文档库 最新最全的文档下载
当前位置:文档库 › 固体氧化物燃料电池发展及展望

固体氧化物燃料电池发展及展望

固体氧化物燃料电池发展及展望
固体氧化物燃料电池发展及展望

 万方数据

 万方数据

 万方数据

 万方数据

固体氧化物燃料电池发展及展望

作者:韩敏芳, 尹会燕, 唐秀玲, 彭苏萍, HAN Min-fang, YIN Hui-yan, TANG Xiu-ling , PENG Su-ping

作者单位:中国矿业大学,煤气化燃料电池联合研究中心,北京,100083

刊名:

真空电子技术

英文刊名:VACUUM ELECTRONICS

年,卷(期):2005(4)

被引用次数:2次

参考文献(47条)

1.查看详情

2.查看详情

3.查看详情

4.查看详情

5.查看详情

6.查看详情

7.查看详情

8.查看详情

9.查看详情

10.查看详情

11.韩敏芳;彭苏萍固体氧化物燃料电池-材料及制备 2004

12.Kathy Haq Dir. Of Outreach and Communications, National Fuel Cell Research Center 2004

13.查看详情

14.查看详情

15.查看详情

16.查看详情

17.查看详情

18.查看详情

19.查看详情

20.查看详情

21.查看详情

22.查看详情

23.查看详情

24.查看详情

25.查看详情

26.查看详情

27.查看详情

28.查看详情

29.查看详情

30.查看详情

31.查看详情

32.查看详情

33.查看详情

34.Kathy Haq Dir. Of Outreach and Communications, National Fuel Cell Research Center 2004

35.查看详情

36.查看详情

37.查看详情

38.查看详情

39.查看详情

40.Han Minfang;TIAN Y e;LIANG Jie Application Prospect of Underground Coal Gas Used in SOFC

41.查看详情

42.查看详情

43.查看详情

44.查看详情

45.查看详情

46.查看详情

47.查看详情

引证文献(2条)

1.由宏新.高国栋.周亮.阿布理提·阿布都拉乙醇在Ni-ZnO-ZrO_2-YSZ阳极SOFC上的发电性能[期刊论文]-燃料化学学报 2010(1)

2.刘洁.王菊香.邢志娜.李伟燃料电池研究进展及发展探析[期刊论文]-节能技术 2010(4)

本文链接:https://www.wendangku.net/doc/317047403.html,/Periodical_zkdzjs200504007.aspx

燃料电池客车发展情况与技术发展趋势

燃料电池客车发展情况及技术发展趋势一、燃料电池汽车政策分析 《关于2016-2020年新能源汽车推广应用财政支持政策方的通知》(财建(2015)134号)中明确:“2017-2020年,除燃料电池汽车外,其他车型补助标准适当退坡”,明确了国家对燃料电池汽车产业发展的支持态度。而《“十三五”国家战略性新兴产业发展规划》中提出,要系统推进燃料电池汽车研发与产业化,到2020年,实现燃料电池汽车批量生产和规模化示应用。 在财政补贴层面,国家也给予了大力支持,包括整车补贴、加氢站补贴、免征购置税以及运营补贴等。其中,整车补贴额度从20万到50万每辆不等,一个加氢站则补贴400万元,运营补贴中,燃料电池客车补贴为6万元/辆/年。 二、氢燃料电池产业链概述 氢燃料电池汽车产业链包括制氢、储氢、运氢、加氢、应用(燃料电池汽车/有轨电车)等环节。 氢气制造一般是通过将化石原料、化工原料、工业尾气、可再生能源以及水等经过处理来获取,每种获取途径其成本和环保属性都不同。中国目前主要通过工业尾气处理以及电解水来制氢。长河认为,对于燃料电池来说,现在配套基础设施还有待进一步完善,需要政府以及行业机构以及专家尽快推进立法和相应的技术标准予以规。

长河表示,制氢的方法和方案比较多,而目前燃料电池汽车使用最大瓶颈和最大的障碍是缺乏加氢站。据其统计,截止到2013年底,全球加氢站只有228座,对于我国来说,我国真正投入商业化、用于燃料电池的加氢站只有两座,仅仅限于国比较大的城市,就是和,处于示运营阶段,与国外说的氢高速公路,也就是一条高速公路有多个加氢站相比,差距比较大。 在整个氢燃料电池产业链中,氢燃料电池发动机处于绝对的核心地位,氢燃料经过发动机转化为电能应用到终端。长河表示,目前制约中国燃料电池汽车发展的瓶颈,就是氢燃料电池发动机。虽然国有不少高校和相应科研机构以及企业,在就燃料电池发动机技术展开相应研究和示性运营应用,但是氢燃料电池发动机核心技术,这两年通过评估,能够达到产业化或者达到工业化应用的,核心技术仍然掌握在国外企业手中。

