文档库 最新最全的文档下载
当前位置:文档库 › 固体氧化物燃料电池(特点、结构组成、原理)

固体氧化物燃料电池(特点、结构组成、原理)

固体氧化物燃料电池(特点、结构组成、原理)
固体氧化物燃料电池(特点、结构组成、原理)

固体氧化物燃料电池(特点、结构组成、原理)

固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)属于第三代燃料电池,是一种在中高温下直接将储存在燃料和氧化剂中的化学能高效、环境友好地转化成电能的全固态化学发电装置。被普遍认为是在未来会与质子交换膜燃料电池(PEMFC)一样得到广泛普及应用的一种燃料电池。

固体氧化物燃料电池特点

固体氧化物燃料电池具有燃料适应性广、能量转换效率高、全固态、模块化组装、零污染等优点,可以直接使用氢气、一氧化碳、天然气、液化气、煤气及生物质气等多种碳氢燃料。在大型集中供电、中型分电和小型家用热电联供等民用领域作为固定电站,以及作为船舶动力电源、交通车辆动力电源等移动电源,都有广阔的应用前景。

固体氧化物燃料电池结构组成

固体氧化物燃料电池是一种新型发电装置,其高效率、无污染、全固态结构和对多种燃料气体的广泛适应性等,是其广泛应用的基础。

固体氧化物燃料电池单体主要组成部分由电解质(electrolyte)、阳极或燃料极(anode,fuel electrode)、阴极或空气极(cathode,air electrode)和连接体(interconnect)或双极板(bipolar separator)组成。

固体氧化物燃料电池的工作原理与其他燃料电池相同,在原理上相当于水电解的“逆”装置。其单电池由阳极、阴极和固体氧化物电解质组成,阳极为燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂。工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极。

在固体氧化物燃料电池的阳极一侧持续通入燃料气,例如:氢气(H2)、甲烷(CH4)、城市煤气等,具有催化作用的阳极表面吸附燃料气体,并通过阳极的多孔结构扩散到阳极与电解质的界面。在阴极一侧持续通人氧气或空气,具有多孔结构的阴极表面吸附氧,由于阴极本身的催化作用,使得O2得到电子变为O2-,在化学势的作用下,O2-进入起电解质作用的固体氧离子导体,由于浓度梯度引起扩散,最终到达固体电解质与阳极的界面,与燃料气体发生反应,失去的电子通过外电路回到阴极。

单体电池只能产生1V左右电压,功率有限,为了使得SOFC具有实际应用可能,需要大大提高SOFC的功率。为此,可以将若干个单电池以各种方式(串联、并联、混联)组装成电池组。目前SOFC组的结构主要为:管状(tubular)、平板型(planar)和整体型(unique)三种,其中平板型因功率密度高和制作成本低而成为SOFC的发展趋势。

氧化物燃料电池发展

固体氧化物燃料电池的开发始于20世纪40年代,但是在80年代以后其研究才得到蓬勃发展。早期开发出来的SOFC的工作温度较高,一般在800~1000℃。目前科学家已经研发成功中温固体氧化物燃料电池,其工作温度一般在800℃左右。一些国家的科学家也正在努力开发低温SOFC,其工作温度更可以降低至650~700℃。工作温度的进一步降低,使得SOFC的实际应用成为可能。

固体氧化物燃料电池原理

在所有的燃料电池中,SOFC的工作温度最高,属于高温燃料电池。近些年来,分布式电站由于其成本低、可维护性高等优点已经渐渐成为世界能源供应的重要组成部分。由于

SOFC发电的排气有很高的温度,具有较高的利用价值,可以提供天然气重整所需热量,也可以用来生产蒸汽,更可以和燃气轮机组成联合循环,非常适用于分布式发电。燃料电池和燃气轮机、蒸汽轮机等组成的联合发电系统不但具有较高的发电效率,同时也具有低污染的环境效益。

常压运行的小型SOFC发电效率能达到45%-50%。高压SOFC与燃气轮机结合,发电效率能达到70%。国外的公司及研究机构相继开展了SOFC电站的设计及试验,100kW管式SOFC电站己经在荷兰运行。Westinghouse公司不但试验了多个kW级SOFC,而且正在研究MW级SOFC与燃气轮机发电系统。日本的三菱重工及德国的Siemens公司都进行了SOFC发电系统的试验研究。

一般的SOFC发电系统包括燃料处理单元、燃料电池发电单元以及能量回收单元。图一是一个以天然气为燃料、常压运行的发电系统。空气经过压缩器压缩,克服系统阻力后进入预热器预热,然后通入电池的阴极天然气经过压缩机压缩后,克服系统阻力进入混合器,与蒸汽发生器中产生的过热蒸汽混合,蒸汽和燃料的比例为,混合后的燃料气体进入加热器提升温度后通入燃料电池阳极。阴阳极气体在电池内发生电化学反应,电池发出电能的同时,电化学反应产生的热量将未反应完全的阴阳极气体加热。阳极未反应完全的气体和阴极剩余氧化剂通入燃烧器进行燃烧,燃烧产生的高温气体除了用来预热燃料和空气之外,也提供蒸汽发生器所需的热量。经过蒸汽发生器后的燃烧产物,其热能仍有利用价值,可以通过余热回收装置提供热水或用来供暖而进一步加以利用。

(整理编辑:https://www.wendangku.net/doc/e09490274.html,)

燃料电池种类工作原理及结构

燃料电池 燃料电池(FuelC el l)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置.燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。 燃料电池含有阳阴两个电极,分别充满电解液,而两个电极间则为具有渗透性的薄膜所构成.氢气由阳极进入供给燃料,氧气(或空气)由阴极进入电池. 电池经由催化剂的作用,使得阳极的氢原子分解成氢质子(pro to n)与电子(electro n),其中质子进入电解液中,被氧“吸引"到薄膜的另一边,电子经由外电路形成电流后,到达阴极。在阴极催化剂之作用下,氢质子、氧及电子,发生反应形成水分子。这正是水的电解反应的逆过程,因此水是燃料电池唯一的排放物. 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,为一种 "发电机"。 阳极反应 - 阴极反应 总反应 伴随着电池反应, 电池向外输出电能。只要保持氢气和氧气的供给,该燃料电池就会连续不断地产生电能。 燃料电池的分类 1 按燃料电池的运行机理分 根据燃料电池的运行机理的不同,可分为酸性燃料电池和碱性燃料电池.例如磷酸燃料电池(PA FC)和液态氢氧化钾燃料电池(LPH FC)。 2按电解质种类分 根据燃料电池中使用电解质种类的不同,可分为酸性、碱性、熔融盐类或固体电解质的燃料电池。即碱性燃料电池(AFC )、磷酸燃料电池(PAFC )、熔融碳酸盐燃料电池(MCF C)、固体氧化物燃料电池(SOF C)和质子交换膜燃料电池(PEMFC )等。在燃料电池中,磷酸燃料电池(PAFC )、质子交换膜燃料电池(PEMFC )可以冷起动和快起动,可以用作为移动电源,适应燃料电池电动汽车(FCEV)使用的要求,更加具有竞争力。 3按燃料类型分 燃料电池的燃料有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料和汽油、柴油以及天然气等气体燃料,有机燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。根据燃料电池使用燃料类型的不同,可分为直接型燃料电池、间接型燃料电池和再生型燃料电池。 4按工作温度分 e H H 222+→+O H O e H 222122→+++O H O H 22222=+

