明相位改变时,才能被肉眼观察到,由於明视野显微镜不能改变相位,所以对透明不染色标本不能被观察到。 倍率、数值孔径与视场数 显微镜的综合倍率是物镜倍率G1与目镜倍率G2的乘积,G=G1×G2。G1是1~100倍,G2是5~20的范围。 数值孔径(NumericalAperture)N. A.是决定物镜的分辨率、焦深、图像亮度的基本数据,如图所示,当物镜焦点对好后,物镜前透镜最边缘处的倾斜光线与显微镜光轴所交角成α,此即该物镜的半孔径角设标本数据空间的折射率为n,则N. A.=n×sinα。 n通常在空气中为1,在物镜与标本间浸入水、甘油、油脂时,该标本折射率,即随浸液不同而异。这种物镜称为浸液系物镜;如是空气时,称为乾燥系物镜。

实验二 自组望远镜

实验二 自组望远镜 一、实验目的 (1)了解望远镜的工作原理和用途。 (2)掌握构建望远镜的光路和元件。 (3)测试望远镜的视放大率。 二、原理概述 望远镜也是由物镜和目镜组成,是用来把远处物体的观察视角放大的仪器(望远镜所成像对人眼的视角大于物体本身对人眼的视角),由于物体位于距物镜很远的地方,故望远镜只能起到把物体拉近的作用,也就是它的线放大倍数通常小于一,而视角放大倍数是大于一的。如(图2-1)所示,物镜把远处物体成像在像方焦点附近(外侧),为一缩小的倒立实像。目镜进一步把此实像放大为虚像,以提高其观察视角。由前述可知,物镜的像方焦点和目镜的物方焦点是大致重合的。当用在观测无限远物体时,物镜的像方焦点和目镜的物方焦点重合,光学间隔Δ=0。当用在观测有限距离的物体时,物镜和目镜的光学间隔是一个不为零的小量。一般研究,可认为望远镜是由光学间隔为零的物镜和目镜组成的无焦系统。 不难证明(参阅《物理光学与应用光学》 相关内容 P379-384)望远镜的视角放大率 ''tan 'tan 2 '1D D f f -=-==ωωΓ (2-1) 式中1'f 是物镜像方焦距,2'f 是目镜像方 焦距,D 为入瞳直径(也是物镜孔径),'D 为出瞳直径。 当物镜和目镜都为正焦距(0,0'2'1>>f f )的光学系统时,如开普勒(Kepler)望远镜, 则放大率Γ为负值,系统成倒立的像;当物镜的焦距为正(0'1>f ),目镜的焦距为负(0' 2

带你认识望远镜的结构与原理

带你认识望远镜的结构与原理 望远镜基本构造 一般来说,常规的双筒望远镜有以下几个部分组成:目镜,物镜,中间的棱镜,两个镜筒的连接部分,以及聚焦系统。根据不同的尺寸大小,放大倍率,和用途以及个人喜好,双筒望远镜又可细分为好几种类型(详见双筒望远镜类型一表)。下图是常规双筒望远镜的基本构造图:

望远镜常见问题解答 1.望远镜上的两个数字代表什么?

望远镜上的两个数字分别代表望远镜的放大倍率和物镜口径。例如10x42的双筒望远镜,代表该望远镜的放大倍率是10x,物镜口径是42mm。10x的倍率表示透过望远镜看到的物体被放大了10倍,即100米处的物体看起来是在10米处。 2.望远镜的放大倍率越大越好吗? 不是,放大倍数越大,表示远处的目标在视场中显得更大,但同时意味着实际的视场会变得更小,也就是说进入望远镜的光通量会减少,也就是说你看到的目标会变得黯淡审视模糊。同时,放大倍率过大,会造成晃动不易于手持,也会引起眼睛疲劳,不利于观察。 3.双筒望远镜能否选择变倍的? 可以选择,但最好可变倍数不要太大。变倍望远镜很方便、适合多种用途,是牺牲如下指标为代价的:价格稍高;结构复杂,容易损坏;视角一般偏小;镜片多,分辨能力稍差;逆光表现不如固定倍数,反差会低一点。 4.双筒望远镜和单筒望远镜到底哪一个好? 如同字面所示,双筒望远镜有左右对称的镜头,便于人用双眼观察。而单筒望远镜是用单眼观察。不过,我们并不能武断地认为双筒望远镜更好。一般来讲单筒望远镜的倍率比双筒望远镜高,可以将远处的物体放得更大。而双筒望远镜虽然比单筒望远镜的倍率低,但由于可以用双眼观察,可以得到立体感。同时由于倍率较低,可以用手

