文档库 最新最全的文档下载
当前位置:文档库 › 导数综合练习题

导数综合练习题

导数综合练习题
导数综合练习题

导数练习题(B )

1.(本题满分12分)

已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;

(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;

(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3

1

的图象有三

个不同的交点,求m 的取值范围. 2.(本小题满分12分)

已知函数)(3ln )(R a ax x a x f ∈--=.

(I )求函数)(x f 的单调区间;

(II )函数)(x f 的图象的在4=x 处切线的斜率为

,2

3若函数]2)('[31)(23m

x f x x x g ++=在区间

(1,3)上不是单调函数,求m 的取值范围.

3.(本小题满分14分)

已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;

(II )若方程9

)32()(2

+-=a x f 恰好有两个不同的根,求)(x f 的解析式;

(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分)

已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=.

(I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分)

已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;

(II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分)

已知2x =是函数2

()(23)x

f x x ax a e =+--的一个极值点(???=718.2e ).

(I )求实数a 的值;

(II )求函数()f x 在]3,23

[∈x 的最大值和最小值.

7.(本小题满分14分)

已知函数)0,(,ln )2(4)(2

≠∈-+-=a R a x a x x x f

(I )当a=18时,求函数)(x f 的单调区间;

(II )求函数)(x f 在区间],[2

e e 上的最小值. 8.(本小题满分12分)

已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...

单调性. (I )求实数a 的取值范围;

(II )若()f x '是()f x 的导函数,设22

()()6g x f x x

'=+-,试证明:对任意两个不相等正数12x x 、,不等式121238

|()()|||27

g x g x x x ->

-恒成立. 9.(本小题满分12分)

已知函数.1,ln )1(2

1)(2

>-+-=

a x a ax x x f (I )讨论函数)(x f 的单调性;

(II )证明:若.1)

()(,),,0(,,52

1212121->--≠+∞∈

10.(本小题满分14分)

已知函数2

1()ln ,()(1),12

f x x a x

g x a x a =

+=+≠-. (I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围; (II )若(1,]( 2.71828)a e e ∈= ,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.

11.(本小题满分12分)

设曲线C :()ln f x x ex =-( 2.71828e =???),()f x '表示()f x 导函数.

(I )求函数()f x 的极值;

(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 12.(本小题满分14分)

定义),0(,,)1(),(+∞∈+=y x x y x F y

(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;

(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在

)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;

(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.

导数练习题(B )答案

1.(本题满分12分)

已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;

(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;

(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3

1

的图象有三

个不同的交点,求m 的取值范围.

解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f

得 ?

?

?==????=--++=03

023233c d b a c b a d …………(4分) (II )依题意 3)2('-=f 且5)2(=f

?

?

?=+--+-=--+5346483

23412b a b a b a b a 解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分)

(III )9123)(2

+-='x x x f .可转化为:(

)

m x x x x x x +++-=++-5343962

2

3

有三个不等实根,

即:()m x x x x g -+-=872

3

与x 轴有三个交点;

2',

()m g m g --=-=??

? ??164,2768

32. …………(10分) 当且仅当()016402768

32<--=>-=??

? ??m g m g 且时,有三个交点,

故而,27

68

16<<-m 为所求. …………(12分)

2.(本小题满分12分)

已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;

(II )函数)(x f 的图象的在4=x 处切线的斜率为,2

3若函数]2)('[31)(23m

x f x x x g ++=在区间

(1,3)上不是单调函数,求m 的取值范围. 解:(I ))0()

1()('>-=

x x

x a x f

(2分)

当(][)+∞>,1,1,0)(,0减区间为的单调增区间为

时x f a 当[)(];1,0,,1)(,0减区间为的单调增区间为

时+∞

当a=1时,)(x f 不是单调函数

(5分)

(II )32ln 2)(,223

43)4('-+-=-==-

=x x x f a a f 得 2)4()(',2)22

(31)(223-++=∴-++=∴x m x x g x x m

x x g (6分)

2)0(',)3,1()(-=g x g 且上不是单调函数在区间 ?

??><∴.0)3(',0)1('g g

(8分)??

