文档库 最新最全的文档下载
当前位置:文档库 › 换热器的选型和设计指南

换热器的选型和设计指南

换热器的选型和设计指南
换热器的选型和设计指南

热交换器的选型和设计指南

目录

1 概述 (1)

2 换热器的分类及结构特点。 (1)

3 换热器的类型选择 (2)

4 无相变物流换热器的选择 (11)

5 冷凝器的选择 (13)

6 蒸发器的选择 (14)

7 换热器的合理压力降 (17)

8 工艺条件中温度的选用 (18)

9 管壳式换热器接管位置的选取 (19)

10 结构参数的选取 (19)

11 管壳式换热器的设计要点 (23)

12 空冷器的设计要点 (32)

13 空冷器设计基础数据 (35)

1 概述

本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。

2 换热器的分类及结构特点。

表 2-1 换热器的结构分类

3 换热器的类型选择

换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。

因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有:

1) 热负荷及流量大小

2) 流体的性质

3) 温度、压力及允许压降的范围

4) 对清洗、维修的要求

5) 设备结构、材料、尺寸、重量

6) 价格、使用安全性和寿命

在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。

3.1管壳式换热器

管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量

大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。

3.2特殊型式的换热器

特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用是受设计温度和设计压力限制的。在下图中给出了特殊型式的换热器的适用范围,可供参考。

表 3-1 特殊型式换热器的使用范围

3.3特殊型式的换热管

特殊型式的换热管包括有低翅管、高通量管(UCC)、Thermoexcell-E、C(日立)及槽管等。

3.4常用换热器

下表中概括地描述了常用换热器的型式及应用条件和特点。

表 3-4 换热器的类型及应用

从上表中可以看出在换热器选型时,我们应同时考虑是否选用特殊型式的换热器和采用什么样的换热管为好。当然,我们通常一般首先考虑选用管壳式换热器。另外,认真研究技术规定中的设计要求也是很必要的,而后再选取能最好发挥其特点的合适的换热器。

3.5管壳式换热器封头和管程数的选取

因管壳式换热器最为常用,下表3-5中给出了其封头选取的一般要求,表3-6,3-7中给出了换热器的管程数限制值。

表 3-5 TEMA 端部型式的选取

污垢系数:m2.°C /W

(1)C:化学清洗;M:机械清洗,包括高压水力喷射清洗。

(2)A:当管侧或壳侧腐蚀裕度为3.0mm时,首选封头型式。

(3)B:常用的、较为经济的封头型式。

(4)只用于管内侧可用高压水喷射清洗的冷却水系统。

(5)一般使用S形型头,除非有特殊要求时选T型封头。

(6)当壳侧污垢系数≤0.00035时,可以使用不可拆端盖。

(7)当壳侧污垢系数≤0.00035并且管侧可用高压水喷射清洗时,T型封头

可使用不可拆端盖。

(8)B或C:常用型式,比A型经济。

(9)M或N:常用型式,比L型经济。

(10)L:当管侧腐蚀裕度为3.0mm时,首选封头型式。

表 3-6 各类换热器管程数限制

程数

表 3-7 最大管

下表从不同的工艺条件出发给出了换热器的一般选型准则。从换热器经济设计的角度考虑,对管、壳式换热器应首先着重考虑物流的安排问题,如果两流体温度交叉(即:高温流体的出口温度低于冷流体的出口温度),应考虑选流动型式为逆流的换热器。尽管对管壳式换热器可以选F型壳体,但因纵向隔板间会发生热量和流体泄漏,因此多数情况下不推荐使用此种型式的壳体。

表 3 – 8 工艺条件和物流的安排

在许多工业过程中,产生的大量热量需要通过冷却系统来排出。过去经常以水作为冷却剂。随着工业的发展,冷却水需求量急剧增加,引起供水困难,因而发展了空气冷却。对一个化工系统,一般包括有水冷系统和空冷系统,或者是这两者的组合系统。当来自冷却器或冷凝器的工艺流体的出口温度较高时,应该考虑选择空气冷却器。通常空冷器比其它类型的换热器经济,设备回收期短,当工艺流体的出口温度高于大气环境温度15°C 20°C或更高时,选择空冷器比较理想。当然对空冷器需做包括结构价格、耗电等因素等在内的综合费用分析。而使用水冷系统时也应考虑包括供水、处理、循环使用及废水处理等费用。根据技术经济比较,在气候适宜的地方,当工艺物料的最低温度大于65°C,选用空冷最为合适;而当工艺物料的最低温度小于 50°C,则宜用水冷;在这两温度之间,则应作详细的经济分析,以确定用何种型式。一般来说,当工艺流体温度较低时,使用空冷器和管壳式水冷器

