文档库 最新最全的文档下载
当前位置:文档库 › 概率图模型理论及应用lesson02

概率图模型理论及应用lesson02

机器学习 —— 概率图模型(推理:决策)

Koller 教授把决策作为一种单独的模块进行讲解,但我认为,决策和推理本质上是一样的,都是在假设已知CPD或者势函数的情况下对模型给出结论。 1、决策==逐利 决策的基本思想很intuitive,并且非常有用。在赌博行为中,最后获得的钱与硬币的正反,赌注的大小有关。硬币的正反显然是随机变量,而赌注的大小却是决策量。显而易见的是,决策的最终目的是使得某个期望最大化。再举一个视觉中的例子,对于双目配准算法而言,左相机对应右相机的像素可以认为是随机变量。但是否将两个像素配在一起却可以认为是一个决策(假设像素一一对应,如果甲配了乙就不能配丙了,希望配准的最终结果是尽可能正确的)。故决策的数学表达为: 其中,P(X|A)表示在给定决策下,随机变量X的概率。U(x,a)表示给定决策下,x发生所获得的收益。简单的决策如图所示:

2、决策的方法 显然从上面的分析可知,我们要做的决策就是使得期望最大化的那个。换一个角度来看,如果每次的决策都是未知的,决策取决于已知信息,决策影响最终结果,如果决策也是随机变量,我们应该把获利最多的那个决策组作为我们所需采取的决策库。换而言之,凡事应有a,b,c三策,不同的策略对应不同的情况。显然,我们所需要采取的策略取决于已知的信息(Action的父节点)。而策略组本身就是一个随机变量。 如图所示,如果变量真实值无法观测,只能通过一个传感器(survey)来进行推测时,决策应该取决于S的值。S的值又和其所有父节点(M)的值相关。MEU表示所选择的策略。

显然,我们需要P(S)deta(F|S)U(F,M),然后P(S)需要对P(M,S)进行边际获得。故表达式如上。带入数据发现

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

概率图模型研究进展综述

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.wendangku.net/doc/df8308769.html, Journal of Software,2013,24(11):2476?2497 [doi: 10.3724/SP.J.1001.2013.04486] https://www.wendangku.net/doc/df8308769.html, +86-10-62562563 ?中国科学院软件研究所版权所有. Tel/Fax: ? 概率图模型研究进展综述 张宏毅1,2, 王立威1,2, 陈瑜希1,2 1(机器感知与智能教育部重点实验室(北京大学),北京 100871) 2(北京大学信息科学技术学院智能科学系,北京 100871) 通讯作者: 张宏毅, E-mail: hongyi.zhang.pku@https://www.wendangku.net/doc/df8308769.html, 摘要: 概率图模型作为一类有力的工具,能够简洁地表示复杂的概率分布,有效地(近似)计算边缘分布和条件分 布,方便地学习概率模型中的参数和超参数.因此,它作为一种处理不确定性的形式化方法,被广泛应用于需要进行 自动的概率推理的场合,例如计算机视觉、自然语言处理.回顾了有关概率图模型的表示、推理和学习的基本概念 和主要结果,并详细介绍了这些方法在两种重要的概率模型中的应用.还回顾了在加速经典近似推理算法方面的新 进展.最后讨论了相关方向的研究前景. 关键词: 概率图模型;概率推理;机器学习 中图法分类号: TP181文献标识码: A 中文引用格式: 张宏毅,王立威,陈瑜希.概率图模型研究进展综述.软件学报,2013,24(11):2476?2497.https://www.wendangku.net/doc/df8308769.html,/ 1000-9825/4486.htm 英文引用格式: Zhang HY, Wang LW, Chen YX. Research progress of probabilistic graphical models: A survey. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2476?2497 (in Chinese).https://www.wendangku.net/doc/df8308769.html,/1000-9825/4486.htm Research Progress of Probabilistic Graphical Models: A Survey ZHANG Hong-Yi1,2, WANG Li-Wei1,2, CHEN Yu-Xi1,2 1(Key Laboratory of Machine Perception (Peking University), Ministry of Education, Beijing 100871, China) 2(Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China) Corresponding author: ZHANG Hong-Yi, E-mail: hongyi.zhang.pku@https://www.wendangku.net/doc/df8308769.html, Abstract: Probabilistic graphical models are powerful tools for compactly representing complex probability distributions, efficiently computing (approximate) marginal and conditional distributions, and conveniently learning parameters and hyperparameters in probabilistic models. As a result, they have been widely used in applications that require some sort of automated probabilistic reasoning, such as computer vision and natural language processing, as a formal approach to deal with uncertainty. This paper surveys the basic concepts and key results of representation, inference and learning in probabilistic graphical models, and demonstrates their uses in two important probabilistic models. It also reviews some recent advances in speeding up classic approximate inference algorithms, followed by a discussion of promising research directions. Key words: probabilistic graphical model; probabilistic reasoning; machine learning 我们工作和生活中的许多问题都需要通过推理来解决.通过推理,我们综合已有的信息,对我们感兴趣的未 知量做出估计,或者决定采取某种行动.例如,程序员通过观察程序在测试中的输出判断程序是否有错误以及需 要进一步调试的代码位置,医生通过患者的自我报告、患者体征、医学检测结果和流行病爆发的状态判断患者 可能罹患的疾病.一直以来,计算机科学都在努力将推理自动化,例如,编写能够自动对程序进行测试并且诊断 ?基金项目: 国家自然科学基金(61222307, 61075003) 收稿时间:2013-07-17; 修改时间: 2013-08-02; 定稿时间: 2013-08-27