固体氧化物燃料电池

目录 1引言 (2) 1.1燃料电池的概念及特点 (2) 1.2固休氧化物燃料电池 (4) 1.2.1固休氧化物燃料电池的结构类型及其特点 (4) 1.2.2 SOFC工作原理 (5) 2固体燃料电池多物理场模拟 (6) 2.1控制方程 (6) 2.1.1动量守恒方程 (6) 2.1.2能量守恒方程 (6) 2.1.3质量守恒方程 (6) 2.1.4导电方程 (7) 2.2物理模型 (7) 2.3数学模型 (8) 2.3.1气体输运控制方程 (8) 2.3.2导电控制方程 (8) 2.4边界条件 (9) 3结果与讨论 (11) 3.1电势分布 (12) 3.2不同阳极厚度燃料电池的浓度分布 (12) 3.2.1不同阳极厚度燃料电池的电势分布 (14) 3.3阴极厚度对燃料电池性能影响 (15) 3.4连接体宽度变化对浓度、电势分布的影响 (18) 4 结论 (19)

固体氧化物燃料电池仿真 摘要 燃料电池是将化学反应的化学能直接转变为电能的装置。和传统的热机相比,燃料电池具有更高的电效率,并且燃料电池是一种环境友好的发电方式。固体氧化物燃料电池(SOFC)属于高温燃料电池,除具有燃料电池的一般特点外,其高温排气也可以进一步加以利用。本文建立了描述平板式SOFC的物理数学模型,使用多物理场耦合模拟软件Comsol对其进行模拟计算。通过改变阳极和阴极厚度、连接体rib宽度等,研究其对固体氧化物燃料电池内燃料浓度、电势分布等的影响。模拟结果显示:当燃料沿燃料通道方向流动未出现低燃料浓度区或产物浓度区时,电池电势在燃料流动方向上变化不大;阳极厚度的增加对反应物在垂直于燃料流动方向的分布几乎没有影响,随着阳极和阴极厚度及连接体宽度的增加,燃料电池的性能更好。本模拟可以为燃料电池的设计提供参考。 关键词:固体氧化物燃料电池Comsol 1引言 随着全球工业化的加速及人们生活水平的不断提高,人类对能源的需求持续增长。目前全球能源的大部分来自化石燃料的燃烧过程,全世界对化石燃料利用的持续增长导致了温室气体排放的增加,美国能源部预计,2015年全球的排放量要比1990年增加60%;燃料燃烧过程产生的氮氧化物,硫氧化物,未燃尽的碳氢化合物等是主要的大气污染物。因此,解决能源需求的增长和由此造成的环境问题的关键就是改善能源结构问题,研究开发清洁能源技术。而燃料电池技术正是符合这一需求的高效洁净能源。 1.1燃料电池的概念及特点 燃料电池是把化学反应的化学能直接转化为电能的装置。与传统的发电方式相比较,关键的区别是燃料电池的能量转化过程是直接的。燃料电池需要清洁的

电脑的组成原理与基本结构

第1章电脑的组成原理与基本结构 学习目标 在组装电脑之前,应首先了解组装一台电脑至少需要哪些基本部件,以及各部件的大致功能等基本常识。本章将对电脑的基本组成和结构进行讲解,剖析电脑的基本结构,让读者对电脑有一个初步的认识,了解一些关于电脑的基础知识,迈出组装电脑的第一步。 本章要点 ?电脑的诞生 ?电脑的发展 ?电脑的软件系统 ?电脑的硬件系统 ?电脑的基本结构 1.1 电脑的发展史 电脑是20世纪最伟大的发明之一,可以说电脑是当代社会、科学和经济发展的奠基石。电脑的发明带动了20世纪下半叶的信息技术革命,和以往的工业革命不同的是,电脑将人类从繁杂的脑力和体力劳动中解放了出来,这使得人类社会近50年来的发展速度比此前任何一个时期都快,生产总值比此前几千年来的总和还要多。 电脑为什么会有如此神奇的力量呢?它究竟是什么样子呢?它又是如何被发明的?下面就来了解一下电脑的历史。 1.1.1 电脑的诞生 电脑是人们对电子计算机的俗称,第一台电脑是1946年2月15日由美国宾夕法尼亚大学研制的,名为ENIAC。后来,由天才数学大师、美籍匈牙利数学家冯·诺依曼对其进行了改进,并命名为“冯·诺依曼”体系电脑,现在的电脑都是由“冯·诺依曼”体系电脑发展而来的,因此冯·诺依曼被西方科学家尊称为“电子计算机之父”。 在电子计算机之前,还有具有历史意义的一台计算器,那就是由法国数学家帕斯卡于1642年发明的。在帕斯卡小时候,其父亲在税务局上班,为了减轻父亲计算税务的麻烦,他发明了一种可以计算的小机器。这个计算器是一个不大的黄铜盒子,盒子里面并排装着一些齿轮,这些齿轮上标有0~9共10个数字,每个齿轮代表一位数,当低位齿轮转动10圈时,高位齿轮转动1圈,这样就实现了自动进位,这和机械钟表极其相似。 后来,德国数学家莱布尼兹在帕斯卡计算器的基础上,于1694年发明了世界上第一台