?

??>-<∴,319

,

3m m (10分))3,319(--∈m (12分)

3.(本小题满分14分)

已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;

(II )若方程9

)32()(2

+-=a x f 恰好有两个不同的根,求)(x f 的解析式;

(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 解:(I ),23)(,00)0(2b ax x x f c f ++='=?=320)1(--=?='a b f

),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f

由3

3

210)(+-==?='a x x x f 或,因为当1=x 时取得极大值,

所以313

3

2-+-a a ,所以)3,(:--∞的取值范围是a ;

…………(4分)

(II

依题意得:9

)32()32(2762

+-

=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=

…………(10分)

(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα

在区间[-2,2]

有:230368)2(,7)1(,7430368)2(=+-==-=---=-f f f

,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以.

…………(14分)

4.(本小题满分12分)

已知常数,为自然对数的底数,函数,. (I )写出的单调递增区间,并证明; (II )讨论函数在区间上零点的个数. 解:(I ),得的单调递增区间是, …………(2分)

∵,∴,∴,即. …………(4分) (II )

…………(6分)由(I),∵,∴,∴

,…………(8分)

(i)当,即时,函数在区间不存在零点

(ii)当,即时

若,即时,函数在区间不存在零点

若,即时,函数在区间存在一个零点;

若,即时,函数在区间存在两个零点;

综上所述,在上,我们有结论:

当时,函数无零点;

当时,函数有一个零点;

当时,函数有两个零点.

…………(12分)5.(本小题满分14分)

已知函数.

(I)当时,求函数的最大值;

(II)若函数没有零点,求实数的取值范围;

解:(I)当时,

定义域为(1,+),令,………………(2分)

∵当,当,

∴内是增函数,上是减函数

∴当时,取最大值………………(4分)

(II)①当,函数图象与函数图象有公共点,

∴函数有零点,不合要求;………………(8分)

②当,………………(6分)

令,∵,

∴内是增函数,上是减函数,

∴的最大值是,

∵函数没有零点,∴,,

因此,若函数没有零点,则实数的取值范围.………………(10分)

6.(本小题满分12分)

已知是函数的一个极值点().

(I)求实数的值;

(II)求函数在的最大值和最小值.

解:(I)由可得

……(4分)

∵是函数的一个极值点,∴

∴,解得……………(6分)

(II)由,得在递增,在递增,

由,得在在递减

∴是在的最小值;……………(8分)

,∵

∴在的最大值是.……………(12分)

7.(本小题满分14分)

已知函数

(I)当a=18时,求函数的单调区间;

(II)求函数在区间上的最小值.

解:(Ⅰ),

2分由得,解得或

注意到,所以函数的单调递增区间是(4,+∞)

由得,解得-2<<4,

注意到,所以函数的单调递减区间是.

综上所述,函数的单调增区间是(4,+∞),单调减区间是6分

(Ⅱ)在时,

所以,

当时,有△=16+4×2,

此时,所以,在上单调递增,

所以8分

当时,△=,

令,即,解得或;

令,即,解得.

①若≥,即≥时,

在区间单调递减,所以.

②若,即时间,

在区间上单调递减,在区间上单调递增,

所以.

③若≤,即≤2时,在区间单调递增,

所以

综上所述,当≥2时,;

当时,;

当≤时,14分

8.(本小题满分12分)

已知函数在上不具有

...单调性.

(I)求实数的取值范围;

(II)若是的导函数,设,试证明:对任意两个不相等正数,不等式恒成立.解:(I),………………(2分)

∵在上不具有

...单调性,∴在上有正也有负也有0,

即二次函数在上有零点………………(4分)

∵是对称轴是,开口向上的抛物线,∴

的实数的取值范围………………(6分)(II)由(I),

方法1:,

∵,∴,…………(8分)

设,

在是减函数,在增函数,当时,取最小值

∴从而,∴,函数是增函数,

是两个不相等正数,不妨设,则

∴,∵,∴

∴,即………………(12分)

方法2:、是曲线上任意两相异点,

,,

………(8分)

设,令,,

由,得由得

在上是减函数,在上是增函数,

在处取极小值,,∴所以

即………………(12分)

9.(本小题满分12分)

已知函数

(I)讨论函数的单调性;

(II)证明:若

(1)的定义域为,

2分

(i)若,则故在单调增加.