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

概率图模型中的推断

概率图模型中的推断 王泉 中国科学院大学网络空间安全学院 2016年11月

?推断问题回顾 ?精确推断:信念传播 –信念传播算法回顾 –信念传播在HMM中的应用?近似推断:吉布斯采样–吉布斯采样算法回顾 –吉布斯采样在LDA中的应用

?推断问题回顾 ?精确推断:信念传播 –信念传播算法回顾 –信念传播在HMM中的应用?近似推断:吉布斯采样–吉布斯采样算法回顾 –吉布斯采样在LDA中的应用

?已知联合概率分布 P x 1,?,x n ,估计 –x Q 问题变量;x E 证据变量;x Q ∪x E =x 1,?,x n P R =1 P R =0 0 P R =1G =1= ? P B =0.001 P E =0.002 P A B ,E =0.95 P A B ,?E =0.94 P A ?B ,E =0.29 P A ?B ,?E =0.001 P J A =0.9 P J ?A =0.05 P M A =0.7 P M ?A =0.01 P B =1E =0,J =1=? P x Q x E =x Q ,x E x E

?已知联合概率分布 P x 1,?,x n ,估计 –x Q 问题变量;x E 证据变量;x Q ∪x E =x 1,?,x n P x Q x E =x Q ,x E x E 观测图片 y i 原始图片 x i y ?=argmax P y x 朴素贝叶斯 x ?=argmax P x y 图像去噪

?精确推断:计算P x Q x E的精确值 –变量消去 (variable elimination) –信念传播 (belief propagation) –计算复杂度随着极大团规模的增长呈指数增长,适用范围有限?近似推断:在较低的时间复杂度下获得原问题的近似解–前向采样 (forward sampling) –吉布斯采样 (Gibbs sampling) –通过采样一组服从特定分布的样本,来近似原始分布,适用范围更广,可操作性更强

读懂概率图模型:你需要从基本概念和参数估计开始

读懂概率图模型:你需要从基本概念和参数估计开始 选自statsbot作者:Prasoon Goyal机器之心编译参与:Panda 概率图模型是人工智能领域内一大主要研究方向。近日,Statsbot 团队邀请数据科学家Prasoon Goyal 在其博客上分两部分发表了一篇有关概率图模型的基础性介绍文章。文章从基础的概念开始谈起,并加入了基础的应用示例来帮助初学者理解概率图模型的实用价值。机器之心对该文章进行了编译介绍。 第一部分:基本术语和问题设定 机器学习领域内很多常见问题都涉及到对彼此相互独立的 孤立数据点进行分类。比如:预测给定图像中是否包含汽车或狗,或预测图像中的手写字符是0 到9 中的哪一个。 事实证明,很多问题都不在上述范围内。比如说,给定一个句子「I like machine learning」,然后标注每个词的词性(名词、代词、动词、形容词等)。正如这个简单例子所表现出的那样:我们不能通过单独处理每个词来解决这个任务——「learning」根据上下文的情况既可以是名词,也可以是动词。这个任务对很多关于文本的更为复杂的任务非常重要,比如从一种语言到另一种语言的翻译、文本转语音等。 使用标准的分类模型来处理这些问题并没有什么显而易见