固体氧化物燃料电池(SOFC)研究现状

固体氧化物燃料电池(SOFC)研究现状 伍永福,赵玉萍,彭军 内蒙古科技大学(014010) 摘要:燃料电池在运行过程中具有良好的安全可靠性、环境友好性、可操作性和灵活性,这些优点赋予了燃料电池极强的生命力和长远的发展潜力。本文就固体氧化物燃料电池的研究现状阐述了固体氧化物燃料电池的原理、特点及电池材料的研究进展,就Ni基阳极燃料电池存在的问题,提出在寻找Ni基阳极的替代阳极方面,(一是氧化物阳极,如(Ba/Sr/Ca/La)MxNb1-x O3-δ阳极;二是其他金属基阳极,如Cu基阳极。)作进一步研究的必要。 0.6 关键词:固体氧化物燃料电池,电导率,扩散,极化 1、固体氧化物燃料电池(SOFC)的发展概况 热电厂首先经燃料的燃烧把化学能转变为热能,再由热能转变为机械能,最后把机械能转变为电能,受卡诺循环的制约,在最好的条件下能量转化率也只有35%,实际情况不到20%。燃料电池是继水力、火力、核能发电技术后的第四类新型发电技术,它是一种不经燃料燃烧直接将化学能转变为电能的高效发电装置。由于不受卡诺循环的限制,燃料电池的理论效率达80%以上,实际效率可达50%—60%。其反应产物主要是水和二氧化碳,而且向大气中排放的有害物质很少,故造成的环境污染很低。另外,占地面小,建设周期短,可实行模块式组装,运行质量高、噪音小;使用方便灵活,既可用于中央集中型的大型电厂,也可作为电动汽车,轻型摩托的小型驱动电源。燃料电池在运行过程中具有良好的安全可靠性、环境友好性、可操作性和灵活性,这些优点赋予了燃料电池极强的生命力和长远的发展潜力[1]。 现在正运行的燃料电池都是用H2作燃料,或者碳氢化合物重整出H2,操作费用高,而且电池寿命不长,特别是使用碳氢化合物的电池更是如此。由于H2的制作费用较高,而且其运输、储存都很不方便,并隐含着危险,所以用H2作燃料的燃料电池难于实用化。而炭氢燃料在大自然储量比较丰富,有的(如CH4)不仅较容易制取,而且有利于环境的保护,因此现在固体氧化物燃料电池向着燃料多元,低温度操作方向发展。 早在1839年英国人William Grove就报道了燃料电池的工作原理,但固体氧化物燃料电池的起步却比较晚,1899年Nerest发现了固体氧化物电解质,1937年Baur和Preis首次操作固体氧化物燃料电池,其工作温度为1000℃。自此,固体氧化物燃料电池取得了很大的进展。特别是本世纪70年代末,材料科学的迅速发展使其研究开发工作更加令世人瞩目。目前已经开发成功的固体氧化物燃料电池主要有两种类型,它们分别以氧离子和质子作电池的电荷载体。其中,基于氧离子传导的固体氧化物燃料电池是研究较多且相对成熟的一种。 2、固体氧化物燃料电池(SOFC)的工作原理与特点 2.1、SOFC工作原理 固体氧化物燃料电池(SOFC)是继磷酸盐燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)之后,第三代燃料电池,其工作温度一般在600-1000℃左右,工作原理如图(1)所示,电动势来源于电池两侧不同的氧分压。其单体电池是由正负两个电极(负极为燃料电极,正极为氧化剂电极)以及电解质组成。阳极、阴极的主要作用是导通电子和提供反应气体、产物气体的扩散通道。固体电解质将两侧的气体分隔开来,由于两侧氧分压的不同,产生了氧的化

最新固体氧化物燃料电池

固体氧化物燃料电池

固体氧化物燃料电池 燃料电池又叫连续电池,它在等温条件下直接将储存在燃料和氧化剂中的化学能转变为电能 燃料电池的发电原理:阳极进行燃料的氧化过程,阴极进行氧化剂的还原过程,导电离子在电解质内迁移,电子通过外电路做功并构成电的回路。 燃料电池的工作方式:燃料电池的燃料和氧化剂不是储存在电池内,而是储存在电池外的储罐中。当电池发电时需要连续不断地向电池内输送燃料和氧化剂,排除产物和废热。 燃料电池的组成: (1) 电极。为多孔结构,可由具有电化学催化活性的材料制成,也可以只作为电化学反应的载体和反应电流的传导体。 (2) 电解质。通常为固态或液态,但也有关于NH3 气氛中NH4Cl 电解质的研究。电解质的状态取决于电池的使用条件。 (3) 燃料。可以是气态(氢气等)或液态(甲醇等),在极少数情况下也可以是固态(碳)。 (4) 氧化剂。选择比较方便,纯氧、空气或卤素都可以胜任,而空气是最便宜的。 燃料电池的特点:可长时间不间断地工作——这使燃料电池兼具普通化学电源能量转换效率高和常规发电机组连续工作时间长的两种优势。 高效——它不通过热机过程,不受卡诺循环的限制,其能量转化效率在40-60%;如果实现热电联供,燃料的总利用率可高达80%以上。

环境友好——以纯氢为燃料时,燃料电池的化学反应物仅为水;以富氢气体为燃料时,其二氧化碳的排放量比热机过程减少40%以上,这对缓解地球的温室效应是十分重要的。 安静——燃料电池运动部件很少,工作时安静,噪声很低。 可靠性高——碱性燃料电池和磷酸燃料电池的运行均证明燃料电池的运行高度可靠,可作为各种应急电源和不间断电源使用。 燃料电池的类型:按电解质的性质分:1、碱性燃料电池,简称AFC。2、质子交换膜燃料电池,简称PEMFC。3、磷酸燃料电池,PAFC。4、熔融碳酸盐燃料电池,简称MCFC。5、固体氧化物燃料电池,简称SOFC。 固体氧化物燃料电池 SOFC是以固体氧化物为电解质,如ZrO2、BiO3等,阳极材料是Ni-YSZ陶瓷,阴极材料主要采用锰酸镧材料,SOFC的固体氧化物电解质在高温下800~1000℃具有传递O2-的能力,在电池中起传递O2和分隔氧化剂与燃料的作用。 SOFC为全固体结构,其主要结构有:平板式、管式、瓦楞式、套管式和热交换一体化结构式, ①平板式SOFC电池是目前最主流的SOFC类型电池,它是将阳极/YSZ固体电解质 /阴极烧结成一体,形成三合一结构,简称PEN平板,PEN平板之间由双极连