实验5 望远镜放大率的测定

[实验五] 望远镜放大率的测定 [实验目的] 1.掌握望远镜的构造及其放大原理; 2.学会测定望远镜放大率的方法; [实验仪器] 望远镜 (编号: ) 石英刻度尺(300mm 、500mm ) [实验原理] 望远镜式用途极为广泛的助视仪器,主要是帮助人眼观察远处的目标,其作用在于增大被观察物体对 人眼的视角,起视角放大作用,其视角放大率定义为: e a a M 视角不用仪器时物体所张的角用仪器时虚物所张的视0 = (5-1) 望远镜的光学系统是由物镜和目镜组成,两透镜的光学间隔几乎为零,即物镜的像方焦点和目镜的物方焦点几乎重合。望远镜分两类,若物镜和目镜的像方焦距均为正,称为开普勒望远镜,若物镜的像方焦距为正,目镜的像方焦距为负,则称为伽利略望远镜。图5-1为开普勒望远镜的原理光路图,图5-2为伽利略望远镜原理光路图。 由理论计算,望远镜的放大率M 为: ' 'e o f f M =- (5-2) 1、投影法测放大率 由于望远镜的视角很小,故视角之比可以用视角的正切之比来代替,故5-1式可用5-3式来表达: 0 l l tga tga M e o == (5-3) 上式中的l 和0l 分别为物AB 的长度和像B A ''投影到物屏上的投影B A ''''的长度。 2、光阑法测放大率

当望远镜对无穷远调焦时,望远镜筒的长度可以认为是' +'e o f f ,这时将望远镜的物镜卸下,在他的原来位置放一长度为1l 的目的物(十字叉丝光阑),则在离目镜d 处得到该物所成的实像,设像长为2l -,如图5-3所示,根据透镜成像原理可得 d f f l l e ' +'=-021 (5-4) '='+'+e e f f f d 1110 (5-5) 从(5-4)和(5-5)两式消取d 得到: 2 1 l l f f M e o = ''- = (5-6) [实验内容及步骤] 1、 把望远镜调焦到无穷远处,也就是使望远镜能清楚地看到远处的景物。 2、 卸下望远镜的物镜,并在原物镜的位置装一个十字叉丝光阑。 3、 利用移测显微镜测出望远镜目镜所成十字叉丝像的长度,并用移测显微镜直接测出光阑上十字叉丝 的长度。 4、 设十字叉丝的长度分别为21l l 和,他们镜望远镜目镜所成的像的长度分别为' '21l l 和,则望远镜的 放大率为)2 2 11(21l l l l M '+'= [实验数据处理]:测量5组数据,计算)(M U M M A ±= [实验评估分析]:

实验显微镜望远镜双棱镜率

实验15 测量显微镜和望远镜的放大率 显微镜和望远镜是最常用的助视光学仪器,常被组合在其他光学仪器中。因此,了解并掌握它们的构造原理和调整方法,不仅有助于加深理解透镜成像规律,也有助于加强对光学仪器的调整和使用训练。 一 测量显微镜的放大率 [学习重点] 1.了解显微镜的构造原理,掌握其正确使用方法。 2.测量显微镜的放大率。 [实验原理] 1.光学仪器的角放大率 显微镜被用于观测微小的物体,望远镜被用于观测远处的物体,它们的作用都是将被观测物体对眼睛光心的张角(视角)加以放大。显然,同一物体对眼睛所张的视角与物体离眼睛的距离有关。在一般照明条件下,正常人的眼睛能分辨在明视距离处相距为0.05~0.07毫米的两点。(人眼长时间地观察太近或太远的物体会感到疲劳不适,经验表明,正常人的眼睛观看物体时,最为清晰而又不易疲劳的距离为25厘米。这个距离称为明视距离。)此时,这两点对眼睛所张的视角约为1′,称为最小分辨角。当微小物体(或远处物体)对眼睛所张视角小于此最小分辨角时,眼睛将无法分辨。因而需借助光学仪器(如放大镜、显微镜、望远镜等)来增大对眼睛所张的视角。它们的放大能力可用角放大率m 表示。其定义为 ? ψ tg tg m = (4-15-1) 式中 为明视距离处物体对眼睛所张的视角, 为通过光学仪器观察时,在明视距离处所成 的像对眼睛所张的视角。下面以凸透镜为例,讨论它的放大率。 如图4-15-1所示,当L 为凸透镜,被测物 AB 长为y 1,到眼睛的距离为D 时,y 1对眼睛 的视角为 ;当将物体置于透镜焦平面以内的 位置时,可得到放大的虚像A B ,像长为y 2。 调整物距u ,使像到眼睛的距离为明视距离D , 对眼睛所张视角为 ,则此凸透镜的放大率为 u D D y u y D y D y tg tg m ==== 1112?ψ (4-15-2) 当透镜焦距较小时,u f ,则 f cm f D m ) (25=≈ (4-15-3) 图 4 -15-1 凸透镜放大示意图

望远镜的基本原理

望远镜的基本原理 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。一般分为三种。 一、折射望远镜 折射望远镜是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。两种望远镜的成像原理如图1所示。 图1 伽利略望远镜是物镜是凸透镜而目镜是凹透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍

数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。其优点是结构简单,能直接成正像。 开普勒望远镜由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高。 因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱,如图2所示。 图2

望远镜的主要技术性能

望远镜的主要技术性能 1、通光孔径: 限制通过望远镜光能的图形框子(一般是物镜框)叫做入射瞳孔(简称入瞳),亦即望远镜物镜的通光孔径D。 2、放大率(放大倍数) 眼睛通过望远镜所看到物体像的张角和眼睛直接看物体时的张角之比即为放大率。如果已知物镜和目镜的焦距,则可由物镜的焦距F除以目镜的焦距f可得放大率r: r=F/f 望远镜的放大率也可由入射瞳孔的直径D除以出射瞳孔的直径d得到,即: r =D/d 放大率越大,一般观察的物体越清晰。 双筒望远镜的基本性能通常用数字表示在它的外盖上,例如:8x42第1个数字表示望远镜的放大率为8倍,后一个数字表示物镜的通光孔径为∮42毫米。3、视场: 当眼睛在出瞳点观察时看到的物体范围叫做视场。广角或超广角望远镜(视场大于60度)的观察范围比一般望远镜的观察范围要大。 双筒望远镜的视场一般用数字表示在它的外置上,例如122/1000表示用望远镜观察,在1000米的距离上可观察到直径122米范围的视场。有时亦可用英尺和角度表示。 4、分辨率: 望远镜的分辨率用它所能分辨的物方无限远两个物点对望远镜物镜中心的张角

