文档库 最新最全的文档下载
当前位置:文档库 › 基于非参数GARCH模型的一种波动率估计方法

基于非参数GARCH模型的一种波动率估计方法

基于非参数GARCH模型的一种波动率估计方法
基于非参数GARCH模型的一种波动率估计方法

案例13

基于非参数GARCH 模型的一种波动率估计方法

一、文献及研究综述

波动率(volatility )是资产收益不确定性的衡量,它经常用来衡量资产的风险。一般来说,波动率越大,意味着风险越高。由于波动率在投资分析,期权定价等方面的重要性,近20年来一直是金融领域的一个研究热点,出现许多描述金融市场波动率的模型,最为典型的是Bollerslev (1986)提出的广义自回归条件异方差模型(GARCH 模型),而在实证中得到广泛应用的是其中的GARCH(1,1)模型,即条件方差不但依赖与滞后一期的扰动项的平方,而且也依赖于自身的滞后一期值,三者之间存在一种线形关系。针对三者之间的线形关系是否合适即能否用一种更有效的函数关系来描述的问题,人们进行了一些有意义的探索。Engel 和Gonzalez-Rivera(1991)采用半参数方法对条件方差进行建模,对扰动项的滞后值采取非参数形式,对条件方差自身的滞后值采用线形形式,两位的研究思路为人们以后的研究工作拓宽了思路。Peter Buhlmann 和Alexander J.MeNeil (2002)对三者之间的函数关系用一种非参数形式来描述,给出了一种全新的估计波动率的循环算法,并对这一全新的算法的可行性和有效性给出了证明,得出非参数形式的GARCH(1,1)对波动率的估计效果要强与参数形式的GARCH(1,1)。Antonio Cosma 和Fausto Galli (2005)利用Peter Buhlmann 和Alexander J.MeNeil 所提出的估计波动率的算法,对非参数形式的ACD 模型(Autoregressive Conditional Duration Model )的久期(duration)进行估计,也得出用该估计算法的非参数形式比参数形式的ACD 模型的估计效果优越。

本文采用非参数方法中的非参数可加模型,对条件方差采用非参数可加模型GARCH(1,1)形式进行建模,即对条件方差的滞后值和扰动项的滞后值分别采用不同的函数形式进行建模。估计方法是基于Peter Buhlmann 和Alexander J.MeNeil(2002)对非参数GARCH 估计时的算法思想,采取模拟数据和真实收益率数据分别同参数形式的GARCH(1,1)采用极大似然估计结果进行比较。文章下面的结构是:第二部分是有关方法的描述。第三部分是模拟实验。第四部分是实证部分。第五部分是本文结束语。

二、方法描述

㈠ Bollerslev (1986)提出的标准的GARCH(1,1)形式:

t t z ε=

2101111()t t t t t V h h εααεβ---Ω==+?+? (1)

其中,1t -Ω是时间的信息集,包含了1t ε-及其以前的信息,t ε是扰动项,t h 是条件方差,t z 是白噪声。为确保有条件的方差非负,1α和1β必须非负,且满足

111αβ+<才保证序列是宽平稳的。

传统的估计波动率的参数方法是对式(1)中的各个系数通过极大似然估计得到,本文对波动率的参数法估计亦采用此方法。

㈡本文的非参数可加GARCH(1,1)模型形式:

t t z ε=

11()()t t t h c f h g ε--=++ (2)

对式(2)进行如下推导: 221111(()())()()t t t t t t t c f h g z c f h g V εεε----=++?=+++

211(()())(1)t t t t V c f h g z ε--=++?-

因为:()0t E V =,cov[,]0,s t V V s t =<当,2111()()()t t t t E c f h g εε---=++, 这样就可以利用非参数方法对2t ε关于1t ε-和1t h -进行非参数回归。对可加模型的非参数回归方法不同与一般的非参数形式的回归,因为在可加模型中含有常数项,还要同时估计两个函数,在一定程度上给估计工作增添了难度,这里本文采用Hastie 和Tibshirani(1990)对广义可加模型估计时采用的Backfitting 算法。核函数采用高斯核,窗宽的选择方法是交错鉴定法(Cross-validation ),采用局部多项式回归(Local Polynomial Regression)。