(完整版)试简述五大类燃料电池的工作原理和各自的特点

三、试简述五大类燃料电池的工作原理和各自的特点 燃料电池按燃料电解质的类型来分类的,可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PENFC)五大类。 3.1 碱性燃料电池(AFC) 碱性燃料电池是该技术发展最快的一种电池,主要为空间任务,包括航天飞机提供动力和饮用水。 3.1.1原理 使用的电解质为水溶液或稳定的氢氧化钾基质,且电化学反应也与羟基(OH)从阴极移动到阳极与氢反应生成水和电子略有不同。这些电子是用来为外部电路提供能量,然后才回到阴极与氧和水反应生成更多的羟基离子。 负极反应:2H2 + 4OH-→ 4H2O + 4e- 正极反应:O2 + 2H2O + 4e- → 4OH- 碱性燃料电池的工作温度大约80℃。因此,它们的启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得相当笨拙。不过,它们是燃料电池中生产成本最低的一种电池,因此可用于小型的固定发电装置。 如同质子交换膜燃料电池一样,碱性燃料电池对能污染催化剂的一氧化碳和其它杂质也非常敏感。此外,其原料不能含有一氧化碳,因为一氧化碳能与氢氧化钾电解质反应生成碳酸钾,降低电池的性能。 3.1.2 特点 低温性能好,温度范围宽,并且可以在较宽温度范围内选择催化剂,但是才用的碱性电解质易受CO2的毒化作用因此必须要严格出去CO2,成本就偏高。 3.2 磷酸燃料电池(PAFC) 磷酸燃料电池(PAFC)是当前商业化发展得最快的一种燃料电池。正如其名字所示,这种电池使用液体磷酸为电解质,通常位于碳化硅基质中。磷酸燃料电池的工作温度要比质子交换膜燃料电池和碱性燃料电池的工作温度略高,位于

基本概念和原理一:物质的组成和结构

基本概念和原理一:物质的组成和结构 一、学习目标: 知识目标: 通过复习,使学生了解分子、原子、离子、元素、化合价等基本概念的含义,理解相关概念的关系。 了解原子的构成以及核外电子排布的初步知识。 掌握化合价法则的应用。 能力目标: 培养学生抽象概括知识的能力和灵活运用知识解决实际问题的能力,培养学生的探究精神和创新意识。 情感目标: 培养学生普遍联系、理论联系实际的辩证唯物主义观点。 培养学生实事求是的科学态度。 二、教学重点、难点: 教学重点: 分子、原子、离子、元素等的定义及原子核外电子排布的初步知识。 化合价法则的应用。 教学难点:分子、原子、离子的相互关系。 三、教学过程:

基础知识归纳与整理 物质的组成和结构 关键知识点拨 分子、原子、离子的关系 三种粒子在化学变化中的关系: 几个决定和几个等式 决定 质子数决定元素的种类。 质子数和中子数决定相对原子质量。 质子数与电子数的差决定粒子的类别和离子所带电荷数。 等式 质子数=核电荷数=电子数 相对原子质量=质子数+中子数 离子所带电荷数=其化合价数值 元素最高正价数=原子的最外层电子数 元素最低负价数=8-原子的最外层电子数 原子团的化合价=其中各元素化合价的代数和 化学变化和物理变化的本质区别 物理变化中分子本身不改变,只是分子间的间隔等发生变化;而化学变化中分子破裂为原子,原子重新组合成新物质的分子。

物质的微观构成与宏观组成 典型例题讲解 例1.下列关于分子的说法正确的是 A.一切物质都是由分子构成的 B.分子是化学变化中的最小粒子 c.分子是不能再分的粒子 D.分子是保持物质化学性质的最小粒子 [解析]构成物质的基本粒子有三种:分子、原子、离子。有些物质是由分子构成的,有些物质是由原子直接构成的,还有一些物质是由离子构成的,所以,A错。在化学变化中,分子可分为原子,而原子不能再分,故B、c错。 根据分子的定义可以确定本题答案为D。 例2.根据《生活报》报道,目前小学生喜欢使用的涂改液中,含有许多挥发性的有害物质,长期使用易引起慢性中毒而头晕、头疼,二氯甲烷就是其中的一种。下列关于二氯甲烷的叙述正确的是 A.二氯甲烷是由碳、氢气、氯气组成的 B.二氯甲烷是由碳、氢、氯三种元素组成的 c.二氯甲烷是由一个碳元素、二个氢元素、两个氯元素组成的 D.二氯甲烷是由一个碳原子、二个氢原子、二个氯原子构成的

固体氧化物燃料电池(SOFC)

固体氧化物燃料电池(SOFC)及其发展 摘要:固体氧化物燃料电池是将燃料中的化学能直接转化为电能的电化学装置,具有高效率、零污染、无噪声等特点。它可以为民用、贸易、军事和交通运输等提供高质量的电源。这一技术的成功应用对于缓解能源危机、满足对电力数目和质量的需求、保护生态环境和国家安全都具有重大的意义。本文简略地介绍了固体氧化物燃料电池及现状和存在的题目,并提出了值得深进研究的课题。关键词:固体氧化物燃料电池(SOFC),现状,发展 1.固体氧化物燃料电池发展背景 燃料电池的历史可以追溯到1839年,SOFC的开发始于20世纪40年代,但是在80年代以后其研究才得到蓬勃发展。以美国西屋电气公司(Westinghouse Electric Company)为代表,研制了管状结构的SOFC,用挤出成型方法制备多孔氧化铝或复合氧化锆支撑管,然后采用电化学气相沉积方法制备厚度在几十到100μm的电解质薄膜和电极薄膜。1987年,该公司在日本安装的25kW级发电和余热供热SOFC系统,到1997年3月成功运行了约1. 3万小时;1997年12月,西门子西屋公司(Siemens Westinghouse Electric Company)在荷兰安装了第一组100kW管状SOFC系统,截止到2000年底封闭,累计工作了16 ,612小时,能量效率为46 %;2002年5月,西门子西屋公司又与加州大学合作,在加州安装了第一套220kW SOFC与气体涡轮机联动发电系统,目前获得的能量转化效率为58 %,猜测有看达到70 %。接下来预备在德国安装320kW 联动发电系统,建成1MW的发电系统,预计2005年底,管状结构SOFC走向贸易化。同时,日本三菱重工长崎造船所、九州电力公司和东陶公司、德国海德堡中心研究所等也进行了千瓦级管状结构SOFC发电试验. 另外,加拿大的环球热电公司( Global Thermoelectric Inc. ),美国GE、Z2tek 等公司在开发平板型SOFC上取得进展,目前正在对千瓦级模块进行试运行。环球热电公司获得的功率密度,在700℃运行时,达到0. 723W/cm2。日本产业技术院电子技术综合研究所从1974 年开始研究SOFC,1984年进行了 500W发电试验,最大输出功率为1. 2kW。日本新阳光计划中,以产业技术综合开发机构(NEDO)为首,从1989年开始开发基础制造技术,并对数百千瓦级发电机组进行测试。1992年开始,富士电机综合研究所和三洋电机在共同研究

