文档库 最新最全的文档下载
当前位置:文档库 › 扭转试验

扭转试验

扭转试验
扭转试验

实验二 扭转实验

一、实验目的

1.测定低碳钢扭转时的强度性能指标:扭转屈服应力s τ和抗扭强度b τ。

2.测定灰铸铁扭转时的强度性能指标:抗扭强度b τ。

3.绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。

二、实验设备和仪器

1.扭转试验机。

2.计算机

3.游标卡尺。

三、实验试样

按照国家标准GB10128—88《金属室温扭转试验方法》,金属扭转试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样和管形截面试样两种。其中最常用的是圆形截面试样,如图1-1a 所示。通常,圆形截面试样的直径m m 10=d ,标距d l 5=或d l 10=,平行部分的长度为mm 20+l 。若采用其它直径的试样,其平行部分的长度应为标距加上两倍直径。试样头部的形状和尺寸应适合扭转试验机的夹头夹持。

由于扭转试验时,试样表面的切应力最大,试样表面的缺陷将敏感地影响试验结果,所以,对扭转试样的表面粗糙度的要求要比拉伸试样的高。对扭转试样的加工技术要求参见国家标准GB10128—88。

四、实验原理与方法

1. 测定低碳钢扭转时的强度性能指标

试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。随着外力偶

矩的增加,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩es M ,低碳钢的扭转屈服应力为

p

es

s 43W M =

τ 式中:16/3p d W π=为试样在标距内的抗扭截面系数。

在测出屈服扭矩s T 后,改用电动加载,直到试样被扭断为止。测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩eb M ,低碳钢的抗扭强度为

p

eb

b 43W M =

τ 对上述两公式的来源说明如下:

低碳钢试样在扭转变形过程中,利用机上的自动绘图装置绘出的?-e M 图如图1-6所示。当达到图中A 点时,e M 与?成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力s τ,如能测得此时相应的外力偶矩

ep M ,如图1-7a 所示,则扭转屈服应力为

p

ep s W M =

τ

经过A 点后,横截面上出现了一个环状的塑性区,如图1-7b 所示。若材料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的切应力分布可简化成图1-7c 所示的情况,对应的扭矩s T 为

图1-6 低碳钢的扭转图

s

s

s

(a ) (b ) (c )

图1-7 低碳钢圆柱形试样扭转时横截面上的切应力分布

(a )p T T =;(b )s p T T T <<;(c )s

T T

=

s p s 3d/2

2

s d/2

0 s s 3

4

12

d 2d 2ττπρρπτρπρρτW d T ==

==?

?

由于es s M T =,因此,由上式可以得到

p

es

s 43W M =

τ 从计算机所绘出的曲线来看,A 点的位置不易精确判定,而B 点的位置则较为明显。因此,一般均根据由B 点测定的es M 来求扭转切应力s τ。当然这种计算方法也有缺陷,只有当实际的应力分布与图1-7c 完全相符合时才是正确的,对塑性较小的材料差异是比较大的。从图1-6可以看出,当外力偶矩超过es M 后,扭转角?增加很快,而外力偶矩e M 增加很小,BC 近似于一条直线。因此,可认为横截面上的切应力分布如图1-7c 所示,只是切应力值比s τ大。根据测定的试样在断裂时的外力偶矩eb M ,可求得抗扭强度为

p

eb b 43W M =

τ

2.测定灰铸铁扭转时的强度性能指标

对于灰铸铁试样,只需测出其承受的最大外力偶矩eb M (方法同2),抗扭强

p

eb

b W M =

τ 由上述扭转破坏的试样可以看出:低碳钢试样的断口与轴线垂直,表明破坏是由切应力引起的;而灰铸铁试样的断口则沿螺旋线方向与轴线约成 45角,表明破坏是由拉应力引起的。

五、实验步骤

1. 测定低碳钢扭转时的强度性能指标

(1)测量试样的直径(方法与拉伸试验相同)。 (2)将试样安装到扭转试验机上。 (3)计算机数据调整为“0”。

(4)改用快速加载,直至试样被扭断为止,关闭扭转试验机,从计算机中读取最大外力偶矩eb M 。

3.测定灰铸铁扭转时的强度性能指标

(1)测量试样的直径(方法与拉伸试验相同)。

(2)将试样安装到扭转试验机上,计算机数据调整为“0”,

(3)确定速度,直至试样被扭断为止,关闭扭转试验机,由从计算机中读取最大外力偶矩eb M 。

六、实验数据记录与计算

1.测定低碳钢和灰铸铁扭转时的强度性能指标

表1-7 测定低碳钢和灰铸铁扭转时的强度性能指标试验的数据记录与计算

六、思考题

1.比较低碳钢与灰铸铁试样的扭转破坏断口,并分析它们的破坏原因。

2.根据拉伸、压缩和扭转三种试验结果,比较低碳钢与灰铸铁的力学性能及破坏形式,并分析原因。

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

第四章扭转的强度与刚度计算.