∝表示(单位:秒)。望远镜的分辨率直接与入射瞳孔直径有关。入射瞳孔直径(一般为物镜通光孔径)越大,望远镜分辨率就越高,观察的物体就越清晰。5、出射瞳孔直径: 入射瞳孔在目镜后面的像叫做出射瞳孔。出射瞳孔位于目镜后,只有当眼睛与出射瞳孔相重合时才能观察到望远镜的全视场。 出射瞳孔直径越大,用望远镜观察物体的主观亮度就越高。据此,在傍晚及光线较弱的条件下观察需要用大出射瞳孔直径的望远镜。 望远镜的出射瞳孔直径等于入射瞳孔直径D除以望远镜的放大率r:d=D/r 6、出射瞳孔距离: 出射瞳孔到目镜靠近人眼最后一个表面顶点的距离即为出射光瞳距离。出射瞳孔距离大于16毫米时常称为长出瞳距离,它便于戴眼镜观察。 7、透过率: 望远镜的透过率影响所观察物体的亮度。透过率与多种因素(如玻璃对光的吸收,光学表面透射时的反射损失,光散射等)有关。特别是光学表面透射时的反射损失对透过率影响最大同时也影响成像清晰度。因此,望远镜的光学镜片与空气接触的表面都要渡减反射膜(增透膜)。镀的膜系不同望远镜的透光效果会不一样(单层透过率约50%、双层透过率约65%、多层膜透过率可达85%以上),以镀宽带增透膜效果最佳。但考虑价格因素一般只在光学零件数目较多或在较高档的望远镜中镀制宽带增透膜。判别一个望远镜的透过特性,可以观察镜片反光情况,若反光严重,则透光差,成像就模糊。 本文来自:重庆美华光电有限公司网

实验论文——望远镜和显微镜组装和放大率的测定

望远镜和显微镜组装和放大率的测定 摘要:本论文主要从望远镜和显微镜的组装,以及其放大率的测量方向作探究。本实验开始讲了显微镜,开普勒望远镜以及伽利略望远镜的原理,随后陈述了实验的过程,分析了实验理论中的缺陷,并提出了一定的改进方案。 关键词: 望远镜,显微镜,凸透镜,凹透镜,放大倍数。 引言:显微镜和望远镜是最常用的助视仪器常被组合在其他的仪器中使用。因此,了解并掌握它们的结构原理和调节方法,了解并掌握其放大率的概念和测量方法,不仅有助于加深理解透镜成像规律,也有助于正确使用其他光学仪器。毋庸置疑,前人已经对这些仪器研究得十分出色了,他们创造了一系列的测量仪器放大率的方法,并对其不断改进。但是,现在测量望远镜和显微镜的放大率仍然是个十分棘手的问题。于是,我们做了这个实验并做出了一定的改进。 【实验原理】 1、望远镜构造及其放大原理 望远镜通常是由两个共轴光学系统组成,我们把它简化为两个凸透镜,其中长焦距的凸透镜作为物镜,短焦距的凸透镜作为目镜。图1所示为开普勒望远镜的光路示意图,图中L 0为物镜,Le 为目镜。远处物体经物镜后在物镜的像方焦距上成一倒立的实像,像的大小决定于物镜焦距及物体与物镜间的距离,此像一般是缩小的,近乎位于目镜的物方焦平面上,经目镜放大后成一虚像于观察者眼睛的明视距离与无穷远之间。 物镜的作用是将远处物体发出的光经会聚后在目镜物方焦平面上生成一倒立的实像,而目镜起一放大镜作用,把其物方焦平面上的倒立实像再放大成一虚像,供人眼观察。用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。 图1 图2 望远镜可分为两类:若物镜和目镜的像方焦距均为正(既两个都为会聚透镜),则为开普勒望远镜,此系统成倒立的像;若物镜的像方焦距为正(会聚透镜),目镜的像方焦距为负(发散透镜),则为伽利略望远镜,此系统成正立的像。 望远镜主要是帮助人们观察远处的目标,它的作用在于增大被观测物体对人眼的张角,起着视角放大的作用。望远镜的视角放大率M 定义为: e M αα= 用仪器时虚像所张的视角不用仪器时物体所张的视角 (1) 用望远镜观察物体时,一般视角均甚小,因此视角之比可以用正切之比代替,于是,光学仪器的放大率近似可以写为: 0 e tg M tg αα= (2)