固体氧化物燃料电池

目录 1引言 (2) 1.1燃料电池的概念及特点 (2) 1.2固休氧化物燃料电池 (4) 1.2.1固休氧化物燃料电池的结构类型及其特点 (4) 1.2.2 SOFC工作原理 (5) 2固体燃料电池多物理场模拟 (6) 2.1控制方程 (6) 2.1.1动量守恒方程 (6) 2.1.2能量守恒方程 (6) 2.1.3质量守恒方程 (6) 2.1.4导电方程 (7) 2.2物理模型 (7) 2.3数学模型 (8) 2.3.1气体输运控制方程 (8) 2.3.2导电控制方程 (8) 2.4边界条件 (9) 3结果与讨论 (11) 3.1电势分布 (12) 3.2不同阳极厚度燃料电池的浓度分布 (12) 3.2.1不同阳极厚度燃料电池的电势分布 (14) 3.3阴极厚度对燃料电池性能影响 (15) 3.4连接体宽度变化对浓度、电势分布的影响 (18) 4 结论 (19)

固体氧化物燃料电池仿真 摘要 燃料电池是将化学反应的化学能直接转变为电能的装置。和传统的热机相比,燃料电池具有更高的电效率,并且燃料电池是一种环境友好的发电方式。固体氧化物燃料电池(SOFC)属于高温燃料电池,除具有燃料电池的一般特点外,其高温排气也可以进一步加以利用。本文建立了描述平板式SOFC的物理数学模型,使用多物理场耦合模拟软件Comsol对其进行模拟计算。通过改变阳极和阴极厚度、连接体rib宽度等,研究其对固体氧化物燃料电池内燃料浓度、电势分布等的影响。模拟结果显示:当燃料沿燃料通道方向流动未出现低燃料浓度区或产物浓度区时,电池电势在燃料流动方向上变化不大;阳极厚度的增加对反应物在垂直于燃料流动方向的分布几乎没有影响,随着阳极和阴极厚度及连接体宽度的增加,燃料电池的性能更好。本模拟可以为燃料电池的设计提供参考。 关键词:固体氧化物燃料电池Comsol 1引言 随着全球工业化的加速及人们生活水平的不断提高,人类对能源的需求持续增长。目前全球能源的大部分来自化石燃料的燃烧过程,全世界对化石燃料利用的持续增长导致了温室气体排放的增加,美国能源部预计,2015年全球的排放量要比1990年增加60%;燃料燃烧过程产生的氮氧化物,硫氧化物,未燃尽的碳氢化合物等是主要的大气污染物。因此,解决能源需求的增长和由此造成的环境问题的关键就是改善能源结构问题,研究开发清洁能源技术。而燃料电池技术正是符合这一需求的高效洁净能源。 1.1燃料电池的概念及特点 燃料电池是把化学反应的化学能直接转化为电能的装置。与传统的发电方式相比较,关键的区别是燃料电池的能量转化过程是直接的。燃料电池需要清洁的

国内燃料电池汽车发展现状分析

国内燃料电池汽车发展现状分析正文目录 在政策支持方面,我国政府也非常重视燃料电池汽车等清洁汽车技术的发展。《国民经济和社会发展第十一个五年规划纲要》提出:“增强汽车工业自主创新能力,加快发展拥有自主知识产权的汽车发动机、汽车电子、关键总成及零部件。鼓励开发使用节能环保和新型燃料汽车”。2006年2月,国务院发布的《国家中长期科学和技术发展规划纲要(2006—2020年)》将“低能耗与新能源汽车”和“氢能及燃料电池技术”分别列入优先主题和前沿技术。在国家《节能中长期专项规划》及相应的十大重点节能工程中,强调要“发展混合动力汽车、燃气汽车、醇类燃料汽车、燃料电池汽车、太阳能汽车等清洁汽车”。国家发展和改革委员会与科学技术部共同向社会公布的《中国节能技术政策大纲》中同样也强调要“研究电动汽车等新型动力”。“九五”和“十五”期间,国家都把燃料电池汽车及相关技术研究列入科技计划,国家863计划和973计划都设立了许多与此相关的科研课题。“十五”国家重大科技专项之一的“电动汽车专项”将燃料电池汽车列为重要内容,国家投人近9亿元。“十一五”国家继续支持“节能与新能源汽车”,包括燃料电池汽车的研究。 在技术现状方面,1998年,清华大学研制出中国第一辆燃料电池汽车,其燃料电池由北京富源燃料电池公司提供;1999年北京富源燃料电池公司与清华大学合作开发出燃料电池乘用车;2001年,北京绿能公司与清华大学和北京工业学院合作,研制出以燃料电池为动力的出租车、客车和12个座位的公共汽车;2004年,国家甲醇燃料汽车示范工程在长治正式启动并通过了国家验收;2005年,上海神力科技有限公司研制的绿色燃料电池游览车投入试运,总行驶里程达1.2万公里,无故障运行时间达2000小时;2006年,由同济大学等单位共同研发“超越三号”燃料电池轿车在第八届“比比登清洁能源汽车挑战赛”中表现抢眼,四项比赛评分均为“A”,并在两个单项比赛中获得第一。 我国燃料电池汽车研发采用了与国际同领域权威单位不同的技术路线,开发出了独具特色的能量混合型和功率混合型两种燃料电池混合动力系统,具有电——电混合、平台结构、模块集成的技术特征,燃料经济性高于国外同类样车特别是纯燃料电池驱动模式样车,轿车和客车两种车型节氢效果均十分显著,现已经成为国际上主流构型。新一代的燃料电池汽车动力平台也已经基本建立。 在产业化目标方面,我国燃料电池电动汽车产业化目标是,2006~2010年期间,通过示范运行,找出薄弱环节,攻克技术难关,实现燃料电池电动汽车的小批量试制;2010~2020年,争取燃料电池电动汽车的批量生产;2020~2030年,我国电动汽车整体技术水平要基本与国际电动汽车水平相当,并且实现燃料电池电动汽车的大批量生产。 在燃料电池汽车的实际应用方面,我国于2003年与2007年分别启动了两期燃料电池公共汽车商业化示范项目。该项目是中国政府、全球环境基金(GEF)和联合国开发计划署(UN—DP)共同支持的项目,由科技部、北京市、上海市共同组织实施,目的是为了降低燃料电池公共汽车的成本,借助在北京和上海两市进行的燃料电池公共汽车和供氢设施的示范,加快其技术转化。北京市、上海市各采购6辆燃料电池公共汽车,进行示范运行。2008年北京奥运会,基于上海大众领驭平台的燃料电池轿车作为我国首款燃料电池轿车进入国家汽车产品公告,20辆领驭燃料电轿车为奥运会提供交通服务,运行总里程超7.6万km。