的方法。概率图模型(PGM/probabilistic graphical model)是一种用于学习这些带有依赖(dependency)的模型的强大框架。这篇文章是Statsbot 团队邀请数据科学家Prasoon Goyal 为这一框架编写的一份教程。 在探讨如何将概率图模型用于机器学习问题之前,我们需要先理解PGM 框架。概率图模型(或简称图模型)在形式上是由图结构组成的。图的每个节点(node)都关联了一个随机变量,而图的边(edge)则被用于编码这些随机变量之间的关系。 根据图是有向的还是无向的,我们可以将图的模式分为两大类——贝叶斯网络(?Bayesian network)和马尔可夫网络(Markov networks)。 贝叶斯网络:有向图模型 贝叶斯网络的一个典型案例是所谓的「学生网络(student network)」,它看起来像是这样: 这个图描述了某个学生注册某个大学课程的设定。该图中有5 个随机变量:课程的难度(Difficulty):可取两个值,0 表示低难度,1 表示高难度 学生的智力水平(Intelligence):可取两个值,0 表示不聪明,1 表示聪明 学生的评级(Grade):可取三个值,1 表示差,2 表示中,3 表示优

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结 航天学院探测制导与控制技术杨若眉1110420123 摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。 关键词:最大似然估计;离散;连续;概率密度最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

概率图模型介绍与计算

概率图模型介绍与计算 01 简单介绍 概率图模型是图论和概率论结合的产物,它的开创者是鼎鼎大名的Judea Pearl,我十分喜欢概率图模型这个工具,它是一个很有力的多变量而且变量关系可视化的建模工具,主要包括两个大方向:无向图模型和有向图模型。无向图模型又称马氏网络,它的应用很多,有典型的基于马尔科夫随机场的图像处理,图像分割,立体匹配等,也有和机器学习结合求取模型参数的结构化学习方法。严格的说他们都是在求后验概率:p(y|x),即给定数据判定每种标签y的概率,最后选取最大的后验概率最大的标签作为预测结果。这个过程也称概率推理(probabilistic inference)。而有向图的应用也很广,有向图又称贝叶斯网络(bayes networks),说到贝叶斯就足以可以预见这个模型的应用范围咯,比如医疗诊断,绝大多数的机器学习等。但是它也有一些争议的地方,说到这就回到贝叶斯派和频率派几百年的争议这个大话题上去了,因为贝叶斯派假设了一些先验概率,而频率派认为这个先验有点主观,频率派认为模型的参数是客观存在的,假设先验分布就有点武断,用贝叶斯模型预测的结果就有点“水分”,不适用于比较严格的领域,比如精密制造,法律行业等。好吧,如果不遵循贝叶斯观点,前面讲的所有机器学习模型都可以dismiss咯,我们就通过大量数据统计先验来弥补这点“缺陷”吧。无向图和有向图的例子如(图一)所示: 图一(a)无向图(隐马尔科夫)(b)有向图 概率图模型吸取了图论和概率二者的长处,图论在许多计算领域中扮演着重要角色,比如组合优化,统计物理,经济等。图的每个节点都可看成一个变量,每个变量有N个状态(取值范围),节点之间的边表示变量之间的关系,它除了

概率论知识点总结

概率论知识点总结 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω、样本空间:所有样本点组成的集合称为样本空间、样本空间用Ω表示、一个随机事件就是样本空间的一个子集。基本事件多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件A 发生必然导致事件B发生,则称B包含A,记为或。 相等关系:若且,则称事件A与事件B相等,记为A=B。事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。事件的差:称事件“事件A发生而事件B不发生”为事件A 与事件B的差事件,记为 A-B。用交并补可以表示为。互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时可记为A+B。对立事

件:称事件“A不发生”为事件A的对立事件(逆事件),记为。对立事件的性质:。事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律: A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律): 第二节事件的概率概率的公理化体系:(1)非负性: P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时当AB=Φ时P(A∪B)=P(A)+P(B)(3)(4)P(A-B)=P(A)- P(AB)(5)P(A∪B)=P(A)+P(B)-P(AB)第三节古典概率模型 1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成、则定义事件A的概率为 2、几何概率:设事件A是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可、第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B)、乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则

概率初步知识点总结和题型

概率初步知识点和题型 【知识梳理】 1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ①必然事件发生的概率为1,即P(必然事件)=1; ②不可能事件发生的概率为0,即P(不可能事件)=0; ③如果A为不确定事件,那么0