第一章 望远镜基本原理

望遠鏡基本原理 1.1望遠鏡光學原理 望遠鏡由物鏡和目鏡組成,接近景物的凸形透鏡或凹形反射鏡叫做物鏡,靠近眼睛那塊叫做目鏡。遠景物的光源視作平行光,根據光學原埋,平行光經過透鏡或球面凹形反射鏡便會聚焦在一點上,這就是焦點。焦點與物鏡距離就是焦距。再利用一塊比物鏡焦距短的凸透鏡或目鏡就可以把成像放大,這時觀察者覺得遠處景物被拉近,看得特別清楚。 折射鏡是由一組透鏡組成,反射式則包括一塊鍍了反光金屬面的凹形球面鏡和把光源作 90 度反射的平面鏡。兩者的吸光率大致相同。折射和反射鏡各有優點,現分別討論。 1.2 折射和反射望遠鏡的選擇 折射望遠鏡的優點 1.影像穩定 折射式望遠鏡鏡筒密封,避免了空氣對流現象。 2.彗像差矯正 利用不同的透鏡組合來矯正彗像差(Coma)。 3.保養

主鏡密封,不會被污濁空氣侵蝕,基本上不用保養。 折射望遠鏡的缺點 1.色差 不同波長光波成像在焦點附近,所以望遠鏡出現彩色光環圍繞成像。矯正色差時要增加一塊不同折射率的透鏡,但矯正大口徑鏡就不容易。 2.鏡筒長 為了消除色差,設計望遠鏡時就要把焦距儘量增長,約主鏡口徑的十五倍,以六吋口徑計算,便是七呎半長,而且用起來又不方便,業餘製鏡者要造一座這樣長而穩定度高的腳架很是困難的一回事。 3.價錢貴 光線要穿過透鏡關係,所以要採用清晰度高,質地優良的玻璃,這樣價錢就貴許多。全部完成後的價錢也比同一口徑的反射鏡貴數倍至十數倍。 反射望遠鏡的優點 1.消色差 任何可見光均聚焦於一點。 2.鏡筒短 通常鏡筒長度只有主鏡直徑八倍,所以比折射鏡筒約短兩倍。短的鏡筒操作力便,又容易製造穩定性高的腳架。 3.價錢便宜 光線只在主鏡表面反射,製鏡者可以購買較經濟的普通玻璃去製造反射鏡的主要部份。

望远镜组装及其放大率的测量

望远镜组装及其放大率的测量 望远镜是用途极为广泛的助视光学仪器,望远镜主要是帮助人们观察远处的目标,它的作用在于增大被观测物体对人眼的张角,起着视角放大的作用,它常被组合在其他光学仪器中。为适应不同用途和性能的要求,望远镜的种类很多,构造也各有差异,但是它的基本光学系统都由一个物镜和一个目镜组成。望远镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用。 【实验目的】 1、熟悉望远镜的构造及其放大原理; 2、掌握光学系统的共轴调节方法; 3、学会望远镜放大率的测量。 【实验仪器】 光学平台、凸透镜若干、标尺、二维调节架、二维平移底座、三维平移底座。 【实验原理】 1、望远镜构造及其放大原理 望远镜通常是由两个共轴光学系统组成,我们把它简化为两个凸透镜,其中长焦距的凸透镜作为物镜,短焦距的凸透镜作为目镜。图1所示为开普勒望远镜的光路示意图,图中L 0为物镜,Le 为目镜。远处物体经物镜后在物镜的像方焦距上成一倒立的实像,像的大小决定于物镜焦距及物体与物镜间的距离,此像一般是缩小的,近乎位于目镜的物方焦平面上,经目镜放大后成一虚像于观察者眼睛的明视距离于无穷远之间。 物镜的作用是将远处物体发出的光经会聚后在目镜物方焦平面上生成一倒立的实像,而目镜起一放大镜作用,把其物方焦平面上的倒立实像再放大成一虚像,供人眼观察。用望远镜观察不同位置的物体时, 图1 图2 只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。 望远镜可分为两类:若物镜和目镜的像方焦距均为正(既两个都为会聚透镜),则为开普勒望远镜,此系统成倒立的像;若物镜的像方焦距为正(会聚透镜),目镜的像方焦距为负(发散透镜),则为伽利略望远镜,此系统成正立的像。 2、望远镜的视角放大率 望远镜主要是帮助人们观察远处的目标,它的作用在于增大被观测物体对人眼的张角,起着视角放大的作用。望远镜的视角放大率M 定义为: e M αα= 用仪器时虚像所张的视角不用仪器时物体所张的视角 (1) 用望远镜观察物体时,一般视角均甚小,因此视角之比可以用正切之比代替,于是,光学仪器的放大率近似可以写为: 0 e tg M tg αα= (2) 在实验中,为了把放大的虚像l 与l 0直接比较,常用目测法来进行测量。如图2所示。设长为0l 的标