(ii)若

单调减少,在(0,a-1),

单调增加.

(iii)若

单调增加.

(II)考虑函数

由于,从而当时有

故,当时,有

10.(本小题满分14分)

已知函数.

(I)若函数在区间上都是单调函数且它们的单调性相同,求实数的取值范围;

(II)若,设,求证:当时,不等式成立.

解:(I),……………(2分)

∵函数在区间上都是单调函数且它们的单调性相同,

∴当时,恒成立,……………(4分)

即恒成立,

∴在时恒成立,或在时恒成立,

∵,∴或………………(6分)

(II),

∵定义域是,,即

∴在是增函数,在实际减函数,在是增函数

∴当时,取极大值,

当时,取极小值,………………(8分)

∵,∴………………(10分)

设,则,

∴,∵,∴

∴在是增函数,∴

∴在也是增函数………………(12分)

∴,即,

而,∴

∴当时,不等式成立.………………(14分)

11.(本小题满分12分)

设曲线:(),表示导函数.

(I)求函数的极值;

(II)对于曲线上的不同两点,,,求证:存在唯一的,使直线的斜率等于.解:(I),得

(II )(方法1)∵,∴,∴

即,设 ,,是的增函数, ∵,∴; ,,是的增函数, ∵,∴,

∴函数在内有零点, …………(10分) 又∵,函数在是增函数,

∴函数在内有唯一零点,命题成立…………(12分) (方法2)∵,∴, 即,,且唯一 设,则, 再设,,∴ ∴在是增函数 ∴,同理

∴方程在有解 …………(10分) ∵一次函数在是增函数

∴方程在有唯一解,命题成立………(12分)

注:仅用函数单调性说明,没有去证明曲线不存在拐点,不给分. 12.(本小题满分14分)

定义,

(I )令函数,写出函数的定义域;

(II )令函数的图象为曲线C ,若存在实数b 使得曲线C 在处有斜率为-8的切线,求实数的取值范围;

(III )当且时,求证. 解:(I ),即 ……………………(2分)

得函数的定义域是, ……………………(4分) (II )

设曲线处有斜率为-8的切线, 又由题设

∴存在实数b 使得 有解, ……………………(6分)

由①得代入③得,

有解, ……………………(8分)

方法1:,因为,所以,

当时,存在实数,使得曲线C 在处有斜率为-8的切线

………………(10分)

方法2:得,

………………(10分) 方法3:是的补集,即 ………………(10分) (III )令

又令 ,

单调递减. ……………………(12)分

单调递减, ,

………………(14分)

②③

(完整版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

(完整版)导数及其应用单元测试卷.docx

导数及应用 《导数及其应用》单元测试卷 一、 选择题 1.已知物体的运动方程是 s 1 t 4 4t 3 16t 2 ( t 表示时间, s 表示位移),则瞬时速度为 4 0 的时刻是:( ) A . 0 秒、 2 秒或 4 秒 B . 0 秒、 2 秒或 16 秒 C . 2 秒、 8 秒或 16 秒 D . 0 秒、 4 秒或 8 秒 2.下列求导运算正确的是( ) A . ( x 1 ) 1 1 B . (log 2 x) 1 x x 2 x ln 2 C . (3x ) 3x log 3 e D . x 2 cos x 2sin x 3.曲线 y x 3 2x 4 在点 (13), 处的切线的倾斜角为( ) A . 30° B . 45° C . 60° D . 120° 4.函数 y=2x 3-3x 2-12x+5 在 [0,3] 上的最大值与最小值分别是( ) A.5 , -15 B.5 , 4 C.-4 , -15 D.5 , -16 5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶 路程 s 看作时间 t 的函数,其图像可能是( ) s s s s O tO tO t O t A . 1 B . C . D . 6.设函数 f (x) 2x 1(x 0), 则 f ( x) ( ) x A .有最大值 B .有最小值 C .是增函数 D .是减函数 7.如果函数 y=f ( x ) 的图像如右图,那么导函数 y=f ( x ) 的图像可能是 ( ) 8.设 f ( x) x ln x ,若 f '(x 0 ) 2 ,则 x 0 ( ) A . e 2 B . e C . ln 2 D . ln 2 2