燃料电池及其发展前景

燃料电池及其发展前景 燃料电池及其发展前景 作者: Raymond George Klaus Hassmann燃料电池具有非同寻常的性能:电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market.燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。最适于用来驱动汽车的是低温型燃料电池。根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,

固体氧化物燃料电池(SOFC)研究现状

固体氧化物燃料电池(SOFC)研究现状 伍永福,赵玉萍,彭军 内蒙古科技大学(014010) 摘要:燃料电池在运行过程中具有良好的安全可靠性、环境友好性、可操作性和灵活性,这些优点赋予了燃料电池极强的生命力和长远的发展潜力。本文就固体氧化物燃料电池的研究现状阐述了固体氧化物燃料电池的原理、特点及电池材料的研究进展,就Ni基阳极燃料电池存在的问题,提出在寻找Ni基阳极的替代阳极方面,(一是氧化物阳极,如(Ba/Sr/Ca/La)MxNb1-x O3-δ阳极;二是其他金属基阳极,如Cu基阳极。)作进一步研究的必要。 0.6 关键词:固体氧化物燃料电池,电导率,扩散,极化 1、固体氧化物燃料电池(SOFC)的发展概况 热电厂首先经燃料的燃烧把化学能转变为热能,再由热能转变为机械能,最后把机械能转变为电能,受卡诺循环的制约,在最好的条件下能量转化率也只有35%,实际情况不到20%。燃料电池是继水力、火力、核能发电技术后的第四类新型发电技术,它是一种不经燃料燃烧直接将化学能转变为电能的高效发电装置。由于不受卡诺循环的限制,燃料电池的理论效率达80%以上,实际效率可达50%—60%。其反应产物主要是水和二氧化碳,而且向大气中排放的有害物质很少,故造成的环境污染很低。另外,占地面小,建设周期短,可实行模块式组装,运行质量高、噪音小;使用方便灵活,既可用于中央集中型的大型电厂,也可作为电动汽车,轻型摩托的小型驱动电源。燃料电池在运行过程中具有良好的安全可靠性、环境友好性、可操作性和灵活性,这些优点赋予了燃料电池极强的生命力和长远的发展潜力[1]。 现在正运行的燃料电池都是用H2作燃料,或者碳氢化合物重整出H2,操作费用高,而且电池寿命不长,特别是使用碳氢化合物的电池更是如此。由于H2的制作费用较高,而且其运输、储存都很不方便,并隐含着危险,所以用H2作燃料的燃料电池难于实用化。而炭氢燃料在大自然储量比较丰富,有的(如CH4)不仅较容易制取,而且有利于环境的保护,因此现在固体氧化物燃料电池向着燃料多元,低温度操作方向发展。 早在1839年英国人William Grove就报道了燃料电池的工作原理,但固体氧化物燃料电池的起步却比较晚,1899年Nerest发现了固体氧化物电解质,1937年Baur和Preis首次操作固体氧化物燃料电池,其工作温度为1000℃。自此,固体氧化物燃料电池取得了很大的进展。特别是本世纪70年代末,材料科学的迅速发展使其研究开发工作更加令世人瞩目。目前已经开发成功的固体氧化物燃料电池主要有两种类型,它们分别以氧离子和质子作电池的电荷载体。其中,基于氧离子传导的固体氧化物燃料电池是研究较多且相对成熟的一种。 2、固体氧化物燃料电池(SOFC)的工作原理与特点 2.1、SOFC工作原理 固体氧化物燃料电池(SOFC)是继磷酸盐燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)之后,第三代燃料电池,其工作温度一般在600-1000℃左右,工作原理如图(1)所示,电动势来源于电池两侧不同的氧分压。其单体电池是由正负两个电极(负极为燃料电极,正极为氧化剂电极)以及电解质组成。阳极、阴极的主要作用是导通电子和提供反应气体、产物气体的扩散通道。固体电解质将两侧的气体分隔开来,由于两侧氧分压的不同,产生了氧的化