然而在实际应用中,波动率序列是不能被观测的隐含变量,怎样更好的逼近真实值的问题将在下面的估计算法中得到解决。

㈢估计算法:

本文的估计算法是基于Peter Buhlmann 和Alexander J.MeNeil(2002)对非参数GARCH 估计时提出的算法思想,具体思如下: 假设我们有一样本{:1t t n ε≤≤}具有GARCH 效应:

Step 1:首先采用极大似然估计进行参数估计得到波动率{t h }的估计{^,0;1t h t n ≤≤},设m=1;

Step 2: 对2t ε关于1t ε-和^1,1t m h --做非参数回归,采用广义可加模型的Backfitting 循环算法分别得到函数f 的估计^m f ,g 的估计^m g 和c 的估计^m c ; Step 3: 通过^^^^^,1,11,1()()t m m t m t m m m h c f h g ε----=++计算出^,1t m h -的估计值^

,t m h ,对于^1,m h 的值可用^1,1m h -代替;

Step 4: m 的值加1然后返回setp 2;

最后,假设我们循环了M 次,为提高该算法的稳定性,将这M 次估计出的

波动率取平均值,即^^,*,1(1/)M t t m m h M h ==∑,然后运算最后一次非参数回归:对2t ε关于1t ε-和^1,*t h -的非参数回归得到f ,g ,c 的最终估计分别为^f ,^g ,^c ,然后用函数的最终估计形式求出波动率的最终估计值,^^^^^1,*1()()t t t t nph h c f h g ε--=++ 。

对于该算法能否向真实值逼近的问题,Peter Buhlmann 和Alexander J.MeNeil(2002)给出了证明,同时还指出经过少量的循环估计效果就会得到显著提高。

三、随机模拟实验

本文之所以采用随机模拟方法是因为对于给定的序列其真实的波动率是不可观测的,而借助计算机模拟手段可以控制程序在数据产生过程中输出真实的波动率序列,便于用参数法(极大似然估计)和非参数法估计出的波动率分别与真实波动率比较,评判两种方法的估计效果。

为了能更好地模拟金融市场上收益率等序列,捕捉到杠杆效应,本文按以下路径产生样本点:

1t t

z ε-= 2

11110.1(0.11{0}0.451{0})0.5

t t t t t h h εεε----=+?>+?≤?+? 按此路径产生550个样本点,考虑到波动率初始值赋值的影响,舍弃前50个数据保留500个样本点,此过程在SAS9.0中实现。产生{t ε}后,分别利用极大似

然估计和前文提到的非参数可加模型对{t ε}的波动率{t h }进行估计,得到各自的波动率估计序列eh 和nph.。主要计算过程是在SAS9.0和matlab7.0中实现。 为了直观清楚地观察两种方法对波动率的估计效果,在数据产生过程中从中间随机截取了50个样本点的真实波动率。图1是标准GARCH(1,1)采用极大似然估计估计的波动率估计值与真实的波动率的比较图。图2是非参数可加GARCH 采用前文叙述的估计算法估计的波动率估计值与真实值的比较图。从图中可看出,非参数GARCH(1,1)的估计出的波动率与真实值的逼近程度要高于标准GARCH (1,1)模型。

05101520253035404550

eh&h

05101520253035404550

nph&h

图1(eh&h ) 图2(nph&h) 更进一步对两种方法的估计效果进行量化描述,对非参数估计算法中的每一次循环结果采用均方误MSE 和平均绝对误MAE 两个指标来衡量:

^^^2,11(,)()n t m t t r MSE h m h h n r =+=--∑ ^^^,11(,)n t m t t r MAE h m h h n r =+=--∑ 表1给出了经过每一次循环的MSE 和m=0时是参数法的极大似然

估计过程,m=*是估计算法的最后一次对波动率的均值做非参数回归过程,即非参数法估计的最终结果。

表1 本文共进行了5次循环,从表一中明显看出,利用本文的非参数可加GARCH 模型对波动率序列的估计效果(m=*)要优于标准的GARCH 模型(m=0),其中估计的MSE 和MAE 分别下降了21.74%和5.36%。