的混合系统比较合理,通常高于60°C的部分热量用空冷器取走,其余部分热量用水冷器取走。 3.7.1 选用空冷器的原则

1) 冷却水供应困难,水冷的运行费用过高;

2) 水冷引起结垢和腐蚀严重;

3) 水冷引起环境污染,特别是化工厂,将热水排入环境的热污染也应注

意。

3.7.2 符合下列条件时,选用空冷更为有利:

1) 空气进口温度设计值 < 38°C

2) 热流体出口温度与空气进口温度之差 > 15°C

3) 有效对数平均温差≥ 40°C

4) 热流体凝固温度 < 0°C

5) 热流体出口温度的允许波动范围≥± 3 ~ 5°C

6) 管侧允许压力降 > 10kpa

7) 管内介质的传热膜系数 < 2300w/m2.K

8) 冷却水污垢系数 > 0.0002m2.°C/W

4 无相变物流换热器的选择

4.1无相变流动的换热器应遵循表 3-8 中的通用规则。

4.2在大多数情况下,单相流动可以选用特殊型式的换热器,这些换热器

可以达到节省设备结构造价和降低能耗的目的。在设备选型时可参考下表中不同类型换热器的传热系数值。

常用换热器的总传热系数Kcal/(h.m2.°C)

a.热管换热器的总传热系数

400(5kgf/cm2)

凑性方面都是最好的。但要注意污垢系数应小于任何管壳式换热器,它的传热性能通常决定于厂商提供的板片形式。

4.4 当冷却器出口温度高于大气环境温度15°C 20°C或更高时,考虑用空冷器。

4.5 对管壳式换热器,经常使用低翅管来增强壳侧的传热。一般壳侧传热系数会有两倍或三倍的提高。特别当壳侧传热系数低于管侧一半时,采用低翅管特别有效。当某一流体在管侧的传热系数过低时,则考虑变换管侧流动为壳侧流动,并选用低翅管。当流体较脏时,会有很多未知因素造成换热器的严重结垢,因此不要使用低翅片换热管。

5 冷凝器的选择

5.1 一个冷凝器的传热性能很大程度上取决于换热器的型式、流体的分布以及冷凝侧的工艺条件。对冷凝器的选取应在考虑了3-8表中的通用选型规定外,并同时考虑下表中的工艺条件。

冷凝器选型指南

器。

5.3 特殊类型的换热器有时也可用做冷凝器,下表中给出了几个常用的实例。

5.4 对可能会有冷冻发生的冷凝器,当物流在壳侧冷凝时,通常要考虑加大管间距,并需要注意考虑金属温度、冷凝液流动和不凝气的放空等问题。也可使用专门的防冻剂冷凝器或刺刀式和带有冷凝液排出箱的冷凝器。

5.5 在冷凝器中为了强化传热,也常常使用强化传热管,如:低翅管、Thermonexcell-C(日立)和槽式管(垂直使用)。低翅管较普遍地用于工艺装置中。而其它两种则更多地用于空调生产中。这些管可强化传热,提高传热系数两倍至五倍。但应高度重视它们的结垢问题。

6 蒸发器的选择

6.1蒸发器或再沸器可以分成(1)内置式、(2)釜式、(3)卧式热虹吸式、(4)立式热虹吸式、(5)强制循环式。在下表中列出了各种蒸发器的特点。

蒸发器的类型及特点

6.2 对蒸发器或再沸器,传热性能可能会因设备型式的选择、沸腾侧的工艺条件而有很大变化。因此,在选择一个合适的蒸发器或再沸器时,除了要考虑前

面所说的通用规则外,还应考虑下表中所列的操作压力、设计温差、污垢系数及混合液沸腾范围在内的工艺条件。

蒸发器或再沸器选型指南

危险的,除非小心设计,但在有些工况下可做其它更好的选择;R(risky):由于数据不充分,冒险;P(poor):不好的操作;E:(operable)可行,但是增加了不必要的费用。