固体氧化物燃料电池_彭苏萍

固体氧化物燃料电池* 彭苏萍1 韩敏芳 2,- 杨翠柏2 王玉倩 2 (1 中国矿业大学北京校区资源学院 北京 100083)(2 中国矿业大学北京校区化学与环境工程学院 北京 100083) 摘 要 高效、洁净、全固态结构、高温运行的固体氧化物燃料电池(SOFC)是把反应物的化学能直接转化为电能的电化学装置,这种新型发电技术是目前发展最快的能源技术之一,有望在近年内走向商业化应用.SOFC 单体电池由致密的电解质和多孔的阳极、阴极组成,现在主要发展了管状结构和平板式结构两种形式.单体电池通过致密的连接体材料以各种方式组装成电池组,广泛应用于大型发电厂、热电耦合设备、小型供能系统和交通工具等,市场前景广阔. 关键词 固体氧化物燃料电池(SOFC),新型能源 Solid oxide fuel cells PENG Su -Ping 1 HAN Min -Fang 2,- YANG Cu-i Bai 2 WANG Yu -Qian 2 (1 De pa rtme nt o f Resou rce s Deve lo pmen t En gin ee rin g ,Ch ina Un iversity o f Min ing &Tech nolog y ,Bei j in g 100083,Ch ina)(2 De pa rtme nt o f Che mical&En viron menta l Eng inee rin g ,China Un ive rsity o f Min in g &Tec hnolog y ,Bei jing 100083,Ch ina) Abstract Solid oxide fuel cells (SOFCs)conve rt che mical energy in the reaction materials to elec trical energy d-i rectly,and are cha racterized by their high effeciency,cleanline ss,al-l solid struc ture,and high te mpe ra ture opera -tion.This ne w technology is one of the faste st developing forms of energy source,and may well be applied commercia-l ly in the near future.A single cell consists of a dense electrolyte between a porous anode and cathode,in a seamless tube or fla -t plate struc ture.The cells a re then stacked together in various ways with dense interconnecting compo -nents.SOFCs may be used in la rge power stations,thermal electric co -generators,small po wer supply syste ms,trans -portation ve hicles,and so on,and have great marke t potential.Key words solid oxide fuel cell,new energy source * 国家杰出青年科学基金(批准号:50025413)资助项目 2003-03-19收到初稿,2003-04-21修回 - 通讯联系人.E -mail:h mf121@hotmai https://www.wendangku.net/doc/317047403.html,,h mf@cu mtb.ed https://www.wendangku.net/doc/317047403.html, 1 固体氧化物燃料电池发展背景和 技术现状 燃料电池的历史可以追溯到1839年,固体氧化物燃料电池(简称SOFC)的开发始于20世纪40年代,但是在80年代以后其研究才得到蓬勃发展.以美国西屋电气公司(Westinghouse Electric Company)为代表,研制了管状结构的SOFC,用挤出成型方法制备多孔氧化铝或复合氧化锆支撑管,然后采用电化学气相沉积方法制备厚度在几十到100L m 的电解 质薄膜和电极薄膜.1987年,该公司在日本安装的 25kW 级发电和余热供暖SOFC 系统,到1997年3月成功运行了约1.3万小时;1997年12月,西门子西 屋公司(Siemens Westinghouse Electric Company )在荷兰安装了第一组100kW 管状SOFC 系统,截止到2000年底关闭,累计工作了16,612小时,能量效率为46%;2002年5月,西门子西屋公司又与加州大学合作,在加州安装了第一套220kW SOFC 与气体 # 90#物理

燃料电池的原理及发展

燃料电池原理与发展 燃料电池是一种能够持续的通过发生在阳极和阴极的氧化还原反应将化学能转化为电能的能量转换装置。燃料电池与常规电池的区别在于,它工作时需要连续不断地向电池内输入燃料和氧化剂,只要持续供应,燃料电池就会不断提供电能。由于燃料电池能将燃料的化学能直接转换为电能,因此,它没有像普通火力发电厂那样的通过锅炉、汽轮机、发电机的能量形态变化,可避免过程中转换损失,达到市制发电效率。 近20多年来,燃料电池经历了碱式、磷酸、熔融碳酸盐和固体电解质等几种类型的发展阶段。美、日等国已相继建立了一些碳酸燃料电池电厂、熔融碳酸盐燃料电池电厂和质子交换膜燃料电池电厂。燃料电池的结构与普通电池基本相同,有阳极和阴极,通过电解质将这两个电极分开。与普通电池的区别是,燃料电池是开式系统。它要求连续供应化学反应物,以保证连续供电。其工作原理:燃料电池由阳极、阴极和离子导电的电解质构成,其工作原理与普通电化学电池类似,燃料在阳极氧化,氧化剂在阴极还原,电子从阳极通过负载流向阴极构成电回路,产生电流。 介绍一下熔融碳酸盐燃料电池(MCFC)一、MCFC概述 1.1 燃料电池简述燃料电池(FC)是一种将贮存在燃料和氧化剂中的化学能直接转化为电能的发电装置,结构如图1-1所示。它的发电方式与常规的化学电源一样,电极提供电子转移的场所,阳极催化燃料(如氢)的氧化过程,阴极催化氧化剂(如氧)的还原过程,导电离子在将阴阳极分开的电解质内迁移,电子通过外电路作功并构成总的电回路。在电池内这一化学能向电能的转化过程等温进行,即在燃料电池内,可在其操作温度下利用化学反应的自由能。但是,燃料电池的工作方式又与常规的化学电源不同,它的燃料和氧化剂并非贮存在电池内。同汽油发电机相似,它的燃料和氧化剂都贮存在电池之外的贮罐中。当电池工作时,要连续不断地向电池内送入燃料和氧化剂,排出反应产物,同时排出一定的废热,以维持电池温度的恒定。燃料电池本身只决定输出功率的大小,其贮能量则由燃料罐和氧化剂罐的贮量决定。总体上,燃料电池具有以下特点: (l) 不受卡诺循环限制,能量转换效率高。 (2) 燃料电池的输出功率由单电池性能、电极面积和单电池个数决定。