41 一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C B m (d ) (e ) 图19-5 (b )

低碳钢 铸铁的扭转破坏实验报告

低碳钢、铸铁的扭转破坏实验 一:实验目的和要求 1、掌握扭转试验机操作。 2、低碳钢的剪切屈服极限τs。 3、低碳钢和铸铁的剪切强度极限τb。 4、观察比较两种材料的扭转变形过程中的变形及其破坏形式,并对试件断口形貌进行分析。 二:实验设备和仪器 1、材料扭转试验机 2、游标卡尺 三、实验原理 1、低碳钢扭转实验 低碳钢材料扭转时载荷-变形曲线如图(a)所示。 T 图1. 低碳钢材料的扭转图 1. 低碳钢材料的扭转图 τs (a) (b) (c) 图2. 低碳钢圆轴试件扭转时的应力分布示意图 低碳钢试件在受扭的最初阶段,扭矩T与扭转角φ成正比关系(见图1),横截面上剪应力τ沿半径线性分布,如图2(a)所示。随着扭矩T的增大,横截面边缘处的剪应力首先达到剪切屈服极限τs且塑性区逐渐向圆心扩展,形成环形塑性区,但中心部分仍是弹性的,见图2(b)。试件继续变形,屈服从试件表层向心部扩展直到整个截面几

乎都是塑性区,如图2(c)所示。此时在T-φ曲线上出现屈服平台(见图1),试验机的扭矩读数基本不动,此时对应的扭矩即为屈服扭矩T s 。随后,材料进入强化阶段,变形增加,扭矩随之增加,直到试件破坏为止。因扭转无颈缩现象。所以,扭转曲线一直上升直到破坏,试件破坏时的扭矩即为最大扭矩T b 。由 t s d s A s s W d dA T τρπρρτρτ3 4 22 /0 ===? ?)( 可得低碳钢材料的扭转屈服极限t s s W T 43= τ;同理,可得低碳钢材料扭转时强度极限t b b W T 43=τ,其中316 d W t π =为抗扭截面模量。 2、铸铁扭转实验 铸铁试件受扭时,在很小的变形下就会发生破坏,其扭转图如图3所示。 图3. 铸铁材料的扭转图 从扭转开始直到破坏为止,扭矩T 与扭转角近似成正比关系,且变形很小,横截面上剪应力沿半径为线性分布。试件破坏时的扭矩即为最大扭矩T b ,铸铁材料的扭转强度极限为t b b W T = τ。 低碳钢试样和铸铁试样的扭转破坏断口形貌有很大的差别,图4(a )所示低碳钢试样的断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏;图(b )所示铸铁试样的断面是与试样轴线成45度角的螺旋面,断面是最大拉应力作用面,断口较为粗糙,因而最大拉应力造成的拉伸断裂破坏。 图4. 低碳钢和铸铁的扭转端口形状 四、实验步骤 低碳钢实验步骤: 1. 测量试样尺寸 在试件两端及中部位置,沿两个相互垂直的方向,测量试样直径,以其平均值计算个横截面面积。

数据结构实验十一:图实验

一,实验题目 实验十一:图实验 采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径。 二,问题分析 本程序要求采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径,完成这些操作需要解决的关键问题是:用邻接表的形式存储有向图并输出该邻接表。用一个函数实现判断任意两点间是否存在路径。 1,数据的输入形式和输入值的范围:输入的图的结点均为整型。 2,结果的输出形式:输出的是两结点间是否存在路径的情况。 3,测试数据:输入的图的结点个数为:4 输入的图的边得个数为:3 边的信息为:1 2,2 3,3 1 三,概要设计 (1)为了实现上述程序的功能,需要: A,用邻接表的方式构建图 B,深度优先遍历该图的结点 C,判断任意两结点间是否存在路径 (2)本程序包含6个函数: a,主函数main() b,用邻接表建立图函数create_adjlistgraph() c,深度优先搜索遍历函数dfs() d,初始化遍历数组并判断有无通路函数dfs_trave() e,输出邻接表函数print() f,释放邻接表结点空间函数freealgraph() 各函数间关系如右图所示: 四,详细设计 (1)邻接表中的结点类型定义:

typedef struct arcnode{ int adjvex; arcnode *nextarc; }arcnode; (2)邻接表中头结点的类型定义: typedef struct{ char vexdata; arcnode *firstarc; }adjlist; (3)邻接表类型定义: typedef struct{ adjlist vextices[max]; int vexnum,arcnum; }algraph; (4)深度优先搜索遍历函数伪代码: int dfs(algraph *alg,int i,int n){ arcnode *p; visited[i]=1; p=alg->vextices[i].firstarc; while(p!=NULL) { if(visited[p->adjvex]==0){ if(p->adjvex==n) {flag=1; } dfs(alg,p->adjvex,n); if(flag==1) return 1; } p=p->nextarc; } return 0; } (5)初始化遍历数组并判断有无通路函数伪代码: void dfs_trave(algraph *alg,int x,int y){ int i; for(i=0;i<=alg->vexnum;i++) visited[i]=0; dfs(alg,x,y); } 五,源代码 #include "stdio.h" #include "stdlib.h" #include "malloc.h" #define max 100 typedef struct arcnode{ //定义邻接表中的结点类型 int adjvex; //定点信息 arcnode *nextarc; //指向下一个结点的指针nextarc }arcnode; typedef struct{ //定义邻接表中头结点的类型 char vexdata; //头结点的序号 arcnode *firstarc; //定义一个arcnode型指针指向头结点所对应的下一个结点}adjlist; typedef struct{ //定义邻接表类型 adjlist vextices[max]; //定义表头结点数组

扭转习题解答

第7章圆轴扭转 主要知识点:(1)圆轴扭转的概念、扭矩和扭矩图; (2)圆轴扭转时的应力和强度计算; (3)圆轴扭转时的变形和刚度计算。 圆轴扭转的概念、扭矩和扭矩图 1.已知圆杆横截面上的扭矩,试画出截面上与T对应的切应力分布图。 解:截面上与T对应的切应力分布图如下: 2.用截面法求下图所示各杆在1-1、2-2、3-3截面上的扭矩。 图7-2 解:a)采用截面法计算扭矩(见图7-2a)。

取1-1截面左侧外力偶矩计算,可得m kN T ?-=-311。 取2-2截面左侧外力偶矩计算,由平衡方程062122=+?-+-T m kN )(,可得m kN T ?=-322。 取3-3截面右侧外力偶矩计算,可得m kN T ?=-133。 b) 采用截面法计算扭矩(见图7-2b )。 取1-1截面左侧外力偶矩计算,可得m kN T ?-=-511。 取2-2截面左侧外力偶矩计算,由平衡方程05522=+?+-T m kN )( ,可得m kN T ?-=-1022。 取3-3截面右侧外力偶矩计算,由平衡方程03333=+?+-T m kN )( ,可得m kN T ?-=-633。 3. 作下图各杆的扭矩图。 解:a)采用截面法计算扭矩(见图7-3a )。取1-1截面左侧外力偶矩计算,可得m kN T ?=-411。取2-2截面右侧外力偶矩计算,可得m kN T ?-=-222。作出扭矩图。 a) b) 图7-3 b) 由力矩平衡方程可得e A M M 2-=(负号表示与图中假设方向相反)。采用截面法计算 扭矩(见图7-3b )。取1-1截面左侧外力偶矩计算,可得e M T 211-=-。取2-2截面右侧外力偶矩计算,可得e M T -=-22。作出扭矩图。 圆轴扭转时的应力和强度计算 4. 实心圆轴和空心轴通过牙嵌离合器而连接,如图所示。已知轴的转速n =100r/min ,传递的功率P=7.5kW ,材料的许用应力][τ=40MP a ,试通过计算确定 (1) 采用实心轴时,直径d 1和的大小; (2) 采用内外径比值为1/2的空心轴时,外径D 2的大小。 解:计算外力偶矩,作用在轴上的外力偶矩: m N m N n P T ?=??==716100 5.795509550 (1)采用实心轴时,直径d 1的大小应满足下式:

弯曲扭转实验

弯曲实验 一.实验目的: 1.了解应变片、应变仪的基本工作原理。 2.学习电测法测定应力的基本原理和方法。 3.确定弯曲梁横截面上的正应力大小,并与理论值进行比较。 4.学习实验数据处理及作图方法,确定弯曲梁横截面上的应力分布规律。 5.测量简支梁的挠度,并与理论值进行比较。 二.实验设备: 1.XL3418型多功能实验台一套 2.XL2101型程控静态电阻应变仪一台 3.XL2116A型测力仪一台,XL1155-1t型应变式传感器一只。 4.挠度计、百分表 三.试验原理: 1)参阅材料力学、工程力学课程的教材及其他相关材料。 2)弯曲梁实验装置如图: 图示AB梁为两端铰支的四点弯曲矩形截面钢梁,在距两端支座为a处,分别作用等量 的力。梁的AB段为纯弯曲,其弯矩为。为了实测正应力,在梁的AB段内分别沿横截面表面均匀粘贴5~7个电阻应变片。当梁受到载荷F作用时,可从电阻片的变形测得各点的应变值ε。在比例极限范围内,应力与应变之间存在着正比关系,即σ=E·ε。因而通过测得应变值便可计算出该点正应力的数值。 CD梁为两端铰支的三点弯曲矩形截面钢梁,在距两端支座为a1处,作用有载荷F。在距支撑点X距离远处分别沿横截面表面均匀粘贴5~7个电阻应变片,其弯矩为 。为了实测正应力,当梁受到载荷F作用时,可从电阻片的