6.3 对卧式循环式的蒸发器或再沸器,为了避免在壳侧两相流动的流体气-液相分离,推荐使用G型壳体或H型壳体,而当使用E型壳体或J型壳体时,应选择横向流动,并尽量使管长与壳径之比等于5或小于5。

6.4 对立式热虹吸再沸器,有两种形式的出口接管。(1)塔侧面与再沸器顶部相连型式,(2)塔和再沸器直接相连的型式。对纯组份的沸腾,(1)、(2)两种接管型式均可。而对混合物的沸腾,最好选用(1)形式的接管。热虹吸再沸器的循环是靠入口和出口管道之间的水力静压差来维持的。为了达到较高的循环率并且很好地控制它,应该减小管道中的压力降。这就需要慎重地选择管道直径、材料、布置方式、阀门、弯头及其它管件。

6.5 当在立式或卧式热虹吸再沸器中,热介质为单相流时,逆流和平行流动都是可行的,应通过对温度差、循环率和传热性能的综合考虑来选择何种为最好。

6.6特殊型式的换热器用于蒸发器或再沸器的情况并不多,在下表中列出了几个应用实例。

于蒸发器中,一般可提高传热系数10到20倍。当平均温差较小(Tm<10°C)、沸腾传热系数低时,应考虑利用以上特殊型式的换热管。

7 换热器的合理压力降

较高的压降值导致较高的流速,因此会导致较小的设备和较少的投资,但运行费用会增高,较低的允许压降值则与此相反。所以,应该在投资和运行费用之间进行一个经济技术比较。在下表中给出了常用的换热器的压降值,可供计算时参考。

管壳式换热器、空冷器和套管式换热器

板翅式换热器

对管壳式换热器也可按下表选取合理的压力降

8 工艺条件中温度的选用

8.1 冷却水的出口温度不宜高于60°C,以免结垢严重。高温端的温差不应小于20°C,低温端的温差不应小于5°C。当在两工艺物流之间进行换热时,低温端的温差不应小于20°C。

板式换热器选型参数表

选择板式换热器要注意以下三个事项 1、板式换热器板型的选择板片型式或波纹式应根据换热场合的实际需要而定。对流量大允许压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,确定选择可拆卸式,还是钎焊式。确定板型时不宜选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这个问题。艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,特殊工况可按用户需要专门设计制造。 2、流程和流道的选择流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。 3、压降校核在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺要求为止。 艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式

换热器的选型和设计指南(全)

热交换器的选型和设计指南 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量大、

换热器选型详解讲解

换热器选型详解 各种类型的换热器作为工艺过程必不可少的设备,如何根据不同的工艺生产流程和生产规模,设计出投资省、能耗低、传热效率高、维修方便的换热器是一项非常重要的工作。 换热器分类 按工艺功能分类 冷却器、加热器、再沸器、冷凝器、蒸发器、过热器、废热锅炉等。按传热方式和结构分类 间壁传递热量式和直接接触传递热量式,其中间壁传热式又分为管壳式、板式、管式、液膜式等其他形式的换热器。 从工艺功能选择换热器 冷却器 间壁式冷却器 ☆当传热量大时,可以选择传热面积和传热系数较大的板式换热器比较经济,但是板式换热器的使用温度一般不大于150℃,压降较大。 ☆对于压降和温度压力较高的情况,选用管壳式换热器较为合理。 ☆板翅式换热器由于翅片的作用,适用于气体物料的冷却,其使用温度一般也小于150℃。

☆空冷器适用于高温高压的工艺条件,其热物流出口温度要求比设计温度高15~20℃。 直接接触式冷却器 ☆适用于需要急速降低工艺物料的温度、伴随有吸收或除尘的工艺物料的冷却、大量热水的冷却和大量水蒸气的冷凝冷却等工况。 加热器 高温情况:当温度要求高达500℃以上时可选用蓄热式或直接火电加热等方式。 中温情况:对于150~300℃工况一般采用有机载热体作为加热介质。分为液相和气相两种。 低温情况:当温度小于150℃时首先考虑选用管壳式换热器,只有工艺物料的特性或者工艺条件特殊时,才考虑其他形式,例如热敏性物料加热多采用降膜式或波纹板式换热器。 再沸器 图1 四种再沸器类型