最新固体氧化物燃料电池

固体氧化物燃料电池

固体氧化物燃料电池 燃料电池又叫连续电池,它在等温条件下直接将储存在燃料和氧化剂中的化学能转变为电能 燃料电池的发电原理:阳极进行燃料的氧化过程,阴极进行氧化剂的还原过程,导电离子在电解质内迁移,电子通过外电路做功并构成电的回路。 燃料电池的工作方式:燃料电池的燃料和氧化剂不是储存在电池内,而是储存在电池外的储罐中。当电池发电时需要连续不断地向电池内输送燃料和氧化剂,排除产物和废热。 燃料电池的组成: (1) 电极。为多孔结构,可由具有电化学催化活性的材料制成,也可以只作为电化学反应的载体和反应电流的传导体。 (2) 电解质。通常为固态或液态,但也有关于NH3 气氛中NH4Cl 电解质的研究。电解质的状态取决于电池的使用条件。 (3) 燃料。可以是气态(氢气等)或液态(甲醇等),在极少数情况下也可以是固态(碳)。 (4) 氧化剂。选择比较方便,纯氧、空气或卤素都可以胜任,而空气是最便宜的。 燃料电池的特点:可长时间不间断地工作——这使燃料电池兼具普通化学电源能量转换效率高和常规发电机组连续工作时间长的两种优势。 高效——它不通过热机过程,不受卡诺循环的限制,其能量转化效率在40-60%;如果实现热电联供,燃料的总利用率可高达80%以上。

环境友好——以纯氢为燃料时,燃料电池的化学反应物仅为水;以富氢气体为燃料时,其二氧化碳的排放量比热机过程减少40%以上,这对缓解地球的温室效应是十分重要的。 安静——燃料电池运动部件很少,工作时安静,噪声很低。 可靠性高——碱性燃料电池和磷酸燃料电池的运行均证明燃料电池的运行高度可靠,可作为各种应急电源和不间断电源使用。 燃料电池的类型:按电解质的性质分:1、碱性燃料电池,简称AFC。2、质子交换膜燃料电池,简称PEMFC。3、磷酸燃料电池,PAFC。4、熔融碳酸盐燃料电池,简称MCFC。5、固体氧化物燃料电池,简称SOFC。 固体氧化物燃料电池 SOFC是以固体氧化物为电解质,如ZrO2、BiO3等,阳极材料是Ni-YSZ陶瓷,阴极材料主要采用锰酸镧材料,SOFC的固体氧化物电解质在高温下800~1000℃具有传递O2-的能力,在电池中起传递O2和分隔氧化剂与燃料的作用。 SOFC为全固体结构,其主要结构有:平板式、管式、瓦楞式、套管式和热交换一体化结构式, ①平板式SOFC电池是目前最主流的SOFC类型电池,它是将阳极/YSZ固体电解质 /阴极烧结成一体,形成三合一结构,简称PEN平板,PEN平板之间由双极连

燃料电池电动汽车发展现状与前景

燃料电池电动汽车发展现状与前景 随着社会的进步和人员移动性增强,全球汽车需求 量快速增长,迄今世界上的汽车保有量达到创纪录的10 亿 辆以上且还在不断大幅增长,使得基于传统的内燃机 Internal Combustion Engine ,ICE )汽车的轻量化与节能减排等技术进步难以降低汽车燃料的消耗和减少污染物的排放。2020 年之前温室气体(Greenhouse Gas ,GHG) 排放在1990 年水平基础上下降20% 的任务日益艰巨。如果再不采取有效措施,公路交通运输车辆的GHG 温室气体排放将会持续不断增长。通过研讨纯电动汽车( Battery Electric Vehicle ,BEV )、混合动力汽车(Hybrid Electric Vehicle HEV )、或燃料电池电动汽车( Fuel Cell Vehicles ,FCVs ; Fuel Cell Electric Vehicles ,FCEVs )等多种类型的电动汽车( Electric Vehicle ,EV )技术[3-5]有望明确实现节能减排 的理想途径。自1966 年通用汽车推出了世界上第1 款燃料电池电动汽车GMC Electrovan ,尤其是本田在1999 年推出了世界上第1 台商用的燃料电池电动汽车FCX-V4 以来,世界上EV 电动汽车型号不断丰富和租赁销售量明显增长,太、北美和欧洲成长为全球EV 电动汽车重要的新车研发制造和租赁销售市场,2014 年全世界的EV 电动汽车销售量达到34.6 万辆以上,年增长率达到86% 。