3.概率应用: 通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。 【练习】 随机事件与概率: 一. 选择题 1. 下列事件必然发生的是() A. 一个普通正方体骰子掷三次和为19 B. 一副洗好的扑克牌任抽一张为奇数。 C. 今天下雨。 D. 一个不透明的袋子里装有4个红球,2个白球,从中任取3个球,其中至少有2球同色。 2. 甲袋中装着1个红球9个白球,乙袋中装着9个红球1个白球,两个口袋中的球都已搅匀。想从两个口袋中摸出一个红球,那么选哪一个口袋成功的机会较大?() A. 甲袋 B. 乙袋 C. 两个都一样 D. 两个都不行 3. 下列事件中,属于确定事件的是() A. 发射运载火箭成功 B. 2008年,中国女足取得冠军 C. 闪电、雷声出现时,先看到闪电,后听到雷声 D. 掷骰子时,点数“6”朝上 4. 下列事件中,属于不确定的事件的是() A. 英文字母共28个 B. 某人连续两次购买两张彩票,均中头奖 C. 掷两个正四面体骰子(每面分别标有数字1,2,3,4)接触地面的数字和为9 D. 哈尔滨的冬天会下雪 5. 下列事件中属于不可能的事件是() A. 军训时某同学打靶击中靶心 B. 对于有理数x,∣x∣≤0 C. 一年中有365天 D. 你将来长到4米高 6、一个袋子中放有红球、绿球若干个,黄球5个,如果袋子中任意摸出黄球的概率为0.25, 那么袋子中共有球的个数为() A. 15 B. 18 C. 20 D. 25 用列举法求概率: 填空题:

数学建模_四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

机器学习 —— 概率图模型(推理:团树算法)

在之前的消息传递算法中,谈到了聚类图模型的一些性质。其中就有消息不能形成闭环,否则会导致“假消息传到最后我自己都信了”。为了解决这种问题,引入了一种称为团树(clique tree)的数据结构,树模型没有图模型中的环,所以此模型要比图模型更健壮,更容易收敛。 1.团树模型 链模型是一种最简单的树模型,其结构如下图所示,假设信息从最左端传入则有以下式子。 假设要对变量CD 进行推断,则应该求Belief(3) = deta 2->3 *deta 4->3 * phi(3). 从这里可以看出,团树算法是一种精确推断算法。它和变量消除算法在理论推导上是等价的。 上面的例子只是一种非常简单的团树,团树的本质还是聚类图,只不过是一种特殊的聚类图。对于更一般的概率图,也可以生成团树图。

其中,每个cluster都是变量消除诱导图中的一个最小map。 2.团树模型的计算 从上面分析可知,团树模型本质上和变量消除算法还有说不清道不明的关系(团树模型也是精确推理模型)。但是这个算法的优势在于,它可以利用消息传递机制达到收敛。之前提过,聚类图模型中的收敛指的是消息不变。除此之外,聚类图的本质是一种数据结构,它可以储存很多中间计算结果。如果我们有很多变量ABCDEF,那么我们想知道P(A),则需要执行一次变量消除。如果要计算P(B)又要执行一次变量消除。如果中途得到了某个变量的观测,又会对算法全局产生影响。但是使用团树模型可以巧妙的避免这些问题。 首先,一旦模型迭代收敛之后。所有的消息都是不变的,每个消息都是可以被读取的。 每个团的belief,实际上就是未归一划的联合概率,要算单个变量的概率,只需要把其他的变量边际掉就行。这样一来,只需要一次迭代收敛,每个变量的概率都是可算的。并且算起来方便。 其次,如果对模型引入先验知识比如A = a 时,我们需要对D 的概率进行估计。按照变量消除的思路又要从头来一次。但是如果使用团树结构则不用,因为A的取值只影