天文望远镜原理图

一、折射式望远镜 上图为开普勒望远镜原理光路图。从天体射来的平行光线,经物镜后,在焦点以外距焦点很近处成一倒立缩小实像a′b′。目镜的前焦点和物镜的焦点是重合的,所以实像a′b′位于目镜和它的焦点之间距焦点很近的地方,目镜以a′b′为物形成放大的虚像ab。当我们对着目镜观察时,进入眼睛的光线就好像是从ab射来的。显然,图中ab的视角β远大于直接用眼睛观察天体的视角a,所以,从望远镜中看到的天体使人觉得离自己近看得更清楚。 开普勒望远镜系统是目前应用最广泛的望远镜光学系统,实际应用中还需要增加正像系统,作为双筒望远镜,一般是通过棱镜来实现,根据棱镜种类的不同,分为保罗式和屋脊式,棱镜的作用是在获得正像的同时,使光线在有限长度的镜筒内反复迂回,从而大大缩短光路,这一点对于手持式望远镜是非常重要的,早期的望远镜的物镜甚至需要吊在桅杆上,人们不可能把这样的望远镜随身携带,随意观测的。 下图为伽利略望远镜原理光路图。作为目镜的凸透镜改为凹透镜,从而使人眼睛接收到一个正立的虚像。伽利略望远镜是一种古老的观剧望远镜,能直接成立正像,但视场较小,现在一般应用于玩具望远镜,以及外观精美的观剧望远镜,高倍单筒望远镜等更倾向于作为工艺礼品的望远镜产品。 二、反射式望远镜

使用凹面主镜采集光线反射形成图像,上图是典型的牛顿反射式天文望远镜,光线被反射到镜筒内一块小的平板反射副镜到目镜成像观测。 反射式望远镜能以较低的成本获得较大的口径,从而获得较好的集光力,同时能很好的控制色差,因此至今仍被广泛应用于天文望远镜系统。 三、折反式望远镜 施密特结构 马克苏托夫结构 折反射望远镜的物镜是由折射镜和反射镜组合而成。主镜是球面反射镜,副镜是一个透镜,用来矫正主镜的像差。此类望远镜视场大,光力强,适合观测流星,彗星,以及巡天寻找新天体。根据副镜的形状,折反射镜又可以分为施密特结构和马克苏托夫结构,前者视场大,像差小;后者易于制造。