固体氧化物燃料电池发展及展望

万方数据

万方数据

万方数据

万方数据

固体氧化物燃料电池发展及展望 作者:韩敏芳, 尹会燕, 唐秀玲, 彭苏萍, HAN Min-fang, YIN Hui-yan, TANG Xiu-ling , PENG Su-ping 作者单位:中国矿业大学,煤气化燃料电池联合研究中心,北京,100083 刊名: 真空电子技术 英文刊名:VACUUM ELECTRONICS 年,卷(期):2005(4) 被引用次数:2次 参考文献(47条) 1.查看详情 2.查看详情 3.查看详情 4.查看详情 5.查看详情 6.查看详情 7.查看详情 8.查看详情 9.查看详情 10.查看详情 11.韩敏芳;彭苏萍固体氧化物燃料电池-材料及制备 2004 12.Kathy Haq Dir. Of Outreach and Communications, National Fuel Cell Research Center 2004 13.查看详情 14.查看详情 15.查看详情 16.查看详情 17.查看详情 18.查看详情 19.查看详情 20.查看详情 21.查看详情 22.查看详情 23.查看详情 24.查看详情 25.查看详情 26.查看详情 27.查看详情 28.查看详情 29.查看详情 30.查看详情

31.查看详情 32.查看详情 33.查看详情 34.Kathy Haq Dir. Of Outreach and Communications, National Fuel Cell Research Center 2004 35.查看详情 36.查看详情 37.查看详情 38.查看详情 39.查看详情 40.Han Minfang;TIAN Y e;LIANG Jie Application Prospect of Underground Coal Gas Used in SOFC 41.查看详情 42.查看详情 43.查看详情 44.查看详情 45.查看详情 46.查看详情 47.查看详情 引证文献(2条) 1.由宏新.高国栋.周亮.阿布理提·阿布都拉乙醇在Ni-ZnO-ZrO_2-YSZ阳极SOFC上的发电性能[期刊论文]-燃料化学学报 2010(1) 2.刘洁.王菊香.邢志娜.李伟燃料电池研究进展及发展探析[期刊论文]-节能技术 2010(4) 本文链接:https://www.wendangku.net/doc/e09490274.html,/Periodical_zkdzjs200504007.aspx

计算机组成原理与体系结构

计算机组成原理与 体系结构 1 2020年4月19日

计算机组成原理与体系结构(专业基础课) Computer Organization and Architecture 【课程编号】BJ26157 【课程类别】专业基础课 【学分数】3.5 【编写日期】 .3.30 【学时数】70 = 63(理论)+ 7(研究)【先修课程】离散数学、数字电路 【适用专业】网络通信工程 一、教学目的、任务 《计算机组成原理与体系结构》是计算机专业本科生核心硬件课程。学习本课程应已具备数字 逻辑的基本知识,并掌握数字系统的一般设计方法。经过学习本课程,能了解计算机一般组成原理 与内部运行机制,为学习本专业后继课程和进行与硬件有关的技术工作打好基础。 二、课程教学的基本要求 本课程主要讲述计算机硬件系统的基本组成原理与运行机制。课程从组成硬件系统的五大部件出发,讲解了各组成部分的工作原理、设计方法以及构成整机系统的基本原理。主要内容有:计算机系统概论;运算方法和运算器;存储系统;指令系统;中央处理器;系统总线和输入输出系统。经过对计算机各部件工作原理、信息加工处理及控制过程的分析,使学生掌握基本的分析方法、设计方法和互连成整机的技术。具备维护、使用计算机的基本技能,并为具备硬件系统的开发应用能 力打下一定的基础。 三、教学内容和学时分配(3 + 7 + 12 + 10 + 8 + 12 + 10 + 8 = 70) 第一章计算机系统概论 3 学时(课堂讲授学时) 主要内容: 1.1 计算机发展简史 1.2 计算机硬件组成 1.3 计算机技术指标 1.4 软件概述 1.5 计算机系统层次结构 教学要求: 总体介绍计算机发展的历史,以及计算机的硬件和软件组成。另外,介绍计算机在硬件层次上的结构组成。 其它教学环节(如实验、习题课、讨论课、其它实践活动):无(实验课独立开设)。

燃料电池的基本工作原理及主要用途

简述燃料电池的基本工作原理及主要用途 1.燃料电池的工作原理 燃料电池是一种按电化学原理,即原电池的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能的能量转换装置。其单体电池是由电池的正极(即氧化剂发生还原反应的阴极)、负极(即还原剂或燃料发生氧化反应的阳极)和电解质构成,燃料电池与常规电池的不同之处在于,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐内,不受电池容量的限制,工作时燃料和氧化剂连续不断地输入电池内部,并同时排放出反应产物。 以磷酸型燃料电池为例,其反应式为: 燃料极(阳极) H2→2H++2e- 空气极(阴极) 1/2O2+2H++2e-→H2O 综合反应式H2+1/2O2→H2O 以上反应式表示:燃料电池工作时向负极供给燃料(氢),向正极供给氧化剂(空气),燃料(氢)在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与空气极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到空气极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程,也是电解反应的逆过程。 2. 燃料电池的应用 2.1能源发电 燃料电池电站的每一套设备都包括了一整套采用天然气发电的电力系统。分为以下几个分单元:①燃料电池组②燃气制备③空气压缩机④水再生利用⑤逆变器⑥测量与控制系统。燃料电池组产生的直流电通过逆变器转换成电力系统所需的交流电。各国工业界人士普遍对于燃料电池在发电站的应用前景看好。 2.2汽车动力 目前,各国的汽车时用量均在不断增加,其排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。于是人们要求开发新型的清洁、高效的能源来解决这一问题。质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。 2.3家庭用能源 天然气作为一种洁净的能源已经在家庭中被广泛使用,但其主要被用于炊事和生活热水,以天然气为燃料的燃气电池在家庭中的广泛应用在开辟了天然气在家庭中一种新的用途的同时也将解决目前高峰用电紧张的状况。家庭的一切用电无论是电视机、冰箱、空调等家用电气还是电脑等办公设备都可以通过燃料电池来提供电源,作为家庭使用的分散电源,并可同时提供家庭用热水和采暖,这样可将天然气的能量利用率提高到70%~90%。 2.4其它方面的应用 碱性燃料电池和质子交换膜燃料电池运行时基本没有红外辐射,而且噪音小,用做潜艇动力,可大大提高其隐蔽性;同时由于它们可在常温下启动工作,且能量密度高,还是理想的航天器工作电源。此外,质子交换膜燃料电池还可用作野外便携式电源。 总之,燃料电池的用途将越来越广泛,它将遍布我们身边的每个角落,成为我们生活中不可缺少的能量来源。