变形测得各点的应变值ε。在比例极限范围内,应力与应变之间存在着正比关系,即σ=E·ε。因而通过测得应变值便可计算出该点正应力的数值。 关于应变片和应变测量电路的原理,参见静态电阻应变仪。(请自己编写) 四.实验步骤 1.量尺寸 根据实验需要(三点弯曲、四点弯曲或纯弯曲实验),量取弯曲梁的相关尺寸,以及加力点、支撑点的距离。 2.将挠度仪和百分表安装被测梁上,调整百分表零点。 3.将应变片导线分别接到应变仪的桥路上(注意应变片编号与应变仪通道编号的关系)。 4.打开应变仪电源开关,当程序结束后,按下“自动平衡”键使应变仪各通道清零。 5.打开测力计电源开关,确定档位(SCLY-2数字测力计选20KN档,XL2116A测力仪选N档)。在确认没有给弯曲梁加力的情况下,按下“清零”键。 6.逐级加载,每增加0.5KN记录一次应变仪各测点的读数以及百分表读数。载荷加至4KN后,卸载。 7.根据应变仪读数和百分表读数分别计算出各点读数差与算术平均值,然后计算应力值和挠度值。 8.根据实验数据处理要求,绘制弯曲梁横截面上的应力分布图。 五.实验记录 1.梁的有关数据: 梁的宽度 b= 高度 h= 梁的有效长度 L S= 挠度的有效长度L e= 加力点到支撑点A的距离a= 加力点到支撑点B的距离a= 加力点到支点C的距离 a1= 支点C到应变片的距离 X= 弹性模量 E=

数据结构实验---图的储存与遍历

数据结构实验---图的储存与遍历

学号: 姓名: 实验日期: 2016.1.7 实验名称: 图的存贮与遍历 一、实验目的 掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。 二、实验内容与实验步骤 题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 V0 V1 V2 V3 V4 三、附录: 在此贴上调试好的程序。 #include #include #include V0 V1 V4 V3 V2 ??? ? ??? ? ????????=010000000101010 1000100010A 1 0 1 0 3 3 4

#define M 100 typedef struct node { char vex[M][2]; int edge[M ][ M ]; int n,e; }Graph; int visited[M]; Graph *Create_Graph() { Graph *GA; int i,j,k,w; GA=(Graph*)malloc(sizeof(Graph)); printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n"); scanf("%d,%d",&GA->n,&GA->e); printf ("请输入矩阵顶点信息:\n"); for(i = 0;in;i++) scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1])); for (i = 0;in;i++) for (j = 0;jn;j++) GA->edge[i][j] = 0; for (k = 0;ke;k++) { printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1); scanf ("%d,%d,%d",&i,&j,&w); GA->edge[i][j] = w; } return(GA); } void dfs(Graph *GA, int v) { int i; printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;

材料力学扭转实验

§1-2 扭转实验 一、实验目的 1、测定低碳钢的剪切屈服点τs,抗扭强度τb。 2、测定铜棒的抗扭强度τb。 3、比较低碳钢和铜棒在扭转时的变形和破坏特征。 二、设备及试样 1、伺服电机控制扭转试验机(自行改造)。 2、0.02mm游标卡尺。 3、低碳钢φ10圆试件一根,画有两圈圆周线和一根轴向线。 4、铜棒铁φ10圆试件一根。 三、实验原理及方法 塑性材料试样安装在伺服电机驱动的扭转试验机上,以6-10o/min的主动夹头旋转速度对试样施加扭力矩,在计算机的显示屏上即可得到扭转曲线(扭矩-夹头转角图线),如下图为低碳钢的部分扭转曲线。试样变形先是弹性性的,在弹性阶段,扭矩与扭转角成线性关系。 弹性变形到一定程度试样会出现屈服。扭转曲线 扭矩首次下降前的最大扭矩为上屈服扭矩T su; 屈服段中最小扭矩为下屈服扭矩T sl,通常把下 屈服扭矩对应的应力值作为材料的屈服极限τs, 即:τs=τsl= T sl/W。当试样扭断时,得到最大 扭矩T b,则其抗扭强度为τb= T b/W 式中W为抗扭截面模量,对实心圆截面有 W=πd03/16。 铸铁为脆性材料,无屈服现象,扭矩 -夹头转角图线如左图,故当其扭转试样 破断时,测得最大扭矩T b,则其抗扭强 度为:τb= T b/W 四、实验步骤 1、测量试样原始尺寸分别在标距两端 及中部三个位置上测量的直径,用最小直 径计算抗扭截面模量。 2、安装试样并保持试样轴线与扭转试验机转动中心一致。 3、低碳钢扭转破坏试验,观察线弹性阶段、屈服阶段的力学现象,记录上、下屈服点扭矩值,试样扭断后,记录最大扭矩值,观察断口特征。 4、铜棒扭转破坏试验,试样扭断后,记录最大扭矩值,观察断口特征。 五、实验数据处理 1、试样直径的测量与测量工具的精度一致。 2、抗扭截面模量取4位有效数字。 3、力学性能指标数值的修约要求同拉伸实验。 六、思考题 1、低碳钢扭转时圆周线和轴向线如何变化?与扭转平面假设是否相符?