人教A版高中数学选修2-2《导数综合练习题》

导数练习题 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y = 与m x x f y ++'= 5)(3 1 的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++=在区间(1,3)上不是单调函数,求 m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围;

(完整版)导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?? ?? 0,12,求 h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2, 令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4 2 ,

合理构造函数解导数问题

合理构造函数解导数问题 从近几年的高考命题分析,高考对导数的考查常以函数为依托的小综合题,考查函数、导数的基础知识和基本方法.近年的高考命题中的解答题将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机的结合在一起,设计综合试题。在内容上日趋综合化,在解题方法上日趋多样化. 解决这类有关的问题,有时需要借助构造函数,以导数为工具构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 例1:(2009年宁波市高三第三次模拟试卷22题) 已知函数()()ax x x ax x f --++=2 3 1ln . (1) 若 3 2 为()x f y =的极值点,求实数a 的值; (2) 若()x f y =在[)+∞,1上增函数,求实数a 的取值范围; (3) 若1-=a 时,方程()()x b x x f = ---3 11有实根,求实数b 的取值范围。 解:(1)因为3 2= x 是函数的一个极值点,所以0)32 (='f ,进而解得:0=a ,经检验是 符合的,所以.0=a (2)显然(),2312a x x ax a x f --++='结合定义域知道01>+ax 在[)+∞∈,1x 上恒成立,所以0≥a 且01≥+ax a 。同时a x x --232此函数是31x 时递增, 故此我们只需要保证()0231 1≥--++= 'a a a f ,解得:.2510+≤≤a (3)方法一、变量分离直接构造函数 解:由于0>x ,所以:( )2 ln x x x x b -+=32 ln x x x x -+= ()2 321ln x x x x g -++=' ()x x x x x x g 1 266212---=-+='' 当6710+< ''x g 所以()x g '在6 7 10+< x 时,(),0<''x g 所以()x g '在6 71+>x 上递减; 又(),01='g ().6 7 10, 000+< <='∴x x g

导数大题练习带的答案解析

导数大题练习 1.已知f (x )=x ln x -ax ,g (x )=-x 2-2, (Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;(Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 2 1-成立. 2、已知函数2 ()ln 2(0)f x a x a x = +->.(Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ?∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区 间[e ― 1,e]上有两个零点,求实数b 的取值范围. 3. 设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值; (Ⅱ)若函数f (x )在1 [,2]2 上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点. 4、已知函数2 1()(21)2ln ()2 f x ax a x x a = -++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2 ()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得 12()()f x g x <,求a 的取值范围. 5、已知函数())0(2ln 2 >-+= a x a x x f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单 调区间; (Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围; (Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[ ] e ,e 1 -上有两个零点, 求实数b 的取值范围. 6、已知函数1ln ()x f x x += . (1)若函数在区间1 (,)2 a a + (其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1 k f x x ≥ +恒成立,求实数k 的取值范围.

最新复合函数求导练习题

复合函数求导练习题 一.选择题(共26小题) 1.设,则f′(2)=() A.B.C.D. 2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为() A.y=4x B.y=4x﹣8 C.y=2x+2 D. 3.下列式子不正确的是() A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2x D.()′= 4.设f(x)=sin2x,则=() A.B.C.1 D.﹣1 5.函数y=cos(2x+1)的导数是() A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1) C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1) 6.下列导数运算正确的是() A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 7.下列式子不正确的是() A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x C.D. 8.已知函数f(x)=e2x+1﹣3x,则f′(0)=() A.0 B.﹣2 C.2e﹣3 D.e﹣3 9.函数的导数是() A. B. C.D. 10.已知函数f(x)=sin2x,则f′(x)等于() A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x 11.y=e sinx cosx(sinx),则y′(0)等于() A.0 B.1 C.﹣1 D.2