多采用管壳式换热器,分为强制循环式、热虹吸式和釜式再沸器三种。其设计温差一般选用20~50℃,单程蒸发率一般为10%~30%。

热交换器的选型和设计指南(20210201114130)

热交换器的选型和设计指南内容 1 概述 2 换热器的分类及结构特点 3 换热器的类型选择 4 无相变物流换热器的选择 5 冷凝器的选择 6 蒸发器的选择 7 换热器的合理压力降 8 工艺条件中温度的选用 9 管壳式换热器接管位置的选取 10 结构参数的选取 11 管壳式换热器的设计要点 12 空冷器的设计要点 13 空冷器设计基础数据

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器, 如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命

在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安 全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。 针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现 降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型 式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的 合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术 经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa ,温度可 以从-100 °以下到1100°C 高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便 等优点,因此它在换热器中是最主要的型式。 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换 热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用是受设计温度和设计压 力限制的。在下图中给出了特殊型式的换热器的适用范围,可供参考。 7001 -------------------------------------------- , 600- 500- 400 300- 表3- 1特殊型式换热器的使用范围 1C 0

板式换热器选型与计算方法(DOC)

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

热交换器的选型和设计指南

热交换器的选型和设计指南

目录 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的范围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量

换热器的选型和设计指南全

热交换器的选型和设计指南 2换热器的分类及结构特点。...................... 3换热器的类型选择......................... 4无相变物流换热器的选择....................... 5冷凝器的选择............................ 6蒸发器的选择........................... 7换热器的合理压力降......................... 8工艺条件中温度的选用....................... 9管壳式换热器接管位置的选取..................... 10结构参数的选取.......................... 11管壳式换热器的设计要点...................... 12空冷器的设计要点........................ 13空冷器设计基础数据........................

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2换热器的分类及结构特点。 表2-1换热器的结构分类

3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa,温度可以从-100 ° C以下到1100° C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。 3.2 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式:F=Wq/(K*△T) 式中F —换热面积m2 Wq—换热量W K —传热系数W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:

二、手工标准算法 计算方法与步骤 (一)工艺条件 热介质 进出口温度℃Th1 Th2 流量m3/h Qh 压力损失(允许值)MPa △Ph 冷介质 进出口温度℃Tc1 Tc2 流量m3/h Qc 压力损失(允许值)MPa △Pc (二)物性参数 物性温度℃Th=(Th1+Th2)/2 Tc=(Tc1+Tc2)/2介质重度Kg/m3γh γc 介质比热KJ/kg·℃Cph Cpc 导热系数W/m·℃λh λc 运动粘度m2/s νh νc

热交换器的选型和设计指南(20210201124748)

热交换器的选型和设计指南 1概述 (2) 2换热器的分类及结构特点。 (2) 3换热器的类型选择 (3) 4无相变物流换热器的选择 (12) 5冷凝器的选择 (14) 6蒸发器的选择 (15) 7换热器的合理压力降 (18) 8工艺条件中温度的选用 (19) 9管壳式换热器接管位置的选取 (19) 10结构参数的选取 (20) 11管壳式换热器的设计要点 (23) 12空冷器的设计要点 (31) 13空冷器设计基础数据 (34)

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 表2- 1换热器的结构分类

3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的 因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、 安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100 °C以下到1100 °C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方