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

数据结构实验

实验1 (C语言补充实验) 有顺序表A和B,其元素值均按从小到大的升序排列,要求将它们合并成一 个顺序表C,且C的元素也是从小到大的升序排列。 #include main() { intn,m,i=0,j=0,k=0,a[5],b[5],c[10];/* 必须设个m做为数组的输入的计数器,不能用i ,不然进行到while 时i 直接为5*/ for(m=0;m<=4;m++)scanf("%d",&a[m]);// 输入数组a for(m=0;m<=4;m++)scanf("%d",&b[m]);// 输入数组b while(i<5&&j<5) {if(a[i]b[j]){c[k]=b[j];k++;j++;} else{c[k]=a[i];k++;i++;j++;}// 使输入的两组数组中相同的数只输出一 个 } if(i<5) for(n=i;n<5;n++) {c[k]=a[n];k++;} elseif(j<5) for(n=j;n<5;n++) {c[k]=b[n];k++;} for(i=0;i

求A QB #include main() { inti,j,k=0,a[5],b[5],c[5];//A=a[5],B=b[5],A n B=c[5] for(i=0;i<5;i++)scanf("%d",&a[i]);// 输入a 数组 for(i=0;i<5;i++)scanf("%d",&b[i]);〃输入b 数组 for(i=0;i<5;i++) {for(j=0;j<5;j++) if(a[i]==b[j]){c[k]=a[i];k++;}// 当有元素重复时,只取一个放入 c 中} for(i=0;i #defineN4 main() { inti,j,m,k,a[N+1];//k 为最后输出数组的长度变量

轴的强度计算与设计A

§11—4-1 轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条 : Mpa (11-1) 件 设计公式:mm (11-2) 轴上有键槽需要按一定比例修正:一个键槽轴径加大3~5%;二个键槽轴径加大7~11%。 ——许用扭转剪应力(N/mm2) C——轴的材料系数,与轴的材料和载荷情况有关。 对于空心轴:(mm)(11-3) ,d1—空心轴的内径(mm) 二、按弯扭合成强度条件计算: 条件:已知支点、扭距,弯距可求时 步骤: 1、作轴的空间受力简图(将分布力看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力; 2、求水平面支反力R H1、R H2作水平内弯矩图; 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图; 4、作合成弯矩图;

5、作扭矩图; 6、作当量弯矩图; ——为将扭矩折算为等效弯矩的折算系数。 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关: ——扭矩对称循环变化 ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——M emax处;M e较大,轴径d较小处。 Mpa (11-4) W——抗弯截面模量mm3,见附表11不同截面的W。 设计公式:(mm)(11-5) 如果计算所得d大于轴的结构设计d结构,则应重新设计轴的结构。 对于心轴:T=0,Me=M:转动心轴,许用应力用; 固定心轴,许用应力用——弯曲应力为脉动循环。 三、轴的安全系数校核计算 1、疲劳强度校核——精确计算(比较重要的轴) 要考虑载荷性质、应力集中、尺寸因素和表面质量及强化等因素的影响。根据结构设计选择Me较大,并有应力集中的几个截面,计算疲劳强度安全系数