12.下列求导运算正确的是() A. B. C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可以是() A.B.C.D.lnx 14.设 ,则f2013(x)=() A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x) C.22012(cos2x+sin2x)D.22013(sin2x+cos2x) 15.设f(x)=cos22x,则=() A.2 B.C.﹣1 D.﹣2 16.函数的导数为() A.B. C.D. 17.函数y=cos(1+x2)的导数是() A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2) 18.函数y=sin(﹣x)的导数为() A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+) 19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是() A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是() A.y′=cos(2x2+x)B.y′=2xsin(2x2+x) C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x) 21.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 22.函数的导函数是() A.f'(x)=2e2x B. C.D.

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A. B. C. D. 2.设函数是奇函数的导函数,,当时,,则使得 成立的的取值范围是() A. B. C. D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A. B. C. D. 4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( ) A. B. C. D. 5.定义在上的函数满足,,则不等式的解集为() A. B. C. D. 6.设定义在上的函数满足任意都有,且时,有,则的大小关系是() A. B. C. D. 7.已知偶函数满足,且,则的解集为 A. B. C. D.

8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( ) A. B. C. D. 9.已知定义在上的函数的导函数为,满足,且,则不等式 的解集为() A. B. C. D. 10.定义在上的函数f(x)满足,则不等式的解集为A. B. C. D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A. B. C. D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A. e2017f(-2017)e2017f(0) B. e2017f(-2017)f(0),f(2017)>e2017f(0) D. e2017f(-2017)>f(0),f(2017)

高二数学导数及其应用综合检测综合测试题

导数及其应用综合检测 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2010·全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则() A.a=1,b=1B.a=-1,b=1 C.a=1,b=-1 D.a=-1,b=-1 2.一物体的运动方程为s=2t sin t+t,则它的速度方程为() A.v=2sin t+2t cos t+1 B.v=2sin t+2t cos t C.v=2sin t D.v=2sin t+2cos t+1 3.曲线y=x2+3x在点A(2,10)处的切线的斜率是() A.4 B.5 C.6 D.7 4.函数y=x|x(x-3)|+1() A.极大值为f(2)=5,极小值为f(0)=1 B.极大值为f(2)=5,极小值为f(3)=1 C.极大值为f(2)=5,极小值为f(0)=f(3)=1 D.极大值为f(2)=5,极小值为f(3)=1,f(-1)=-3 5.(2009·安徽理,9)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是() A.y=2x-1 B.y=x C.y=3x-2 D.y=-2x+3 6.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a等于() A.2 B.3 C.4 D.5 7.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)

+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( ) A .(-3,0)∪(3,+∞) B .(-3,0)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-∞,-3)∪(0,3) 8.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( ) A .①② B .③④ C .①③ D .①④ 9.(2010·湖南理,5)??2 4 1x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 10.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞, +∞)是增函数,则m 的取值范围是( ) A .m <2或m >4 B .-4f (b )g (b ) B .f (x )g (a )>f (a )g (x ) C .f (x )g (b )>f (b )g (x ) D .f (x )g (x )>f (a )g (x )

高中导数大题专题复习

高中导数大题专题复习 一、导数的基本应用 (一)研究含参数的函数的单调性、极值和最值 基本思路:定义域 →→ 疑似极值点 →→ 单调区间 →→ 极值 →→ 最值 基本方法: 一般通法:利用导函数研究法 特殊方法:(1)二次函数分析法;(2)单调性定义法 【例题】(2008北京理18/22)已知函数2 2()(1)x b f x x -=-,求导函数()f x ',并确定()f x 的 单调区间.

本组题旨在强化对导函数零点进行分类讨论的意识、能力和技巧 【例题】(2009北京文18/22)设函数3 ()3(0)f x x ax b a =-+≠. (Ⅱ)求函数()f x 的单调区间与极值点. 【例题】(2009天津理20/22)已知函数2 2 ()(23)(),x f x x ax a a e x R =+-+∈其中a R ∈. (II )当2 3 a ≠时,求函数()f x 的单调区间与极值. 【例题】(2008福建文21/22)已知函数3 2 ()2f x x mx nx =++-的图象过点(1,6)--,且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m n 、的值及函数()y f x =的单调区间;(Ⅱ)若0a >,求函数()y f x =在区间(1,1)a a -+内的极值.