伽利略望远镜设计原理

光电技术学院 ——望远镜系统结构设计专业:电子科学与技术 班级:光电子082班 姓名:张毅 学号:2008031161 指导老师:张翔

2010年5月28日 目录 第一章引言......................................................................................... . (3) 第二章概述 (3) 2.1 课程设计的目的及意义 (3) 2.2 课程设计的内容 (3) 2.3 望远镜的介绍 (3) 2.4 望远镜的分类 (4) 第三章伽利略望镜工作原理及发展简史 (5) 3.1 望远镜的工作原理 (5) 3.2 望远镜发展简史 (5) 第四章望远镜的主要特性分析 (6) 4.1 望远镜的主要特性分析 (6) 4.2 开普勒望远镜的参数计算 (8) 第五章物镜和目镜的选择 (9) 5.1 物镜的选择 (9) 5.2 物镜实例 (10) 5.3 目镜的选择 (12) 5.4 目镜实例 (13) 第六章测微准直望远镜 (15) 6.1 测微准直望远镜概述 (15) 6.2 测微准直望远镜计量特性 (15) 第七章棱镜转向系统 (16) 7.1 Porro棱镜结构及其点 (16) 7.2 Roof棱镜结构及其特点 (16) 7.3 折转形式望远镜系统分 (17) 7.4 类似棱镜结构晶体分析 (17) 第八章光学系统初始结构参数计算方法 (17) 第九章光栅 (19) 第十章心得体会 (19)

第十一章参考文献 (20) 第一章引言 本课程的任务是在学习工程光学基础、光学测试技术等技术基础课程的基础上,进行光学仪器的设计,目的是让学生了解光学设计中主要的环节,掌握光学仪器设计、开发的基本方法,以便今后能从事光学仪器的设计、研发工作。本课程主要研究光学仪器设计中的基本部分,如:光源、目镜、物镜、分化板等,以及光学仪器设计中考虑的基本问题,如:物象位置关系、系统放大倍数、系统分辨率、相差等。课程涉光学基础、光学测试技术、误差理论及数据处理、精密仪器设计等多方面。光学设计过程分为四个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及像质评价。了解光学系统的光学特性、光学系统的设计过程。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析。 关键词:光学系统成像质量像差像距望远镜 第二章概述 2.1 课程设计的目的及意义 运用应用光学的知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸,物镜组,目镜组及转向系统的简易设计原理。了解光学系统中pw法的基本原理。 2.2 课程设计的内容 初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。 目镜设计的特点、常用目镜的型式和像差分析。 2.3 望远镜的介绍 1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。 2.望远镜的一般特性 望远镜的光学系统简称望远系统,是由物镜和目镜组成。当用在观测无限远物体

望远镜的基本原理

望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。一般分为三种。一、折射望远镜,是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱 在满足一定设计条件时,还可消去球差和彗差。由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜。为了增大相对口径和视场,可采用多透镜物镜组。对于伽利略望远镜来说,结构非常简单,光能损失少。镜筒短,很轻便。而且成正像,但倍数小视野窄,一般用于观剧镜和玩具望远镜。对于开普勒望远镜来说,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的是正像。一般的折射望远镜都是采用开普勒结构。由于折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,所以大口径望远镜都采用反射式 二、反射望远镜,是用凹面反射镜作物镜的望远镜。可分为牛顿望远镜 卡塞格林望远镜 等几种类型。反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。但为了减小其它像差的影响,可用视场较小。对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。磨好的反射镜一般在表面镀一层铝膜,铝膜在2000-9000埃波段范围的反射率都大于80%,因而除光学波段外,反射望远镜还适于对近红外和近紫外波段进行研究。反射望远镜的相对口径可以做得较大,主焦点式反射望远镜的相对口径约为1/5-1/2.5,甚至更大,而且除牛顿望远镜外,镜筒的长度比系统的焦距要短得多,加上主镜只有一个表面需要加工,这就大大降低了造价和制造的困难,因此目前口径大于1.34米的光学望远镜全部是反射望远镜。一架较大口径的反射望远镜,通过变换不同的副镜,可获得主焦点系统(或牛顿系统)、卡塞格林系统和折轴系统。这样,一架望远镜便可获得几种不同的相对口径和视场。反射望远镜主要用于天体物理方面的工作。 三、折反射望远镜,是在球面反射镜的基础上,再加入用于校正像差的折射元件,

相关文档