四,实证部分

1,数据:采用2000年1月4号至2003年12月31号共3年的上证A 指数收益率数据,共716个数据,序列图见图3。之所以采用这段数据是要把股市波动较为剧烈的2001年包括进去,以便比较两种方法对该波动较大的序列的估计效果。 2,方法:采用方法与模拟实验部分相同,对收益率序列的标准GARCH(1,1)模型采用极大似然估计,非参数可加GARCH(1,1)模型的估计算法是第二部分详细叙述的算法。图4和图5分别是标准GARCH(1,1)和非参数可加GARCH(1,1)估计出的收益率的波动序列图。

对两种方法估计效果进行量化评价时,不能象模拟实验部分一样用估计的波动率直接跟真实的波动率比较,因为此时的收益率序列的真实波动率是不能被观测到的。为此本文采用Peter Buhlmann 和Alexander J.MeNeil 的量化指标L2:

^22112()n t t t L h n ε==-∑

因为有^2221111(2)()()n n t t t t t t E L E h E h h n n ε===-+-∑∑,由第二部分式(2)可知,2t t t h V ε-=,所以当^t t h h →,即波动率的估计值逼近真实值时,L2的值也应逼近

其最小值。L2的大小一定程度上可以测量波动率的估计值与真实值的逼近程度,L2越小,逼近程度越高,反之越低。表2给出了标准GARCH 模型与非参数可加GARCH 模型各自的L2值。利用本文的非参数可加GARCH 模型得到的L2值比标准GARCH 降低了5.18%。

-0.08-0.06

-0.04

-0.02

0.02

0.04

0.06

0.08

0.1

上证A 的收益率序列图(2000.01.03--2002.12.31)

图3

00.5

1

1.5

2

2.5

3-3极大似然估计出的收益率的波动序列eh

4

00.5

1

1.5

2

2.5-3非参数可加模型估计的波动率序列图

nph

表2

五,结束语

采用非参数形式的GARCH 模型对波动率进行建模时,不必象标准的GARCH 模型那样需对条件方差和其自身滞后值及随机扰动项之间的函数关系进行假定,而是对它们之间的函数关系进行合理的非参数估计,具有更大的灵活性。在本文建立非参数可加GARCH 后所采用的估计算法,是以极大似然估计出的波动率为初始估计值进行的,当然这其中不乏疑问,比如极大似然估计时出现的误差可能会影响到以后的估计结果,这有待以后进一步探讨。但从上面的模拟部分和实证部分的结果可以看出,本文的非参数可加形式的GARCH 模型在估计波动率时能得到比标准GARCH 模型更好的估计效果,不失为可考虑的一种方法。

(根据浙江工商大学许冰、任军峰同名论文编写)

用GARCH模型预测股票指数波动率

用GARCI模型预测股票指数波动率 目录 Abstract ......................................................................... 1.引言........................................................................... 2.数据........................................................................... 3.方法........................................................................... 3.1.模型的条件平均............................................................ 32模型的条件方差............................................................... 3.3预测方法.................................................................... 3.4业绩预测评价............................................................... 4.实证结果和讨论................................................................. 5.结论........................................................................... References ....................................................................... Abstract This paper is designed to makea comparison between the daily conditional varianee through seven GRAChhodels. Through this comparison, to test whether advaneed GARCH models are outperform ing the sta ndard GARCH models in predict ing the varia nee of stock in dex. The database of this paper is the statistics of 21 stock in dices around the world from 1 January to 30 November 2013. By forecast ing one —step-ahead con diti onal varia nee within differe nt models, the n compare the results within multiple statistical tests. Throughout the tests, it is found that the sta ndard GARCH model outperforms the more adva need GARCH models, and recomme nds the best

用GARCH模型预测股票指数波动率

用GARCH模型预测股票指数波动率 目录Abstract (2) 1.引言 (3) 2.数据 (6) 3.方法 (7) 3.1.模型的条件平均 (7) 3.2.模型的条件方差 (8) 3.3预测方法 (9) 3.4业绩预测评价 (9) 4.实证结果和讨论 (12) 5.结论 (16) References (18)