燃料电池是一种高效、清洁的电化学发电装置,近年来 得到国内外高度重视,成为最被看好的可用于替代汽油和柴 油等传统的 ICE 内燃机发动机技术的先进新能源汽车技术。 日本政府希望其到 2020 年的 FCVs 燃料电池汽车销量达到 500 万辆,再通过 10 年的研发推广实现全面普及 FCVs 燃 料电池汽车。 美国政府在 2003 年投入 12 亿美元大力推进氢 技术和燃料电池技术,其中重要项目之一就是美国能源部 Department of Energy , DOE )在北加州、南加州、密歇 展的氢技术和基础实施验证与示范综合工程,吸引了 Hyundai-Kia/Chevron 、 DaimlerChrysler/BP 、 Ford/BP 和 GM/Shell 等多家汽车制造 /能源供应商参与。 美国能源部大力推进氢经济和燃料电池技术,尤其是商 业化推广应用方面取得显著进展,比如目前高容量和低容量 燃料电池制造成本分别为 55 美元 /kW 和 280 美元 /kW[6] , 汽车燃料电池 2014 年的制造成本自 2006 年下降 50% 并自 2008 年以来进一步下降 30% 以上(基于高容量电池制造) 这必将带动创造工作岗位、投资机会和可持续、安全的能源 供应。为了在 2020 年前争取把欧盟建立成一个具有全球领 先水平的燃料电池 (Fuel Cell ,FC )系统和氢能源 (Hydrogen Energy ,HE ) 经济的巨大市场,欧盟高度重视燃料电池技术 和氢能源技术并把之视作能源领域的战略高新技术大力推 根州东南部、大西洋区中部和佛罗里达州中部等 5 个区域开 f It 步

固体氧化物燃料电池发展及展望

万方数据

万方数据

万方数据

万方数据

固体氧化物燃料电池发展及展望 作者:韩敏芳, 尹会燕, 唐秀玲, 彭苏萍, HAN Min-fang, YIN Hui-yan, TANG Xiu-ling , PENG Su-ping 作者单位:中国矿业大学,煤气化燃料电池联合研究中心,北京,100083 刊名: 真空电子技术 英文刊名:VACUUM ELECTRONICS 年,卷(期):2005(4) 被引用次数:2次 参考文献(47条) 1.查看详情 2.查看详情 3.查看详情 4.查看详情 5.查看详情 6.查看详情 7.查看详情 8.查看详情 9.查看详情 10.查看详情 11.韩敏芳;彭苏萍固体氧化物燃料电池-材料及制备 2004 12.Kathy Haq Dir. Of Outreach and Communications, National Fuel Cell Research Center 2004 13.查看详情 14.查看详情 15.查看详情 16.查看详情 17.查看详情 18.查看详情 19.查看详情 20.查看详情 21.查看详情 22.查看详情 23.查看详情 24.查看详情 25.查看详情 26.查看详情 27.查看详情 28.查看详情 29.查看详情 30.查看详情

31.查看详情 32.查看详情 33.查看详情 34.Kathy Haq Dir. Of Outreach and Communications, National Fuel Cell Research Center 2004 35.查看详情 36.查看详情 37.查看详情 38.查看详情 39.查看详情 40.Han Minfang;TIAN Y e;LIANG Jie Application Prospect of Underground Coal Gas Used in SOFC 41.查看详情 42.查看详情 43.查看详情 44.查看详情 45.查看详情 46.查看详情 47.查看详情 引证文献(2条) 1.由宏新.高国栋.周亮.阿布理提·阿布都拉乙醇在Ni-ZnO-ZrO_2-YSZ阳极SOFC上的发电性能[期刊论文]-燃料化学学报 2010(1) 2.刘洁.王菊香.邢志娜.李伟燃料电池研究进展及发展探析[期刊论文]-节能技术 2010(4) 本文链接:https://www.wendangku.net/doc/317047403.html,/Periodical_zkdzjs200504007.aspx

中国燃料电池发展前景分析

中国燃料电池发展前景分析 燃料电池是将燃料具有的化学能直接变为电能的发电装置。根据电解质种类不同,燃料电池基本分为五种:碱性燃料电池(AFC)、熔融碳酸盐燃料电池(MCFC)、磷酸燃料电池(PAFC)、固体氧化物燃料电池(SOFC)以及质子交换膜燃料电池(PEMFC)。燃料电池具有以下优点:能量转换效率高;无污染零排放;模块化结构,维护保养成本低;燃料来源广泛,通过多种方式制备。 质子交换膜燃料电池凭借其特性主要应用于新能源汽车。对比其他几种燃料电池,质子交换膜电池输出功率密度高,质量功率高,可在室温条件下工作,同时起动迅速,主要应用于新能源汽车。 燃料电池种类

质子交换膜电池主要由质子交换膜、催化剂,双极板等构成。当它工作时,氢气进入阳极扩散层,并在催化剂的作用下转化为质子和电子;氧气进入阴极扩散层,并在催化剂的作用下得到电子转变为 O2- 离子;质子通过质子交换膜到达阴极与 O2-作用形成水,电子则通过外电路回到阴极,在这个过程中产生并提供电能。 一、电池系统 电池系统是燃料电池汽车产业链的核心环节,而电池堆是其重要组成部分。燃料电池汽车产业链包括上游矿产等相关资源,中游的电池系统、电机电