换热器的选型原则

换热器选型时需要考虑的因素很多,主要是流体的性质;压力、温度及允许压降的范围;对清洗、维修的要求;材料价格;使用寿命等。 目前应用^广泛的是列管式换热器,常用的分固定管板式和浮头式两种。一般要根据介质的性质、流量、腐蚀性、允许压降、操作温度与压力、结垢情况和检修清洗等要素决定选用列管换热器的型式。从经济角度看,只要工艺条件允许,应该优先选用固定管板式换热器。但遇到以下两种情况时,应选用浮头式换热器。①壳壁与管壁的温差超过70℃;壁温相差50~70℃。而壳程流体压力大于0.6MPa时,不宜采用有波形膨胀节的固定管板式换热器。②壳程流体易结垢或腐蚀性强时不能采用固定管板式换热器。 换热管规格选择 ①管子的外形:列管换热器的管子外形有光滑管和螺纹管两种。一般按光滑管设计。当壳程膜系数低,采取其他措施效果不显著时,可选用螺纹管,它能强化壳程的传热效果,减少结垢的影响。 ②管子的排列方式:相同壳径时,采用正三角形排列要比正方形排列可多排布管子,使单位传热面积的金属耗量降低。一般壳程流体不易结垢或可以进行化学清洗的场合下,推荐用正三角形排列。必须进行机械清洗的场合,则采用正方形排列。 ③管子直径:管径越小换热器越紧凑、越便宜。但管径越小换热器压降越大。为了满足允许的压力降一般选用Ф19mm的管子。对于易结垢的物料,为方便清洗,采用外径为25mm的管子。对于有气液两相流的工艺物流,一般选用较大的管径。直径小的管子可以承受更大的压力,

而管壁较薄,有利传热;相同的壳径,可以排较多的小管子,使传热面积增大,单位传热面积的金属耗量降低。所以,在管程结垢不是很严重,又允许压力降较高的情况下,采用Φ19mm×2mm的管子是合理的。 ④管长:无相变换热时,管子较长,传热系数增加。在相同传热面积时,采用长管管程数较少,压力降小,而且每平方米传热面积的性价比也高。但是,管子过长给制造带来困难。壳径较大的换热器采用较长的管子可降低单位传热面积的金属耗量,更为经济。因此,一般选用管长4~6m。对于大面积或无相变的换热器可以选用8~9m的管长。管心距:管心距小、设备紧凑,但将引起管板增厚、清洁不便、壳程压降增大,一般选用范围为管外径的1.25~1.5倍。

换热器设计

换热器设计: 一:确定设计方案: 1、选择换热器的类型 两流体温度变化情况,热流体进口温度130°C,出口温度80°C;冷流体进口温度40°C,出口温度65°C。该换热器用自来水冷却柴油,油品压力0.9MP,考虑到流体温差较大以及壳程压强0.9MP,初步确定为浮头式的列管式换热器。2、流动空间及流速的确定 由于冷却水容易结垢,为便于清洗,应使水走管程,柴油走壳程。从热交换角度,柴油走壳程可以与空气进行热交换,增大传热强度。选用Φ25×2.5 mm 的10号碳钢管。 二、确定物性数据 定性温度:可取流体进口温度的平均值。 壳程柴油的定性温度为 T1=130°C,T2=80°C,t1=40°C,t2=65°C T=(130+80)/2=105(°C) 管程水的定性温度为 t=(40+65)/2=52.5(°C) 已知壳程和管程流体的有关物性数据 柴油105°C下的有关物性数据如下: ρ=840 kg/m3 密度 定压比热容C o=2.15 kJ/(kg·k) 导热系数λo=0.122 W/(m·k) 粘度μo=6.7×10-4N·s/m2 水52.5°C的有关物性数据如下: ρ=988 kg/m3 密度 i C=4.175 kJ/(kg·k) 定压比热容 i λ=0.65 W/(m·k) 导热系数 i

粘度 μi =4.9×10-4 N·s/m 2 三、计算总传热系数 1.热流量 m 0=95000(kg/h) Q 0= m 0C o Δt o =95000×2.15×(130-80)=10212500kJ/h=2836.8(kw) 2.平均传热温差 m t '?=(Δt 1-Δt 2 )/ln(Δt 1/Δt 2)=[(130-65)-(80-40)]/ln[(130-65)/(80-40)]=51.5(°C) 其中Δt 1=T 1-t 2,Δt 2=T 2-t 1。 3.水用量 W c =Q 0/(C i Δt i )=10212500/[4.175×(65-40)]=97844.3kg/h=27.18kg/s 平均温差 1 221t t T T R --= =406580 130--=2 1112t T t t P --= =40 1304065--=0.28 选择卧式冷凝器,冷凝在壳程,为一壳程四管程,查图可得t ??=0.88。 m t m t t '??=???=0.88×51.5=45.32°C 管子规格5.225?φ,L=3m 。 管束排列方式:正三角形排列。 一壳程四管程三角形管束排列方式285.2175.011==n K ,。 四、传热面积初值计算 取总传热系数K=335W/(m 2.°C) 18632 .45335108.28363 =??=?=m t K Q F m 2 一管子面积 3102031???==-ππL d F i =0.1884m 2 管子数 9871884 .01861=== F F N t 管子中心距 o d t 25.1==1.25×25=31.25mm ,取t=32mm