概率图模型

概率图模型 过去的一段时间里,忙于考试、忙于完成实验室要求的任务、更忙于过年,很长时间没有以一种良好的心态来回忆、总结自己所学的东西了。这几天总在想,我应该怎么做。后来我才明白,应该想想我现在该做什么,所以我开始写这篇博客了。这将是对概率图模型的一个很基础的总结,主要参考了《PATTERN RECOGNITION and MACHINE LEARNING》。看这部分内容主要是因为LDPC码中涉及到了相关的知识。概率图模型本身是值得深究的,但我了解得不多,本文就纯当是介绍了,如有错误或不当之处还请多多指教。 0. 这是什么? 很多事情是具有不确定性的。人们往往希望从不确定的东西里尽可能多的得到确定的知识、信息。为了达到这一目的,人们创建了概率理论来描述事物的不确定性。在这一基础上,人们希望能够通过已经知道的知识来推测出未知的事情,无论是现在、过去、还是将来。在这一过程中,模型往往是必须的,什么样的模型才是相对正确的?这又是我们需要解决的问题。这些问题出现在很多领域,包括模式识别、差错控制编码等。 概率图模型是解决这些问题的工具之一。从名字上可以看出,这是一种或是一类模型,同时运用了概率和图这两种数学工具来建立的模型。那么,很自然的有下一个问题 1. 为什么要引入概率图模型? 对于一般的统计推断问题,概率模型能够很好的解决,那么引入概率图模型又能带来什么好处呢? LDPC码的译码算法中的置信传播算法的提出早于因子图,这在一定程度上说明概率图模型不是一个从不能解决问题到解决问题的突破,而是采用概率图模型能够更好的解决问题。《模式识别和机器学习》这本书在图模型的开篇就阐明了在概率模型中运用图这一工具带来的一些好的性质,包括

概率论公式总结

概率论公式总结 This manuscript was revised by the office on December 10, 2020.

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机 变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度 函数 联合分布函数 联合密度与边缘密度 )(b X a P ≤≤∑≤==≤=x k k X P x X P x F )()()(?∞-=≤=x dt t f x X P x F )()()(),(y x f ),(y x F 1),(0≤≤y x F

离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 E(a)=a ,其中a 为常数 E(a+bX)=a+bE(X),其中a 、b 为常数 E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 方差 定义式 常用计算 式 常用公式 当X 、Y 相互独立时: 方差的性质 D(a)=0,其中a 为常数 D(a+bX)=b2D(X),其中a 、b 为常数 当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数 协方差的性质 独立与相关 独立必定不相关 ∑+∞-∞=?=k k k P x X E )([]22)()()(X E X E X D -=

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生, 称事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率图模型理论及应用教学大纲

教学大纲 统计推理和学习(Statistical Inference and Learning)是信号处理、模式识别、通信系统等工程应用中处理不确定性的一个重要方法。新兴的(概率)图模型是概率论与图论相结合的产物,为各种统计推理和学习提供了一个统一的灵活框架。 本课程介绍图模型基本理论,包括:图论相关知识,图模型上条件独立性,有向图模型(贝叶斯网络)、无向图模型(马尔可夫随机场),图模型的统计推理算法,图模型的学习算法(参数学习和结构学习)等,以及图模型在语音识别、图像处理、计算机视觉、通信信道编码(Turbo-coding)等应用中的具体实例。具体包括如下内容:第一章引言 统计推理和学习的概念 第二章图模型 图论相关知识(简介) 图模型上条件独立性(d-separation,Bayes ball) 有向图模型(贝叶斯网络),无向图模型(马尔可夫随机场) 在图模型框架下介绍: 多元高斯模型、 主成分分析(PCA)、 混合分布(Mixtures)、 因子分析(FA)、 隐马尔科夫模型(HMM) 第三章图模型上的推理(Inference) 图论知识深入:簇(Cliques)、可分解图(Decomposable graph),连接树(Junction tree),规范化(Moralization),三角化(Triangulation)等概念 Junction Tree算法 对HMM的前向-后向算法、Viterbi算法,线性动态系统的Kalman滤波的统一描述 1

第四章图模型的参数学习(Parameter Learning) 完整数据下的最大似然(ML)参数估计 不完整数据(Incomplete Data)下的ML参数估计(EM算法) 完整数据下的贝叶斯学习 不完整数据下的贝叶斯学习 第五章图模型的结构学习(Structure Learning) 模型选取准则,包括最小描述长度(Minimum Description Length,MDL),贝叶斯信息准则(Bayesian Information Criterion,BIC)等 结构EM算法(Structural EM) 结构的贝叶斯学习 第六章图模型的应用选讲 图模型在语音识别应用中的实例 图模型在图像处理应用中的实例 图模型在计算机视觉应用中的实例 图模型在通信信道编码(Turbo-coding)应用中的实例 (前面各章中配合理论的讲解,相应有应用实例的介绍。) 2

相关文档