【例题】(2009安徽文21/21)已知函数2 ()1ln f x x a x x =-+-,a >0, (I)讨论()f x 的单调性; (II)设a=3,求()f x 在区间[1,2 e ]上值域.其中e=2.71828…是自然对数的底数. (二)利用函数的单调性、极值、最值,求参数取值范围 基本思路:定义域 →→ 单调区间、极值、最值 →→ 不等关系式 →→ 参数取值范围 基本工具:导数、含参不等式解法、均值定理等 【例题】(2008湖北文17/21)已知函数3 2 2 ()1f x x mx m x =+-+(m 为常数,且m >0)有极大值....9. . (Ⅰ)求m 的值; (Ⅱ)若斜率为5-的直线是曲线()y f x =的切线,求此直线方程. 【例题】(2009四川文20/22)已知函数3 2()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式; (II )设函数1 ()()3 g x f x mx =+ ,若.()g x 的极值存在.....,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

(完整word版)2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题

构造函数解决高考导数问题 1.(2015·课标全国Ⅰ理)设函数a ax x e x f x +--=)12()(,其中1

6.(2016?课标全国Ⅱ文)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 7.(2017·天津文)(本小题满分14分) 设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间; (Ⅱ)已知函数()y g x =和x y e =的图像在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0; (ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围. 8.(2016·江苏)(本小题满分16分)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2 . ①求方程f (x )=2的根; ②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.

(完整版)《导数及其应用》单元测试卷

《导数及其应用》单元测试 一、填空题(本大题共14题,每小题5分,共计70 分) 1、函数()cos sin f x x x x =+的导数()f x '= ; 2、曲线2 4x y =在点(2,1)P 处的切线斜率k =_________ ___; 3、函数13)(2 3+-=x x x f 的单调减区间为_________ __ _____; 4、设()ln f x x x =,若0'()2f x =,则0x =__________ ______; 5、函数3 2 ()32f x x x =-+的极大值是___________; 6、曲线3 2 ()242f x x x x =--+在点(1,3)-处的切线方程是________________; 7、函数93)(2 3 -++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =_______ __; 8、设曲线2 ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ____________; 9、已知曲线3lnx 4x y 2-=的一条切线的斜率为2 1 ,则切点的横坐标为_____________; 10、曲线3 x y =在点(1,1)处的切线与x 轴、直线2=x 所围成的三角形的面积为 ; 11、已知函数3 ()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m , 则M m -=___________; 12、设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = ; 13、已知函数)(x f x y '=的图像如右图所示(其中)(x f '是函数))(的导函数x f , 下面四个图象中)(x f y =的图象大致是______ ______; ① ② 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形, 记2 (S =梯形的周长) 梯形的面积 ,则S 的最小值是___ ____。

导数大题练习题答案

导数练习题(B)答案 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II)若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数 ) (x f 的解析式; (III )在(II)的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的 图象有三 个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I)求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为,2 3 若函数]2 )('[3 1)(23m x f x x x g ++=在区间 (1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (I I)若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (I II)对于(I I)中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I)写出)(x f 的单调递增区间,并证明a e a >; (II)讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I)当1k =时,求函数()f x 的最大值; (I I)若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I)求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.(本小题满分14分)

导数及其应用单元测试(带答案)

第三章导数及其应用单元测试 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后 的括号内(本大题共12个小题,每小题5分,共60分)。 1.函数y=x+2cosx在[0,]上取得最大值时,x的值为()A.0 B.C.D. 2.函数的单调递减区间是() A.B.C.D. 3.若函数的图象的顶点在第四象限,则函数的图象是 () 4.点P在曲线 上移动,设 点P处切线倾斜角为α, 则α的取值范围是 ()A.[0,] B.0,∪[,π C.[,πD.(, 5.已知(m为常数)在上有最大值3,那么此函数在 上的最小值为() A.B.C.D. 6.函数的单调递增区间是()A. B.(0,3) C.(1,4) D. 7.已知函数时,则()