换热器地选型和设计指南设计(全)

目录 热交换器的选型和设计指南 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量大、

最新板式换热器选型手册

1、板式换热器本身原因 很多用户在购买换热器时只提供换热面积,没有换热量、介质流量、进出口温度等具体数据,结果导致所购买的板式换热器尽管型号面积没错,但流程组合不合理,板式换热器也达不到预想的效果,即使在此基础上加大面积也没用。 2、系统配置原因 板式换热器仅仅起到热量转换作用,遵循能量导恒定律,即热侧放走的热量等于冷侧吸收的热量,很多情况下,热侧来自于发热系统的热量没有足够的冷侧冷却水带走,如水量不够、水温不够,导致热侧温度下不来,如果是这种原因,换热器再大也没用。 艾瑞德依靠英国ARD艾瑞德板式换热器(江阴)有限公司的先进换热技术和生产制造技术,并结合英国ARD艾瑞德板式换热器(江阴)有限公司独有的A 系列板型,致力于ARD艾瑞德板式换热器(江阴)有限公司板式换热器在中国市场的推广和应用。且用户自己独特的选型软件根据不同工况测算出最适合的换热器面积,使其达到最优换热效果。

艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式换热器维护服务(PHE MAINTENANCE)的专业换热器厂家。艾瑞德(ARD艾瑞德板式换热器(江阴)有限公司)在全球设有多个标准化工厂及库存中心,服务和销售网点遍布全球。 ARD艾瑞德板式换热器(江阴)有限公司拥有世界上最先进的设计和生产技术以及最全面的换热器专业知识,一直以来ARD艾瑞德板式换热器(江阴)有限公司致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,目前已有超过50,000台的板式换热器良好地运行于各行业,ARD艾瑞德板式换热器(江阴)有限公司已发展成为可拆式板式换热器领域的全球领导者。 ARD艾瑞德板式换热器(江阴)有限公司同时也是板式换热器配件(换热器板片和换热器密封垫)领域全球排名第一的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰 /DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号的板式

换热器设计指南汇总

换热器设计指南

1 总则 1.1 目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1.2 范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3 规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号(版次)的引用文件,其最新版本适用于本规定。 GB150-1999 钢制压力容器 GB151-1999 管壳式换热器 HTRI设计手册 Shell & tube heat exchangers——JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ——SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection——CHEVRON COP. (1989) HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers——TOTAL(2002) 管壳式换热器工程规定——SEI(2005) 2 设计基础 2.1 传热过程名词定义

2.1.1 无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2 沸腾过程 在传热过程中存在着相的变化—液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3 冷凝过程 部分或全部流体被冷凝为液相, 热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2 换热器的术语及分类 2.2.1 术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器;位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分; 管程数:介质沿换热管长度方向往、返的次数; 壳程数:介质在壳程内沿壳体轴向往、返的次数; 公称长度:以换热管的长度作为换热器的公称长度,换热管为直管时,取直管长度,换热管为U形管时取U形管直管段的长度; 计算换热面积:以换热管外径为基准,扣除伸入管板内的换热管长度后,计算得到的管束外表面积,对于U形管式换热器,一般不包括U形弯管段的面积;公称换热面积:经圆整后的计算换热面积;

换热器选型导则

目次 1 总则 2 传热过程名词定义 3 换热器选型 附图管壳式换热器型式 1 总则 目的 为指导公司工艺设计人员合理地进行换热器的选型,特制定本导则。 范围 适用于石油化工装置工艺设计中换热器的选型。 2 传热过程名词定义 无相变过程 在整个传热过程中不发生相变化,只有显热传递。 2.1.1 加热 用工艺流体或其他热流体加热另一工艺流体的过程。 2.1.2 冷却 用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 2.1.3 换热 用工艺流体加热或冷却另外一工艺流体的过程。 沸腾过程 在传热过程中存在着相的变化—液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 2.2.1 池沸过程 用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。2.2.2 流动沸腾 用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 冷凝过程