第二节 继电保护的基本原理及其组成

第二节继电保护的基本原理及其组成 参看图1-1至图1-6及其讲解,了解本章对继电保护装置对正常与故障或不正常状态的区分以及继电保护基本原理,并且通过对继电保护装置基本组成的学习深入了解各部分工作内容。 一、继电保护装置对正常与故障或不正常状态的区分 通过对继电保护装置正常运行状态与故障或不正常状态的学习,初步理解继电保护装置的原理。 1. 为完成继电保护所担负的任务,应该要求它能够正确区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。 图1-1 正常运行情况 在电力系统正常运行时,每条线路上都流过由它供电的负荷电流,越靠近电源端的线路上的负荷电流越大。同时,各变电站母线上的电压,一般都在额定电压±5%-10%的范围内变化,且靠近于电源端母线上的电压较高。线路始端电压与电流之间的相位角决定于由它供电的负荷的功率因数角和线路的参数。 由电压与电流之间所代表的“测量阻抗”是在线路始端所感受到的、由负荷所反应出来的一个等效阻抗,其值一般很大。 图1-2 d点三相短路情况 当系统发生故障时(如上图所示),假定在线路B-C上发生了三相短路,则短路点的电压降低到零,从电源到短路点之间均将流过很大的短路电流,各变电站母线上的电压也将在不同程度上有很大的降低,距短路点越近时降低得越多。 设以表示短路点到变电站B母线之间的阻抗,则母线上的残余电压应为 此时与之间的相位角就是的阻抗角,在线路始端的测量阻抗就是,此测量阻抗的大小正比于短路点到变电站B母线之间的距离。 2. 一般情况下,发生短路之后,总是伴随着电流的增大、电压降低、线路始端测量阻抗减小,以及电压与电流之间相位角的变化。故利用正常运行与故障时这些基本参数的区别,便可以构成各种不同原理的继电保护: (1)反应于电流增大而动作的过电流保护; (2)反应于电压降低而动作的低电压保护; (3)反应于短路点到保护安装地点之间的距离(或测量阻抗的减小)而动作的距离保护(或低阻抗保护)等。 电力系统中的任一电气元件,在正常运行时,在某一瞬间,负荷电流总是从一侧流入而从另一侧流出。 图 1-3 正常运行状态 说明:如果统一规定电流的正方向都是从母线流向线路,则A-B两侧电流的大小相等,相位相差180度(图中为实际方向)。

计算机组成原理和系统结构课后答案

1.1 概述数字计算机的发展经过了哪几个代?各代的基本特征是什么? 略。 1.2 你学习计算机知识后,准备做哪方面的应用? 略。 1.3 试举一个你所熟悉的计算机应用例子。 略。 1.4 计算机通常有哪些分类方法?你比较了解的有哪些类型的计算机? 略。 1.5 计算机硬件系统的主要指标有哪些? 答:机器字长、存储容量、运算速度、可配置外设等。 答:计算机硬件系统的主要指标有:机器字长、存储容量、运算速度等。 1.6 什么是机器字长?它对计算机性能有哪些影响? 答:指CPU一次能处理的数据位数。它影响着计算机的运算速度,硬件成本、指令系统功能,数据处理精度等。 1.7 什么是存储容量?什么是主存?什么是辅存? 答:存储容量指的是存储器可以存放数据的数量(如字节数)。它包括主存容量和辅存容量。 主存指的是CPU能够通过地址线直接访问的存储器。如内存等。 辅存指的是CPU不能直接访问,必须通过I/O接口和地址变换等方法才能访问的存储器,如硬盘,u盘等。 1.8 根据下列题目的描述,找出最匹配的词或短语,每个词或短语只能使用一次。(1)为个人使用而设计的计算机,通常有图形显示器、键盘和鼠标。 (2)计算机中的核心部件,它执行程序中的指令。它具有加法、测试和控制其他部件的功能。 (3)计算机的一个组成部分,运行态的程序和相关数据置于其中。 (4)处理器中根据程序的指令指示运算器、存储器和I/O设备做什么的部件。 (5)嵌入在其他设备中的计算机,运行设计好的应用程序实现相应功能。 (6)在一个芯片中集成几十万到上百万个晶体管的工艺。 (7)管理计算机中的资源以便程序在其中运行的程序。 (8)将高级语言翻译成机器语言的程序。 (9)将指令从助记符号的形式翻译成二进制码的程序。 (10)计算机硬件与其底层软件的特定连接纽带。 供选择的词或短语: 1、汇编器 2、嵌入式系统 3、中央处理器(CPU) 4、编译器 5、操作系统 6、控制器 7、机器指令 8、台式机或个人计算机 9、主存储器10、VLSI 答:(1)8,(2)3,(3)9,(4)6,(5)2, (6)10,(7)5,(8)4,(9)1,(10)7

燃料电池分类及工作原理

一、燃料电池的工作原理 燃料电池是用一种特定的燃料,通过一种质子交换膜(PEMProtonExchangeMembrane)和催化层(CLCatalystLayer)而产生电流的一种装置,这种电池只要外界源源不断地供应燃料(例如氢气或甲醇),就可以提供持续电能。它的工作原理,是利用一种叫质子交换膜的技术,使氢气在覆盖有催化剂的质子交换膜作用下,在阳极将氢气催化分解成为质子,这些质子通过质子交换膜到达阴极,在氢气的分解过程中释放出电子,电子通过负载被引出到阴极,这样就产生了电能。 在阳极经过质子交换膜和催化剂的作用,在阴极质子与氧和电子相结合产生水。也就是说燃料电池内部的氢与空气中的氧进行化学反应,生成水的过程,同时产生了电流,也可以理解为是电解水的逆反应。 燃料电池在阳极除供应氢气外,同时还收集氢质子(H+),释放电子;在阴极通过负载捕获电子产生电能。质子交换膜的功能只是允许质子H+通过,并与阴极中的氧结合产生水。这种水在反应过程中的温度作用下,以水蒸气的形式散发在空气中(对汽车用的大功率燃料电池就要设置水的回收装置)。注意,用氢作燃料电池所生成的是纯净水可以饮用,而用甲醇作燃料生成的水溶液中可能产生甲醛之类有毒物质不能饮用。图1为燃料电池工作原理的示意图。

二、燃料电池的分类 由于人们是从不同角度来研究和开发燃料电池的,所以其种类也繁多,但目前主要有3种。 1 质子交换膜技术 质子交换膜技术(或者称聚合物电解液膜技术)——简称PEMFC (ProtonExchangeMembreneFuelCell)。由于它能提供比传统锂离子电池大约高出5~10倍的能量密度,比甲醇燃料电池也有更高的能量密度,所以,人们都看好质子交换膜技术的氢燃料电池,虽然它还存在着储存及安全等问题,但人们正在克服它,最终有望在3~5年实现可存储在像打火机大小的容器中,充一次氢气发电可供手机使用几天,它将是未来便携式电子产品供电系统的首选。 2 直接甲醇燃料电池 直接甲醇燃料电池——简称DMFC(DirectMethanolFuelCell)。它是以甲醇为燃料,通过与氧结合产生电流的,优点是直接使用甲醇,省去了氢的生产与存储,因为,在汽车上早已使用甲醇溶液作为挡风玻璃的刮洗液了,故不存在安全问题。但甲醇存在泄漏问题,虽然用水稀释可以解决,但是电解效率却大大降低,目前正在解决渗漏问题。 3 直接乙醇燃料电池 直接乙醇燃料电池——简称DEFC(DirectEthanolFuelCell)。为避免甲醇的渗漏问题,而采用乙醇,它也是由两个电极、燃料及电解液组成的。