扭转实验报告

浙江大学材料力学实验报告 (实验项目:扭转) 1. 验证扭转变形公式,测定低碳钢的切变模量G 。; 2. 测定低碳钢和铸铁的剪切强度极限b τ。 3. 比较低碳钢和铸铁试样受扭时的变形规律及其破坏特性。 二、设备及试样: 1. 扭转试验机,如不进行破坏性试验,验证变形公式合测定G 的实验也可在小型扭转试验 机装置上完成; 2. 扭角仪; 3. 游标卡尺; 4. 试样,扭装试样一般为圆截面。 三、实验原理和方法: 1、测定切变模量G A 、机测法:0p T l G I φ= ,其中b δ φ=,δ为百分表读数,p I 为圆截面的极惯性矩; 选取初扭矩To 和比例极限内最大试验扭矩Tn,从To 到Tn 分成n 级加载,每级扭矩增量为 T ?,每一个扭矩Ti 都可测出相应的扭角φi ,与扭矩增量T ?对应的扭角增量是 1i i i φφφ-?=-,则有0 i p i T l G I φ?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n = ∑,i=1,2,3,…n ; B 、电测法:t r t T T G W W γε= =,应变仪读数为r ε,t W 为抗扭截面系数; 选取初扭矩To 和比例极限内最大试验扭矩Tn,从To 到Tn 分成n 级加载,每级扭矩增量为T ?,每一个扭矩Ti 都可测出相应的读数εi ,与扭矩增量T ?对应的读数增量是1i i i εεε-?=-,则有i t i T G W ε?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n =∑, i=1,2,3,…n 2、测定低碳钢和铸铁的剪切强度极限b τ

轴扭转计算

第5章扭转 5.1 扭转的概念及外力偶矩的计算 5.1.1、扭转的概念 在工程实际中,有很多以扭转变形为主的杆件。例如图示 5.1,常用的螺丝刀拧螺钉。 图5.1 图示5.2,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。 图5.2 图示5.3,载重汽车的传动轴。 图5.3 图示5.4,挖掘机的传动轴。 图5.4 图5.5所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图5.5b),雨蓬梁处于受扭状态。 图5.5 分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图5.6所示。以扭转变形为主要变形的直杆称为轴。 图5.6

本章着重讨论圆截面杆的扭转应力和变形计算。 5.1.2、外力偶矩的计算 工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为: n N m 9550= (5.1) 式中 m----作用在轴上的外力偶矩,单位为m N ?; N-----轴传递的功率,单位为kW ; n------轴的转速,单位为r/min 。 图5.7 5.2 圆轴扭转时横截面上的内力及扭矩图 5.2.1 扭矩 已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。图5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。假设在n m -截面将圆轴截开,取左部分为研究对象(图5.8b ),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系 内力偶矩T 称为扭矩。 扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。 图5.8 图示5.8的b 和c ,从同一截面截出的扭矩均为正号。扭矩的单位是m N ?或m kN ?。 5.2.2 扭矩图 为了清楚地表示扭矩沿轴线变化的规律,以便于确定危险截面,常用与轴线平行的x 坐标表示横截面的位置,以与之垂直的坐标表示相应横截面的扭矩,把计算结果按比例绘在图上,

轴的强度计算.

轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936T T T d n P W T ττ≤?== Mpa (11-1) 设计公式: 3036][1055.95n P A n P d T =??≥τ(mm )?轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。?取标准植 ][T τ——许用扭转剪应力(N/mm 2) ,表11-3 T ][τ——考虑了弯矩的影响 A 0——轴的材料系数,与轴的材料和载荷情况有关。注意表11-3下面的说明 对于空心轴:340) 1(β-≥n P A d (mm )? 6.0~5.01≈=d d β, d 1—空心轴的内径(mm ) 注意:如轴上有键槽,则d ?放大:3~5%1个;7~10%2个?取整。 二、按弯扭合成强度条件计算 条件:已知支点、距距,M 可求时 步骤:如图11-17以斜齿轮轴为例 1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a ) 2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b ) 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c ) 4、作合成弯矩图22V H M M M +=(图11-17d ) 5、作扭矩图T α(图11-17e ) 6、作当量弯矩图22)(T M M ca α+= α——为将扭矩折算为等效弯矩的折算系数 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴α与扭矩变化情况有关 1][][11=--b b σσ ——扭矩对称循环变化 α= 6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩 b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。

扭转实验

试验二扭转实验 一、实验目的 1.观察试样在扭转力偶作用下试样受力和变形的行为。观察材料的破坏方式。 2.测定材料的剪切屈服极限及剪切强度极限。 3.熟悉扭转试验机的工作原理及使用方法。 二、仪器设备 扭转试验机:用以作扭转破坏实验。 游标卡尺: 三、实验原理 1.试件 采用圆形截面试件,如图所示,在试件表面画上一条纵线,以便观察试件的扭转变形。 2.扭转试验机的工作原理 扭转试验机如图。在机体上有一个基本固定的夹头,用两平面和夹紧螺栓固定扭转试样的一端。基座上有一个能水平移动的电动减速装置,其左端是一个可旋转的夹头,以夹持试样的另一端。当电动减速器转动时,带动活动夹头转动,而使试样的一端相对于另一端发生了转动,故试件受扭而产生变形。 扭转试验机 作用于试样的扭转力矩,通过与固定夹头相连的称重机构而平衡,同时又带动荷载指针转动而指示出所受扭转力矩的大小。它还带动绘图仪的画笔左右移动,这个移动的扭转力矩坐标在记录纸上与纸的长度方向相垂直。 活动夹头的转动量代表了试样一端相对于另一端的转动,即扭转角。扭转角的大小由活动夹头上的刻度线来指示。同时还通过转动传感器将转角信号输入到绘图仪中,带动绘图仪纸筒转动送出记录纸,在记录纸的长度方向构成转角坐标。 在实验过程中,随着试件扭转变形的增加,试样所受的扭转力矩也随之变化,绘图仪就画 出扭转力矩—扭转角的实验曲线。