部分或全部流体被冷凝为液相, 热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 2.3.1 纯蒸汽或混合蒸汽冷凝 用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 2.3.2 有不凝汽的冷凝 用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 3 换热器选型 换热器的分类和选择 3.1.1 换热器的分类 3.1.2 换热器的选择原则 根据工艺条件,采用图3.1.2进行初步的换热器选型。 图3.1.2 换热器型式初选图⑴

注:本图及其它图中的压力均指绝压。 无相变管壳式换热器的分类和选择 3.2.1 分类 常用的有以下三类: 1)固定管板换热器(管侧可以清洗); 2)U型管换热器(壳侧可以清洗); 3)浮头式换热器(管侧、壳侧均可以清洗)。 3.2.2 管壳式换热器中流体位置的选择 1)易结垢的流体在管内,便于清洗,如冷凝器的冷却水一般走管内; 2)流量小的流体在管内,可以采用多管程,以便选择理想流速; 3)腐蚀性强的流体,尽可能在管内; 4)压力高的流体在管内; 5)两流体温差大时,给热系数大的流体在管间,以减小管壁和壳体壁间的温差; 6)与外界温差大的流体在管内; 7)饱和蒸汽的冷凝在壳侧,因为冷凝过程对流速和结垢无要求,且便于冷凝液的排放; 8)粘度大的流体一般在壳侧,因为低Re数时,壳侧的给热系数比管内高; 9)给热系数低的流体在壳侧,可采用低翅片管强化传热。 3.2.3 选择 表3.2.3 无相变换热器的选型 图3.2.3 无相变换热器的选择 表3.2.3 无相变换热器的选型⑵ ②表3.2.3中用词从优到劣的排序(表、表亦同): 很好→好→尚好→尚可→小心(要用心设计)→危险(由于相对缺少实验数据)→差(即操作性能差)。

板式换热器选型所需的参数及原则

1板式换热器选型所需要的参数主要有:两种介质的成份、进出口的温度、流量。如果不能提供流量的必须要提供换热量,如果用于供热行业的,没有流量也可以提供换热面积及所用于的地区(因为地区不一样,单位平米的供热量也不一样)。 2设计的原则是经济合理。以达到换热效果为最终目的,由于现在的市场竞争非常的激烈,同等条件下,往往价格是很多业主考虑是否采用哪家供应商的最主要标准。在这种情况下,面积和型号的选择显得尤为重要。 3必须对本公司产品要相当的了解,对每一种型号的参数和使用范围都要烂熟于心。作为一个合格的技术人员,必须要对所有的型号都非常的熟悉,不仅仅是常用的型号,在一些特殊的工况中老型号反而占有很大的优势。 4不能依赖设计软件,软件的选型都有很大的局限性。型号比较固定,如果养成这样的习惯,将无法适应目前市场多变的环境。

艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

换热器的设计选型与使用

换热器的设计选型与使用 李 红 (新疆钢铁设计院 乌鲁木齐830022) 摘 要 针对几种间壁传热换热器的特点及使用情况作以阐述,以供在换热器设计选型作比较。 关键词 换热器 设计选型 使用 能源是当前人类面临的重要问题之一,能源开发及转换利用已成为各国的重要课题,而换热器是能源利用过程中必不可少的设备,几乎一切工业领域都要使用,化工、冶金、动力、交通、航空与航天等部门应用尤为广泛。近几年由于新技术发展和新能源开发利用,各种类型的换热器越来越受到工业界的重视,而换热器又是节能措施中较为关键的设备,因此,无论是从工业的发展,还是从能源的有效利用换热器的合理设计、制造、选型和运行都具有非常重要的意义。 1 换热器的分类 1.1 直接传热式换热器。一种不需传热壁面,由冷流体与热流体直接接触进行换热的操作过程的换热器,此类换热器常用于工业生产中。 1.2 间壁传热式换热器。冷、热流体通过管子、板等壁面进行热量交换的传热操作过程的换热器,是最普通的也最常用的换热器,冷、热流体都是流体,可以是空气、烟气、蒸汽、水。这是本文重点进行讨论的换热器类型。 1.3 蓄热式换热器。系间歇传热,在废热再生器中是切实可行有效的回收废热的方式,常被用于回收燃烧气体的废热以及蒸汽等用量不均时作为调节手段。 2 几种换热器的特点及使用 在实际设计选型中,往往是已知高温流体与低温流体的两侧进出口温度,在做工艺设计选型时,需要考虑的是有尽可能小的换热面积下,有尽可能大的换热速率,以及较低的设备造价及施工费。另外,在操作运行及维护清洗较方便的前提下考虑换热器的设计选型。 传热基本方程式: Q=UAΔt K cal/h; 式中:U为传热系数,K cal/m2.h.℃;A为传热面积,m2;Δt为通过两种流体边界层的平均温度。 换热器的给热系数h,K cal/m2.h.℃和流速u,m/ s有如下关系: 管程给热系数h t: 层流区 (Re≤2100) h t∝u0.33 t 过渡流区(2100≤Re≤10000)h t∝u0.33~0.8 t 紊流区 (Re≥10000)h t∝u0.8t 壳程给热系数h g: 壳程流体因垂直流过管束,所以流型较乱,层流、 紊流区没有明显的区别:h t∝u0.55 g 对应的压力降ΔP、kg/cm2,管程和壳程大体相同: 层流、过渡流区 ΔP∝u1.0t 紊流区ΔP∝u1.8t 从上式可以看出,在一定的流速下,雷诺数越大,传热系数越大,同时,压力降也越大。 2.1 管壳式换热器。管壳式换热器是最常用的普通结构,它包括:固定管板式换热器、U型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。 固定管板式换热器具有结构简单、重量轻、造价低等优点;缺点就是由于热膨胀而引起管子拉弯。U 型管壳式换热器就是克服此缺点将管子作成“U”型,一端固定另一端活动,使得换热器不受膨胀的影响,结构较简单,重量轻,其缺点是不能机械清洗、管子不便拆换、单位容量及单位质量的传热量低,适用于温差大、管内流体介质比较干净的场合。 带膨胀节式换热器可解决膨胀问题,用膨胀接头的结构,故适用温差大的流体和高压流体,因为可将接头拆下来进行清洗,所以可处理易结垢流体,而对低压气体则不适宜,但其缺点就是制造复杂。 浮头式管壳换热器,其浮头不与外壳相连,可自由伸缩,这样既解决了热膨胀的问题,也方便清洗,检修时可将管芯抽出即可。 62新 疆 有 色 金 属 第1期

换热器的选型和设计

换热器的选型和设计指南 一、概述 1.选型原则 2.工艺参数的选取 3.计算方法 4.结构设计 二、分类及结构特点 1.按照换热器作用原理分类 1.1间壁式换热器(冷热流体不允许混合的场合各种管式和板式换热)1.2直接接触式换热器(凉水塔、洗涤塔、文氏管、喷射冷凝器) 1.3蓄热式换热器 1.4中间载热体式换热器 2.按照换热器用途分类 2.1 加热器 2.2 预热器 2.3 过热器 2.4 蒸发器 2.5 再沸器 2.6 冷却器 2.7 冷凝器 3.按换热器传热面形状和结构分类 3.1 管式换热器 3.2 板式换热器 3.3 特殊形式换热器 4.按换热器所用材料分类 4.1 金属材料换热器 4.2 非金属材料换热器

三、选型需要考虑的因素 1.热负荷(显热+潜热的变化量) 2.流体流量的大小 3.流体的性质 4.流体在换热器中的温度及温度的变化 5.流体允许的压降 6.对清洗、维修的要求 7.设备结构的制造与材料 8.价格、使用安全性与寿命 9.技术经济指标的分析 3.1 管壳式换热器的选型 3.1.1. 适用围 ①压力:允许压力从高真空~41.5MPa,Pmax=60MPa,F≤5000m2 ②温度:-100℃~1100℃(-270℃≤tmax≤1450) 3.1.2. 容量大、结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强 3.1.3. U形管,适用于管、壳壁面温差较大,壳程易结垢管程清洁不易结垢及高温高压、腐蚀性强的场合,即高温高压腐蚀性强的介质走管,密封易解决。

3.2 压降较大时选3较理想;对于10 翅片式空冷器选择条件:①水供应困难②水质不好,如结垢腐蚀③水热引起热污染,一般工艺出口温度较高>65℃(即>大气环境温度15~20℃),比列管式经济;工艺物料<50℃用水冷。

相关文档
相关文档 最新文档