液压传动的基本原理及组成

2009年全国技工教育和职业培训参评组别:B 优秀教研成果评选活动参评教案专业分类:机加工 课程名称:机械基础液压传动的基本原理及组成

教案正文 教学目标对液压千斤顶的工作原理进行彻底了解,掌握液压传动的工作原理,即如何靠流动的液体压力能来传递动力的。通过学习液压传动技术的基本知识、基本理论分析方法,以达到培养学生运用液压传动技术的目的。 授课对象08机电专业 授课 学时 2学时 重点难点分析重点一: 液压传动的工作原理,即什么是液压传动。掌握液压传动的工作原理,即如何靠流动着的液体压力来传递动力的。 重点二: 液压传动的两个工作特性,即压力决定于负载、速度决定于流量。这两个概念,是分析液压系统工作过程的理论关键。尤其是后者贯穿与液压传动课程的全过程 教材处理思路本章关键点: 一是液压传动的工作原理。一油液作为工作介质,通过密封容积的变化来传递运动,通过油液内部的压力来传递动力。液压传动工作介质油液在封闭的管道内流动,直观性差且理论性和实践(实验)性都很强,故较难理解。所以课堂教学中充分发挥多媒体可见、各种演示、VCD、图片的作用,以利用加深学生的理解和掌握。 二是液压传动的两个工作特性,即压力决定于负载、速度决定于流量。这两个概念,是分析液压系统工作过程的理论关键,其原理性强,计算公式多。教学中,采用启发式教法,利用例题讲解逐步推进加深学生的理解和掌握。

时间 分配 教学内容教学方法教学手段板书 1节课§14-1液压传动的基本原理 及组成 一、液压传动的基本原理 1、液压千斤顶的工作原理 ①泵吸油过程 ②泵压油和重物举升过程 工作原理: 以油液作为工作介质,通过 密封容积的变化来传递运动,通 过油液内部的压力来传递动力。 液压传动装置实质上是一种 能量转换装置,先将机械能转换 为便于输送的液压能,随后再将 液压能转换为机械能做功。 二、液压传动系统的组成 1、动力部分 将原动机输出的机械能转换 为油液的压力能 2、执行部分 将液压泵输入的油液压力能 转换为带动工作机的机械能 3、控制部分 用来控制和调节油液的压力、流 量和流动方向 4、辅助部分 将前面三部分连接一起,组成 一个系统,起储油、过滤、测 量和密封等作用,保证系统正 常工作。 三、液压元件的图形符号 GB/T786.1-1993《液压气动图 形符号》对液压气动元(辅) 件的图形符号作的具体规定 讲解 课件演示 课件演示 §14-1液压传动的基 本原理及组成 一、液压传动的基本原 理 1、液压千斤顶的工作 原理 ①泵吸油过程 ②泵压油和重物 举升过程 工作原理: 以油液作为工作 介质,通过密封容积的 变化来传递运动,通过 油液内部的压力来传 递动力。 二、液压传动系统的组成 1、动力部分 2、执行部分 3、控制部分 4、辅助部分

组成原理__试题及答案

内部资料,转载请注明出处,谢谢合作。 1. 用ASCII码(七位)表示字符5和7是(1) ;按对应的ASCII码值来比较(2) ;二进制的十进制编码是(3) 。 (1) A. 1100101和1100111 B. 10100011和01110111 C. 1000101和1100011 D. 0110101和0110111 (2) A.“a”比“b”大 B.“f”比“Q”大 C. 空格比逗号大 D.“H”比“R”大 (3) A. BCD码 B. ASCII码 C. 机内码 D. 二进制编码 2. 运算器由许多部件组成,但核心部件应该是________。 A. 数据总线 B. 数据选择器 C. 算术逻辑运算单元 D 累加寄存器。 3. 对用户来说,CPU 内部有3个最重要的寄存器,它们是。 A. IR,A,B B. IP,A,F C. IR,IP,B D. IP,ALU,BUS 4. 存储器是计算机系统中的记忆设备,它主要用来。 A. 存放程序 B. 存放数据 C. 存放微程序 D. 存放程序和数据 5. 完整的计算机系统由组成。 A. 主机和外部设备 B. 运算器、存储器和控制器 C. 硬件系统和软件系统 D. 系统程序和应用程序 6.计算机操作系统是一种(1) ,用于(2) ,是(3) 的接口。 (1) A. 系统程序 B. 应用程序 C. 用户程序 D. 中间程序 (2) A.编码转换 B. 操作计算机 C. 控制和管理计算机系统的资源 D. 把高级语言程序翻译成机器语言程序 (3) A. 软件和硬件 B. 主机和外设 C. 用户和计算机 D. 高级语言和机器语言机 7.磁盘上的磁道是 (1) ,在磁盘存储器中查找时间是 (2) ,活动头磁盘存储器的平均存取时间是指 (3) ,磁道长短不同,其所存储的数据量 (4) 。 (1) A. 记录密度不同的同心圆 B. 记录密度相同的同心圆 C. 阿基米德螺线 D. 随机同心圆 (2) A. 磁头移动到要找的磁道时间 B. 在磁道上找到扇区的时间 C. 在扇区中找到数据块的时间 D. 以上都不对 (3) A. 平均找道时间 B. 平均找道时间+平均等待时间 C. 平均等待时间 D. 以上都不对 (4) A. 相同 B.长的容量大 C. 短的容量大 D.计算机随机决定