在扭转力矩示荷盘的右下方,有一个量程旋钮用以改变扭转力矩的测量量程。其测量范围有100N·m、200 N·m、500 N·m、1 000 N·m。当把旋钮转动到指定的量程时,示荷盘上的刻度标示值随之变化。以利于直接读取。在示荷盘左边的侧面上有一个转动轮,往上或往下转动可调整示荷盘指针的零点(一般情况下不要去转动它)。 扭转实验时的变形速度,可由改变电动机的转速来决定。由于本机采用可控硅直流电机,调速可在一个很大的范围内无级调整。 调速由机器操纵面板的开关和旋钮来控制。控制面板如图,面板各开关,旋钮的功能如下所述。电源开关:按下“开”,接通整机电源;按“关”,断开整机电源: 活动夹头转动速度设置如下。 快速设置:速度设置开关扳于0~360°/min ,表示活动夹头转动速度在0~360°/min 的范围内变化,具体的速度由速度调节钮的转动来决定。 慢速设置:速度设置开关搬于0~36°/min 之间变化。具体的速度由速度调节钮的转动量来决定。 电机开关按钮:电机的转动由三个按钮决定,“正”为正转,“反”为反转,“停”为不转。改变电机转向时,应先按“停”然后再换回。 记录仪开关:此开关用于开关记录仪,当一切准备就绪后即可打开记录仪。用完关闭,以免电机转动空走纸。 3.扭转实验原理 试件承受扭矩时,材料处于纯剪切应力状态,是拉伸以外的又一重要应力状态,常用扭转实验来研究不同材料在纯剪切应力状态下的机械性质。 低碳钢试件在发生扭转变形时,其T -φ曲线如图所示,类似低碳钢拉伸实验,可分为四个阶段:弹性阶段、屈服阶段、强化阶段和断裂阶段,相应地有三个强度特征值:剪切比例极限、剪切屈服极限和剪切强度极限。对应这三个强度特征值的扭矩依次为T p 、T s 、T b 。 在比例极限内,T 与φ成线性关系,材料完全处于弹性状态,试件横截面上的剪应力沿半 控制台面板

数据结构实验报告图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif #include using namespace std; #include "" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0;

轴扭转计算

第5章扭转 扭转的概念及外力偶矩的计算 5.1.1、扭转的概念 在工程实际中,有很多以扭转变形为主的杆件。例如图示,常用的螺丝刀拧螺钉。 图 图示,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。 图 图示,载重汽车的传动轴。 图

图示,挖掘机的传动轴。 图 图所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图),雨蓬梁处于受扭状态。 图 分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图所示。以扭转变形为主要变形的直杆称为轴。

图 本章着重讨论圆截面杆的扭转应力和变形计算。 5.1.2、外力偶矩的计算 工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为: n N m 9550 = () 式中 m----作用在轴上的外力偶矩,单位为m N ?; N-----轴传递的功率,单位为kW ; n------轴的转速,单位为r/min 。 图

圆轴扭转时横截面上的内力及扭矩图 5.2.1 扭矩 已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。图5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。假设在n m -截面将圆轴截开,取左部分为研究对象(图),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系 e M T = 内力偶矩T 称为扭矩。 扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。 图 图示的b 和c ,从同一截面截出的扭矩均为正号。扭矩的单位是m N ?或m kN ?。 5.2.2 扭矩图 为了清楚地表示扭矩沿轴线变化的规律,以便于确定危险截面,常用与轴线平行的x 坐标表示横截面的位置,以与之垂直的坐标表示相应横截面的扭矩,把计算结果按比例绘在图上,正值扭矩画在x 轴上方,负值扭矩画在x 轴下方。这种图形称为扭矩图。 例题 图示传动轴,转速m in r 300=n ,A 轮为主动轮,输入功率kW 10=A N ,B 、C 、