Abstract This paper is designed to make a comparison between the daily conditional variance through seven GRACH models.Through this comparison,to test whether advanced GARCH models are outperforming the standard GARCH models in predicting the variance of stock index.The database of this paper is the statistics of21stock indices around the world from1January to30 November2013.By forecasting one–step-ahead conditional variance within different models, then compare the results within multiple statistical tests.Throughout the tests,it is found that the standard GARCH model outperforms the more advanced GARCH models,and recommends the best one-step-ahead method to forecast of the daily conditional variance.The results are to strengthen the performance evaluation criteria choices;differentiate the market condition and the data-snooping bias. This study impact the data-snooping problem by using an extensive cross-sectional data establish and the advanced predictive ability test.Furthermore,it includes a13years’period sample set, which is relatively long for the unpredictability forecasting studies.It is part of the earliest attempts to inspect the impact of the market condition on the forecasting performance of GARCH models.This study allows for a great choice of parameterization in the GARCH models,and it uses a broad range of performance evaluation criteria,including statistical loss function and the Mince-Zarnowitz regressions.Thus,the results are more robust and diffusely applicable as compared to the earliest studies. KEY WORDS:GARCH models;volatility,conditional variance,forecast,stock indices.

基于GARCH模型的沪深300指数收益率波动性分析

基于GARCH模型的沪深300指数收益率波动性分析

摘要 股票市场的价格波动研究,不仅具有重要的学术意义,而且具有重要的实际意义。股价的波动给投资者带来了获利的机会。因此,金融市场的波动性一直以来都是投资者和经济研究人员关注的焦点。 本文以对沪深300指数2005年1月4日到2014年6月11日每个交易日收盘价为原始数据,对其收益率进行了研究分析。研究结果表明:日收益率序列的波动表现出时变性、突发性和集簇性等特征。序列分布呈现出尖峰厚尾的特点,并且存在明显的GARCH效应,表明过去的波动对于未来的影响是持久的,同时也是逐渐衰减的。而且,沪深300指数波动幅度大。沪深300指数的频繁交易使得股指期货市场具有高流动性,这种高流动性也是造成指数波动的一大成因。 关键字:收益率;ARCH模型;GARCH模型

一、前言 1.1研究意义 股票市场的价格波动研究,不仅具有重要的学术意义,而且具有重要的实际意义。股价的波动给投资者带来了获利的机会。投资者可以通过对度量波动率来猜测股市的风险有多大,同时,了解波动性有助于投资者更好的理解和把我股票市场的运行规律,将股价界定在一个可能的范围内,当投资者认识到股价波动的规律,就可以帮助其做出明智的投资,以获取更多的利益。因此,金融市场的波动性一直以来都是投资者和经济研究人员关注的焦点。 1.2 研究对象和方法 沪深300指数是由上海和深圳证券市场中选取300只A股作为样本编制而成的成份股指数。沪深300指数选取规模大、流动性好的股票作为样本, 覆盖了沪深市场六成左右的市值,具有良好的市场代表性,所以有必要对其进行深入分析。 本文以中国金融期货交易所的沪深300指数2005年1月4日到2014年6月11日每个交易日收盘价为原始数据,共2288个数据样本。 就沪深300指数收益率的波动性研究方法而言,国内外的研究结果表明,许多金融时间序列都将GARCH模型作为解释金融数据的经验方法。因此,本文采用GARCH模型检验沪深300指数日收益率的波动性变化,希望可以发现沪深300指数的波动性特征。 二、GARCH模型介绍 2.1 ARCH模型 ARCH模型由Engle(1982)提出,并由Bollerslev(1986)发展成为GARCH-广义自回归条件异方差。这些模型广泛的应用与经济性的各个领域,尤其是金融时间序列中。 ARCH的核心是(1)式中t时刻的随机误差项ε的方差(σ2)依赖于t-1时刻的平方误差的大小,即依赖于ε2t?1。 Y t=β0+β1X1t+?+βk X kt+εt (1)