燃料电池的工作原理

燃料电池的工作原理 作者:佚名来源:不详录入:Admin更新时间:2008-8-18 10:07:07点击数:8 【字体:】 燃料电池的一般结构为:燃料(负极)|电解质(液态或固态)|氧化剂(正极)。在燃料电池中,负极常称为燃料电极或氢电极,正极常称为氧化剂电极、空气电极或氧电极。燃料有气态如氢气、一氧化碳、二氧化碳和碳氢化合物,液态如液氢、甲醇、高价碳氢化合物和液态金属,还有固态如碳等。按电化学强弱,燃料的活性排列次序为:肼>氢>醇>一氧化碳>烃>煤。燃料的化学结构越简单,建造燃料电池时可能出现的问题越少。氧化剂为纯氧、空气和卤素。电解质是离子导电而非电子导电的材料,液态电解质分为碱性和酸性电解液, 固态电解质有质子交换膜和氧化锆隔膜等。在液体电解质中应用微孔膜,0.2mm~0.5mm厚。固体电解质为无孔膜,薄膜厚度约为20μm。 燃料电池的反应为氧化还原反应,电极的作用一方面是传递电子、形成电流;另一方面是在电极表面发生多相催化反应,反应不涉及电极材料本身,这一点与一般化学电池中电极材料参与化学反应很不相同,电极表面起催化剂表面的作用。 在氢氧燃料电池中,氢和氧在各自的电极反应。氧电极进行氧化反应,放出电子,氢电极进行还原反应,吸收电子,总反应为: O2+2H2→2H2O 反应结果是氢和氧发生电化学燃烧,生成水和产生电能。由热力学变量可得到以下理论电动势和理论热效率公式: Eo=-(ΔG/2F)=1.23V η=ΔG/ΔH=83.0% 式中,ΔG和ΔH分别为自由能变化和热焓变化,F是法第常数。

燃料电池工作的中心问题是燃料和氧化剂在电极过程中的反应活性问题。对于气体电极过程,必需采用多孔气体扩散电极和高效电催化剂,提高比表面,增加反应活性,提高电池比功率。 氢在负极氧化是氢原子离解为氢离子和电子的过程,若用有机化合物燃料,首先需要催化裂化或重整,生成富氢气体,必要时还要除去毒化催化剂的有害杂质。这些反应可在电池内部或外部进行,需附加辅助系统。正极中的氧化反应缓慢,燃料电池的活性主要依赖正极。随着温度升高,氧的还原反应有相当的改善。高温反应有利于提高燃料电池反应活性。 对于燃料电池发电系统,核心部件是燃料电池组,它由燃料电池单体堆集而成,单体电池的串联和并联选择,依据满足负载的输出电压和电流,并使总电阻最低,尽量减小电路短路的可能性。其余部件是燃料预处理装置、热量管理装置、电压变换调整装置和自动控制装置。通过燃料预处理,实现燃料的生成和提纯。燃料电池的运行或起动,有的需要加热,工作时放出相当的热量,由热量管理装置合理地加热或除热。燃料电池工作时,在碱性电解液负极或酸性电解液正极处生成水。为了保证电解液浓度稳定,生成的水要及时排除。高温燃料电池生成水会汽化,容易排除,水量管理装置将实现合理的排水。燃料电池与化学电池一样,输出直流电压,通过电压变换成为交流电送到用户或电网。燃料电池发电系统通过自控装置使各个部件协调工作,进行统一控制和管理。

太阳房的组成和基本原理

太阳房的组成和基本原理 第二章太阳房的组成和基本原理 2~1 太阳房的定义和分类 一、定义 @a《实用? 《太阳房》一词,最早使用于美国,有一次芝加哥报纸把一家装有玻璃太?阳能的房子称为“太阳房”,作为报导,这便是“太阳房”一词的由来。这样?看来,过去欧美似乎并未有意识地考虑让阳光照到房里来。从历史上看欧洲传?统住房都是石造的,后来又是砖砌的,窗户多是纵向长,横向短,不利于利用?太阳能,这是因为西欧的住房是封闭式的,它是为了避开大自然的威胁。而中?国和日本的住房是开放式的,它与自然密切相连,因此自古以来日本的传统是?以木造房屋,木房屋都可以叫做太阳房。日本民宅的特点就是“走廊里充满着?阳光”。说明人民在建房时,自然而然地意识到太阳能的必要性。我国有句民?谣“我家有坐屋,向南开门户”。 因此说太阳房是太阳能热利用中一种型式,也就是说太阳能通过集热设施?及房屋的围护结构传入室内,减少房间采暖对常规能源需要量的房屋可称为太?阳房。在国内目前还没有统一的说法,有人把利用太阳能节能在50%以上的房屋?才称太阳房,低于此数的只能称为节能房。这是人们对太阳房的一些理解。 作者认为太阳房的定义应该是:太阳房是利用建筑,结构上的合理布局,?巧妙安排,精心设计,使房屋增加少量投资,而取得较好的太阳能热效果,达?到冬暖夏凉的房屋,也可以说:太阳房是指有目的的采取一定措施,利用太阳?辐射能,替代部分常规能源,使环境温度达到一定的使用要求的建筑物。如冬?季利用太阳能采暖的称为“太阳暖房”。夏季利用太阳能降温和制冷的称做“?太阳冷房”。通常,把利用太阳能采暖或空调的建筑物统称为太阳房。 二、太阳房的分类 太阳房型式有多种多样,分类方法也有不同,目前通用的有四种分类法: (一) 按传热过程可分为三种: 1.直接受益式:阳光通过南窗玻璃直接进入被采暖的房间,被室内地板、?墙壁、家俱等吸收后,转变为热,给房间供暖。称为直接受益式太阳房。 2.间接受益式:阳光不直接进入被采暖的房间,而是通过墙体热传导和热?空气循环对流将太阳热能送入被采暖的房间。 3.隔断式采暖:太阳热只通过传热介质(空气或水)的热循环进入被采暖?的房间。 (二) 按集热──蓄热系统的不同分为下列五种: 1.蓄热墙式:蓄热墙放在玻璃窗后面,蓄热墙的材料可用砼,水墙或相变?材料。 2.集热蓄热墙:又称特朗勃墙(Trmbe wall),在南墙上除窗以外的墙面?上,复盖玻璃,墙表面涂成黑色,在墙的上、下留有通风口,以使热风自然对?流循环,把热换到室内。南墙表面的温度在阳光照射时可达60-70℃。一部分热?量通过热传导把热量传送到墙的内表面,然后以辐射和对流的形式向室内供热?。另一部分热量把玻璃罩与墙体间夹层内的空气加热,热空气由于密度变小而?上升,由墙体上部分的风口向室内供热。室内冷空气由墙体下风口进入墙外的?夹层,再由太阳加热进入室内,为此反复循环,向室内供热。 3.附加阳光间式:这种形式也是集热蓄热墙形式的发展,即将玻璃与墙之?间的夹层放宽,形成一个可以使用的空间─称为附加阳光间或称附加温室。附?加阳光间与房间之间的关系比较灵活,即可用砖石墙间隔,也可用落地窗分开?。阳光间白天可向室内供热。晚间可作房间保温层。 4.屋顶浅池式:这种形式是在屋顶修浅水池,利用水池集热蓄热,而后通?过屋顶板向室内传热。这种型式仅适用单层房屋。 5.自然循环式:集热器(空气或水)与采暖房间分开,与特朗勃墙有些相?似,这种方式对南山坡上的房屋比较适用。

相关文档
相关文档 最新文档