控以及下游的整车厂、加氢站及服务等。燃料电池电池系统分为两大部分:一是电池堆,包括质子交换膜、催化剂、扩散层和双极板;二是其他部件,包括空压机、储氢瓶。 电池堆包括质子交换膜、催化剂、扩散层和双极板。其中质子交换膜直接影响燃料电池的使用寿命;催化剂决定电极反应的效率;扩散层起到支撑催化层,收集电流,传导气体和排出水作用;双极板则负责把燃料和空气分配到两个电极表面以及电池堆散热。 电池堆组成部分情况

固体氧化物燃料电池(SOFC)

固体氧化物燃料电池(SOFC)及其发展 摘要:固体氧化物燃料电池是将燃料中的化学能直接转化为电能的电化学装置,具有高效率、零污染、无噪声等特点。它可以为民用、贸易、军事和交通运输等提供高质量的电源。这一技术的成功应用对于缓解能源危机、满足对电力数目和质量的需求、保护生态环境和国家安全都具有重大的意义。本文简略地介绍了固体氧化物燃料电池及现状和存在的题目,并提出了值得深进研究的课题。关键词:固体氧化物燃料电池(SOFC),现状,发展 1.固体氧化物燃料电池发展背景 燃料电池的历史可以追溯到1839年,SOFC的开发始于20世纪40年代,但是在80年代以后其研究才得到蓬勃发展。以美国西屋电气公司(Westinghouse Electric Company)为代表,研制了管状结构的SOFC,用挤出成型方法制备多孔氧化铝或复合氧化锆支撑管,然后采用电化学气相沉积方法制备厚度在几十到100μm的电解质薄膜和电极薄膜。1987年,该公司在日本安装的25kW级发电和余热供热SOFC系统,到1997年3月成功运行了约1. 3万小时;1997年12月,西门子西屋公司(Siemens Westinghouse Electric Company)在荷兰安装了第一组100kW管状SOFC系统,截止到2000年底封闭,累计工作了16 ,612小时,能量效率为46 %;2002年5月,西门子西屋公司又与加州大学合作,在加州安装了第一套220kW SOFC与气体涡轮机联动发电系统,目前获得的能量转化效率为58 %,猜测有看达到70 %。接下来预备在德国安装320kW 联动发电系统,建成1MW的发电系统,预计2005年底,管状结构SOFC走向贸易化。同时,日本三菱重工长崎造船所、九州电力公司和东陶公司、德国海德堡中心研究所等也进行了千瓦级管状结构SOFC发电试验. 另外,加拿大的环球热电公司( Global Thermoelectric Inc. ),美国GE、Z2tek 等公司在开发平板型SOFC上取得进展,目前正在对千瓦级模块进行试运行。环球热电公司获得的功率密度,在700℃运行时,达到0. 723W/cm2。日本产业技术院电子技术综合研究所从1974 年开始研究SOFC,1984年进行了 500W发电试验,最大输出功率为1. 2kW。日本新阳光计划中,以产业技术综合开发机构(NEDO)为首,从1989年开始开发基础制造技术,并对数百千瓦级发电机组进行测试。1992年开始,富士电机综合研究所和三洋电机在共同研究

燃料电池发展现状研究报告进展资料

应用电化学论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。

《燃料电池汽车现状与发展趋势》毕业论文解读

宜宾职业技术学院 毕业论文 题目:燃料电池汽车现状与发展趋势 系部现代制造工程系 专业名称新能源汽车技术专业 班级新能源汽车 11201 班 姓名* * 学号201210388 指导教师王诗平 2014 年09 月25 日

浅析燃料电池汽车现状与发展趋势 摘要 随着汽车的发展,传统汽车工业的可持续发展面临着环境污染和能源短缺的双重压力。改变汽车动力系统已成为必然之势,而燃料电池汽车的发展则成为重中之重。本文从燃料电池汽车的研究背景入题,综合介绍了燃料电池系统和燃料电池汽车系统的组成与工作原理、国内外的技术现状、全面发展的优势和发展中所面临的问题以及对发展趋势的分析。 关键词:燃料电池;燃料电池汽车;汽车结构;节能环保

目录 1前言 (1) 2燃料电池汽车的结构原理 (3) 2.1 燃料电池系统的组成和工作原理 (4) 2.2 燃料电池汽车的系统组成和工作原理 (6) 2.2.1 燃料电池单独驱动汽车动力系统 (7) 2.2.2燃料电池混合动力汽车动力系统 (8) 2.3 典型的燃料电池汽车结构 (10) 3燃料电池汽车的现状分析 (15) 3.1 国外燃料电池汽车的现状 (15) 3.1.1 美洲燃料电池汽车的现状 (16) 3.1.2 欧洲燃料电池汽车的现状 (16) 3.1.3 亚洲燃料电池汽车的现状 (17) 3.2 我国燃料电池汽车的现状 (17) 3.3 国内外技术现状的对比分析 (19) 3.3.1 燃料电池汽车整车集成技术 (19) 3.3.2 燃料电池汽车发动机技术 (20) 3.3.3 高压储氢系统技术 (22) 3.4 燃料电池汽车与纯电动汽车的对比分析 (22) 4 燃料电池汽车发展趋势的分析 (23) 4.1 燃料电池汽车的发展优势 (23) 4.2 燃料电池汽车发展所面临的问题 (23) 4.3 燃料电池汽车的发展趋势 (24) 5 总结 (27) 致谢 (28) 参考文献 (29)