波动率于garch模型剖析

1.1.波动率 波动率是用来描述证券价格、市场指数、利率等在它们均值附近上下波动幅度的术语,是标的资产投资回报率的变化程度的度量。股票的波动率σ是用于度量股票所提供收益的不确定性。股票通常具有15%-50%之间的波动率。股票价格的波动率可以被定义为按连续复利时股票在1年内所提供收益率的标准差。当?t 很小时,2t σ?近似的等于在?t 时间内股票价格变化百分比的方差。这说明σ√?t 近似的等于在?t 时间内股票价格变化百分比的标准差。由标准差来表述股票价格变化不定性的增长速度大约为时间展望期长度的平方根(至少在近似意义下)。 1.2.由历史数据来估计波动率 为了以实证的方式估计价格的波动率,对股票价格的观察通常是在固定的时间区间内(如每天、每星期或每个月)。 定义 n+1——观测次数; S i ——第i 个时间区间结束时变量的价格,i =0,1,…n ; τ——时间区间的长度,以年为单位。 令 1ln ,0,1, ,;i i i S u i n S -?? == ??? 1.2.1 u i 的标准差s 通常估计为 s = 1.2.2 或 s = 1.2.3 其中u ?为i u 的均值。 由于i u 的标准差为。因此, 变量s 是的估计值。所以σ本身可以被估计σ∧ ,其中 σ∧ = 可以证明以上估计式的标准差大约为σ∧ 。 在计算中选择一个合适的n 值并不很容易。一般来讲,数据越多,估计的精确度也会越高,但σ确实随时间变化,因此过老的历史数据对于预测将来波动率可能不太相干。一个折中的方法是采用最近90~180天内每天的收盘价数据。另外一种约定俗成成俗的方法是将n 设定为波动率所用于的天数。因此,如果波动率是用于计算量年期的期权,在计算中我们可以采用最近两年的日收益数据。关于估计波动率表较复杂的方法涉及GARCH 模型与EWMA 模型,在下文中将进行详细介绍。 1.3.隐含波动率 首先对于一个无股息股票上看涨期权与看跌期权,它们在时间0时价格的布莱克-斯科尔斯公式为 012()()rT c S N d Ke N d -=- 1.3.1 201()()rT p Ke N d S N d -=--- 1.3.2 式中 21d =

基于GARCH模型族的中国股市波动性预测

基于GARCH 模型族的中国股市波动性预测 2005级数量经济学专业 倪小平 摘要:本文采用上证综合指数和深证成份指数2000年1月4日—2006年12月27日的每日收盘价对数百分收益率为样本采用GARCH 模型对我国股市波动性进行实证分析。 关键词:GARCH 模型 波动性 预测 一、引 言 波动性是金融市场最为重要特性之一。金融市场在一些时间段内显得非常平静,而在另外一些时间段内剧烈波动。描述波动性的时变特性是非常重要,因为第一,资产风险是资产价格的重要决定因素,投资者要求更高的预期收益作为持有更高风险资产的补偿,因此回报方差的变化对于理解金融市场是非常重要的,事实上,波动性是证券组合理论、资本资产定价模型(CAPM)、套利定价模型(APT)及期权定价公式的核心变量。第二,它与市场的不确定性和风险直接相关,是体现金融市场质量和效率的最简洁和最有效的指标之一。另一方面波动性对企业的投资与财务杠杆决策、消费者的消费行为和模式、经济周期及相关宏观经济变量等都具有重要影响。因此,波动性的估计、预测和影响因素分析一直是金融经济学研究的持续热点。 Engle 于1982年开创性的提出ARCH 模型,Bollerslev 于1986年对其进行扩展,给出了GARCH 模型。如今GARCH 模型族已经成为度量金融市场波动性的强有力工具。 本文的结构如下:首先对所选用的四种GARCH 模型给予了简单的描述;第二部分实证分析,包括:数据的选取与基本统计分析、模型参数的估计以及对波动性的预测和模型的比较;最后是本文的总结。 二、模型概述 1、一般GARCH 模型 ARCH 模型的主要贡献在于发现了经济时间序列中比较明显的变化是可以预测的,并且说明了这种变化是来自某一特定类型的非线性依赖性,而不是方差的外生结构变化。GARCH 模型是ARCH 模型族中的一种带异方差的时间序列建模的方法。 一般的GARCH 模型可以表示为 : 2011',t t t t t q p t i t i j t j i j y x v h h βεεααε θ--===+==++∑∑ 其中1var(|)t t t h ε?-=,1t ?-是时刻t-1及t-1之前的全部信息,其中, t v 独立同分布,且参数满足条件:这里t h 可以理解为过去所有残差的正加权平均,这与波动率的聚集效应相符合,即:大的变化后倾向于有更大的变化,小的变化后倾向于有小的变化。由于GARCH (p,q)模型是ARCH 模型的扩展,因此GARCH(p,q)同样具有ARCH(q)模型的特点。但GARCH 模型的条件方差不仅是滞后残差平方的线性函数,而且是滞后条件方差的线性函数。