A.B. C.D. 8.设函数的导函数,则数列的前n项和是 ()A.B.C.D. 9.设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为()A.[-,+∞] B.(-∞,-3) C.(-∞,-3)∪[-,+∞] D.[-,] 10.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)<0,设a=f(0),b= f(),c= f(3),则() A .a<b<c B.c<a<b C.c<b<a D.b<c<a 11.曲线在点处的切线与坐标轴围成的三角形面积为() A.B.C.D. 12.如图所示的是函数的大致图象,则等于()A.B. C.D.

第Ⅱ卷 二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。 13.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________. 14.已知曲线交于点P,过P点的两条切线与x轴分别交于A,B两点,则△ABP的面积为; 15.函数在定义域内可导,其图象如图,记的导函数为, 则不等式的解集为_____________ 16.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。 17.(12分)已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

导数大题经典练习及答案

导数大题专题训练 2g(x)-ax,=-x1.已知f(x)=xlnx的取值范围;,+∞),f(x)≥g(x)恒成立,求实数2,- a(Ⅰ)对一切x∈(0>1lnx+>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有1时,求函数f(x)在[m,m+3](m=-(Ⅱ)当a成立. 的单调区垂直,求函数y=f (x)f (1))处的切线与直线y=x+2P.(Ⅰ)若曲线y=f (x)在点(1,2、已知函数a=1当R).g (x)=f (x)+x―b(b∈成立,试求间;(Ⅱ)若对于都有f (x)>2(a―1)a的取值范围;(Ⅲ)记1―.,e]上有两个零点,求实数b的取值范围在区间时,函数g (x)[e a=0,求函数f (x)[1,e](Ⅰ)若af (x)=lnx+(x3.设函数-a),∈R.在2上的最小值;在 上存在单调递增区间,试求实数(Ⅱ)若函数f (x)a的取值范围;(Ⅲ)求函数f (x)的极值点. 、已知函数.4设,若对任意,均存在,使得,求的)Ⅲ(求的单调区间;)Ⅱ(若曲线在和处的切线互相平行,求的值;)Ⅰ( 取值范围. 5、已知函数 (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于任意成立,试求a的取值范围; (Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围.

6、已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围. 1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则, 在上,在上,因此,在处取极小值,也是最小值, 即,所以. (Ⅱ)当,,由得. ①当时,在上,在上 因此,在处取得极小值,也是最小值. . 由于因此, ②当,,因此上单调递增,所以, ……9分 (Ⅲ)证明:问题等价于证明 由(Ⅱ)知时,的最小值是,当且仅当时取得, 设,则,易知,当且仅当时取到, 但从而可知对一切,都有成立. 2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为,所以,所以a=1.所以. .由解得x>0;由解得0<x<2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2) (Ⅱ),由解得;由解得.所以f (x)在区间上单调递增,在区间上单调递减.所以当时,函数f (x)取得最小值,. 因为对于都有成立, 所以即可. 则.由解得.所以a的取值范围是. (Ⅲ)依题得,则.由解得x>1;由解得0<x<1.所以函数在区间(0,1)为减函数,在区间(1,+∞)为增函-1.所以b的取值范围是[e,e]上有两个零点,所以.解得.数.又因为函数在区间,e]上是增函数,∞). 因为,所以f (x)在[103.解:(Ⅰ)f (x)的定义域为(,+ e]上的最小值为1.所以f (x)在[1,f (x)当x=1时,取得最小值f (1)=1.2注意到抛. ,依题意,在区间上存在子区间使得不等式g (x)>0成立2ax+1(Ⅱ)解法一:设g (x)=2x―2物线g (x)=2x―2ax+1开口向上,所以只要g (2)>0,或即可由g (2)>0,即8―4a+1>0,得,由,即,得,所以, 所以实数a的取值范围是. 所以.又因为x>0,依题意得,在区间上存在子区间使不等式2x―2ax+1>0成立.解法二: . 2,

相关文档
相关文档 最新文档