数据结构图实验报告

数据结构教程 上机实验报告 实验七、图算法上机实现 一、实验目的: 1.了解熟知图的定义和图的基本术语,掌握图的几种存储结构。 2.掌握邻接矩阵和邻接表定义及特点,并通过实例解析掌握邻接 矩阵和邻接表的类型定义。 3.掌握图的遍历的定义、复杂性分析及应用,并掌握图的遍历方 法及其基本思想。 二、实验内容: 1.建立无向图的邻接矩阵 2.图的深度优先搜索 3.图的广度优先搜索 三、实验步骤及结果: 1.建立无向图的邻接矩阵: 1)源代码: #include "" #include "" #define MAXSIZE 30 typedef struct

{ char vertex[MAXSIZE]; ertex=i; irstedge=NULL; irstedge; irstedge=p; p=(EdgeNode*)malloc(sizeof(EdgeNode)); p->adjvex=i; irstedge; irstedge=p; } } int visited[MAXSIZE]; ertex); irstedge;

ertex=i; irstedge=NULL; irstedge;irstedge=p; p=(EdgeNode *)malloc(sizeof(EdgeNode)); p->adjvex=i; irstedge; irstedge=p; } } typedef struct node { int data; struct node *next; }QNode; ertex); irstedge;ertex); //输出这个邻接边结点的顶点信息 visited[p->adjvex]=1; //置该邻接边结点为访问过标志 In_LQueue(Q,p->adjvex); //将该邻接边结点送人队Q }

扭转破坏实验实验报告

篇一:扭转实验报告 一、实验目的和要求 1、测定低碳钢的剪切屈服点?s、剪切强度?b,观察扭矩-转角曲线(t??曲线)。 2、观察低碳钢试样扭转破坏断口形貌。 3、测定低碳钢的剪切弹性模量g。 4、验证圆截面杆扭转变形的胡克定律(??tl/gip)。 5、依据低碳钢的弹性模量,大概计算出低碳钢材料的泊松比。 二、试验设备和仪器 1、微机控制扭转试验机。 2、游标卡尺。 3、装夹工具。 三、实验原理和方法 遵照国家标准(gb/t10128-1998)采用圆截面试样的扭转试验,可以测定各种工程材料在纯剪切情况下的力学性能。如材料的剪切屈服强度点?s和抗剪强度?b等。圆截面试样必须按上述国家标准制成(如图1-1所示)。试验两端的夹持段铣削为平面,这样可以有效地防止试验时试样在试验机卡头中打滑。 图 1-1 试验机软件的绘图系统可绘制扭矩-扭转角曲线,简称扭转曲线(图1-2中的曲线)。图3-2 从图1-2可以看到,低碳钢试样的扭转试验曲线由弹性阶段(oa段)、屈服阶段(ab段)和强化阶段(cd段)构成,但屈服阶段和强化阶段均不像拉伸试验曲线中那么明显。由于强化阶段的过程很长,图中只绘出其开始阶段和最后阶段,破坏时试验段的扭转角可达10?以上。从扭转试验机上可以读取试样的屈服扭矩破坏扭矩由算材料的剪切屈服强度抗剪强度式中:试样截面的抗扭截面系数。 ts和tb。和?s?3ts/4wt计?s和?b,wt??d0/16为 3?s?3ts/4wt计算材料的剪切屈服强度?s和抗剪强度?b,式中:wt??d0/16 3 为试样截面的抗扭截面系数。 当圆截面试样横截面的最外层切应力达到剪切屈服点?s时,占横截面绝大部分的内层切应力仍低于弹性极限,因而此时试样仍表现为弹性行为,没有明显的屈服现象。当扭矩继续增加使横截面大部分区域的切应力均达到剪切屈服点?s时,试样会表现出明显的屈服现象,此时的扭矩比真实的屈服扭矩ts要大一些,对于破坏扭矩也会有同样的情况。 图1-3所示为低碳钢试样的扭转破坏断口,破坏断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏。 图 1-3材料的剪切弹性模量g遵照国家标准(gb/t10128-1988)可由圆截面试样的扭转试验测定。在弹性范围内进行圆截面试样扭转试验时,扭矩和扭转角之间的关系符合扭转变形的胡克定律 ??tlp 4 i??d0为截,式中:p 面的极惯性矩。当试样长度l和极惯性矩ip均为已知时,只要测取扭矩增量 ?t和相应的扭转角增量??,可由式 g? ?t?l ???ip 计算得到材料的剪切弹性模量。实验通常采用多级等增量加载法,这样不仅可以避免人为读取数据产生的误差,而且可以通过每次载荷增量和扭转角增量验证扭转变形的胡克定律。 四、实验步骤 1、测量低碳钢试样直径d1,长度l; 2、装夹试样;在试样上安装扭角测试装置,将一个定

相关文档