用GARCH模型预测股票指数波动率

用GARCH模型预测股票指数波动率 目录 Abstract (2) 1.引言 (3) 2.数据 (6) 3.方法 (7) 3.1.模型的条件平均 (7) 3.2. 模型的条件方差 (8) 3.3 预测方法 (9) 3.4 业绩预测评价 (9) 4.实证结果和讨论 (12) 5.结论 (16) References (18)

Abstract This paper is designed to make a comparison between the daily conditional variance through seven GRACH models. Through this comparison, to test whether advanced GARCH models are outperforming the standard GARCH models in predicting the variance of stock index. The database of this paper is the statistics of 21 stock indices around the world from 1 January to 30 November 2013. By forecasting one –step-ahead conditional variance within different models, then compare the results within multiple statistical tests. Throughout the tests, it is found that the standard GARCH model outperforms the more advanced GARCH models, and recommends the best one-step-ahead method to forecast of the daily conditional variance. The results are to strengthen the performance evaluation criteria choices; differentiate the market condition and the data-snooping bias. This study impact the data-snooping problem by using an extensive cross-sectional data establish and the advanced predictive ability test. Furthermore, it includes a 13 years’ period sample set, which is relatively long for the unpredictability forecasting studies. It is part of the earliest attempts to inspect the impact of the market condition on the forecasting performance of GARCH models. This study allows for a great choice of parameterization in the GARCH models, and it uses a broad range of performance evaluation criteria, including statistical loss function and the Mince-Zarnowitz regressions. Thus, the results are more robust and diffusely applicable as compared to the earliest studies. KEY WORDS: GARCH models; volatility, conditional variance, forecast, stock indices.

基于非参数GARCH模型的一种波动率估计方法

案例13 基于非参数GARCH 模型的一种波动率估计方法 一、文献及研究综述 波动率(volatility )是资产收益不确定性的衡量,它经常用来衡量资产的风险。一般来说,波动率越大,意味着风险越高。由于波动率在投资分析,期权定价等方面的重要性,近20年来一直是金融领域的一个研究热点,出现许多描述金融市场波动率的模型,最为典型的是Bollerslev (1986)提出的广义自回归条件异方差模型(GARCH 模型),而在实证中得到广泛应用的是其中的GARCH(1,1)模型,即条件方差不但依赖与滞后一期的扰动项的平方,而且也依赖于自身的滞后一期值,三者之间存在一种线形关系。针对三者之间的线形关系是否合适即能否用一种更有效的函数关系来描述的问题,人们进行了一些有意义的探索。Engel 和Gonzalez-Rivera(1991)采用半参数方法对条件方差进行建模,对扰动项的滞后值采取非参数形式,对条件方差自身的滞后值采用线形形式,两位的研究思路为人们以后的研究工作拓宽了思路。Peter Buhlmann 和Alexander J.MeNeil (2002)对三者之间的函数关系用一种非参数形式来描述,给出了一种全新的估计波动率的循环算法,并对这一全新的算法的可行性和有效性给出了证明,得出非参数形式的GARCH(1,1)对波动率的估计效果要强与参数形式的GARCH(1,1)。Antonio Cosma 和Fausto Galli (2005)利用Peter Buhlmann 和Alexander J.MeNeil 所提出的估计波动率的算法,对非参数形式的ACD 模型(Autoregressive Conditional Duration Model )的久期(duration)进行估计,也得出用该估计算法的非参数形式比参数形式的ACD 模型的估计效果优越。 本文采用非参数方法中的非参数可加模型,对条件方差采用非参数可加模型GARCH(1,1)形式进行建模,即对条件方差的滞后值和扰动项的滞后值分别采用不同的函数形式进行建模。估计方法是基于Peter Buhlmann 和Alexander J.MeNeil(2002)对非参数GARCH 估计时的算法思想,采取模拟数据和真实收益率数据分别同参数形式的GARCH(1,1)采用极大似然估计结果进行比较。文章下面的结构是:第二部分是有关方法的描述。第三部分是模拟实验。第四部分是实证部分。第五部分是本文结束语。 二、方法描述 ㈠ Bollerslev (1986)提出的标准的GARCH(1,1)形式: t t z ε=

相关文档