国外燃料电池汽车发展现状

国外燃料电池汽车发展现状(转贴) --2010年世界上氢燃料电池汽车时代序幕早已拉开 2010-04-15 11:59 关键字:燃料电池汽车燃料电池车燃料电池技术 当前在可用于替代汽油和柴油发动机的技术中,最被看好的是燃料电池技术。燃料电池汽车具有安静、高效和零污染(或低污染)排放的特点,同时续驶里程完全可以和内燃机汽车相媲美,具有结束内燃机汽车百年统治地位的潜力。但各国政府在对研发燃料电池技术上也存在分歧,在支持力度上也各不相同。 (下图:通用为宜家制造的“氢动3号”燃料电池示范车)

在日本,日本经济产业省前几年就对燃料电池汽车开发与推广制定了时间表,其战略目标是:到2020年,日本使用的燃料电池汽车达到500万辆;到 2030年,要全面普及燃料电池汽车。近期,日本又计划在 5 年内斥资 2090 亿日元开发以天然气为原料的液体合成燃料技术、车用电池,以及氢燃料电池科技。 在美国,燃料电池电动车曾被美国前总统布什作为“氢经济”论的“法宝”大肆宣传,但2006年2月他已改变了腔调,承认燃料电池电动车“不是近期的解决方法,也不是中期的解决方法,而确实是远期的方法”。在布什第二任总统任期的后3年里,“氢经济”论在美国已气息奄奄,燃料电池的研发重点已转向了基础性研究。2009年5月,美国政府正式宣布停止支持燃料电池电动车的研发。 美国燃料电池汽车FreedomCAR协作计划 美国燃料电池汽车FreedomCAR协作计划是美国政府 于2002年初提出的一项由美国能源部与美国汽车研究理 事会(USCAR)合作开发经济上可承受的氢气燃料电池汽车技术及相关氢气供应基础设施技术的合作研发项目。美国

燃料电池的发展现状及研究进展

应用电化学 论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了100 多年的历程。于能源与环境已成为人

燃料电池研究现状与未来发展

燃料电池研究现状与未来发展香山科学会议第59次学术讨论会于1996年8月24~27日举行。会议主题是“燃料电池研究现状与未来发展”。会议执行主席路甬祥与王佛松院士主持了会议。42位来自中国科学院、全国高校及公司等25个单位的燃料电池及相关学科的专家学者共同研讨燃料电池的发展现状和未来走向,以及发展我国燃料电池技术大计。 会议综述报告及中心议题讨论内容主要包括3部分:(1)燃料电池的总体评价;(2)目前处于研究开发阶段的3种类型燃料电池的评价;(3)我国发展此技术应采取的战略与策略。 一、燃料电池的技术评价 燃料电池(Fuel cell缩写FC)是将气体燃料的化学能直接转化为电能的电化学连续发电装置。电池电化学基本反应:H2十l/202=H20和CO十1/202=C02。自150余年前被发明以来,现已发展了6种形式。它们分别为碱性(AFC)、磷酸(PAFC)、熔融酸盐(MCFC)、固体氧化物(SOFC)、聚合物离子膜(PEMFC或SPFC)及生物燃料电池(BEFC)。 概括而言,燃料电池具有以下优点:(1)能量转换效率高达45—60%。而火电和核电为30一40%;(2)有害气体SO x、NO x及噪音排放很低;CO2排放因能量转换效率高而大幅度降低;元机械振动;(3)燃料适用范围广,凡能

转化为H2和CO燃料均可使用;(4)积木性强;规模及安装地点灵活;规模小(数十千瓦级)影响能量转换效率不明显。 现PAFC在发达国家已商业化;AFC在60年代末即用于航天器。其它方面的应用不如PEMFC更具优势;BEFC尚处于实验室的探索性基础研究阶段。目前各国的燃料电池的研究开发重点主要集中在MCFC、SOFC和PEMFC上。 1.MCFC运行温度650℃,燃料适用范围广,电催化剂为非贵金属,余热可为燃气轮机所利用,适用于固定式发电电站。在各国对燃料电池的经费投入中,MCFC所占比例最大。现国外(美、日、西欧)已有100kW级发电系统的运行,预计美国2000年实现商业化,日本计划2005年实现商业化。目前MCFC研究需要解决的关键技术问题有:(1)阴极(NiO)溶解,这是影响电池寿命的主要因素;(2)阳极蠕变;(3)熔盐电质对电池双极板的腐蚀;(4)电解液流失。 2.SOFC作为运行温度最高的燃料电池(800—l000℃),功率密度高,采用全固体结构,无腐蚀性液体,燃料适用范围广,天然气可不经重整直接使用。其尾气温度高达900℃,可为燃气轮机和蒸汽轮机所用,发电效率可达70%,如加上余热利用其燃料利用率可达90%,可用于大中小型电站,作为运载工具的驱动电源也有应用前景。目前SOFC研究十分活跃,电池模块的制备规模在美、日、德三国已达20一30kW。2000一2010年间可实现商业化。目

相关文档
相关文档 最新文档