文档库 最新最全的文档下载
当前位置:文档库 › 超分辨率算法综述的理解

超分辨率算法综述的理解

超分辨率算法综述的理解
超分辨率算法综述的理解

图像超分辨率算法综述

摘要:介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法,对图像超分辨率的方法进行了分类对比,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望。

关键词:图像超分辨率;插值;重建;学习;

Abstract:This paper introduced the conception and origin of image super resolu- tion technology. By reviewing these three kinds of methods(interpolation,reconstruct, study), it contrasted and classified the methods of image super-resolution,and at last, some perspectives of super-resolution are given.

Key words: image super-resolution;interpolation;reconstruct;study;

1 引言

1.1 超分辨率的概念

图像超分辨率率(super resolution,SR)是指由一幅低分辨率图像(low resolution,LR)或图像序列恢复出高分辨率图像(high resolution,

HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制[1],在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像(参见图1)具有重要的现实意义。

图1 图像超分辨率示意图

图像超分辨率技术分为超分辨率复原和超分辨率重建,许多文献中没有严格地区分这两个概念,甚至有许多文献中把超分辨率图像重建和超分辨率图像复原的概念等同起来,严格意义上讲二者是有本质区别的,超分辨率图像重建和超分辨率图像复原有一个共同点,就是把在获取图像时丢失或降低的高频信息恢复出来。然而它们丢失高频信息的原因不同,超分辨率复原在光学中是恢复出超过衍射级截止频率以外的信息,而超分辨率重建方法是在工程应用中试图恢复由混叠产生的高频成分。几何处理、图像增强、图像复原都是从图像到图像的处理,即输入的原始数据是图像,处理后输出的也是图像,而重建处理则是从数据到图像的处理。也就是说输入的是某种数据,而处理结果得到的是图像。但两者的目的是一致的,都是由低分辨率图像经过处理得到高分辨率图像。另外有些文献中对超分辨率的概念下定义的范围比较窄,只是指基于同一场景的图像序列和视频序列的超分辨处理,实际上,多幅图像的超分辨率大多数都是以单幅图像的超分辨率为基础的。在图像获取过程中有很多因素会导致图像质量下降,如传感器的形

状和尺寸、光学系统的像差、大气扰动、运动、散焦等。另外,在成像、传输、存储过程中,会引入不同类型的噪声,这些都会直接影响到图像的分辨率。此外,数字化采集过程也会影响图像的分辨率,欠采样效应会造成图像的频谱混叠,使获取的图像因变形效应而发生降质。由于军事侦察及医学图像、卫星图像、视频应用及其它许多领域的实际需要,人们对得到的图像的质量要求越来越高。虽然光学元件能有效的限制传感器阵列上的图像频带宽度,使获取的图像又可能避免变形效应的发生。但这要求光学元件与传感器阵列进行有效的组合,而这在实际场合中是很难做到的,同时提升硬件要花费很高的经济成本,图像质量的提高也是有限的,因此,超分辨率图像复原技术就显得更加重要了,其中,图像超分辨率技术是数字图像处理领域中的一个重要分支。随着图像超分辨率理论和技术的日益成熟,图像超分辨率技术的应用更加广泛。本文着重对图像超分辨率方法进行阐述和分析,以向人们展示超图像分辨率技术的发展方向和应用前景。

1.2 图像超分辨率发展的背景及现状

超分辨率概念最早出现在光学领域。在该领域中,超分辨率是指试图复原衍射极限以外数据的过程。Toraldo di Francia在1955年的雷达文献中关于光学成像第一次提出了超分辨率的概念。复原的概念最早是由J.L.Harris和J.w.Goodman 分别于1964年和1965年提出一种称为Harris-Goodman频谱外推的方法。这些算法在某些假设条件下得到较好的仿真结果,但实际应用中效果并不理想。Tsai &Huang首先提出了基于序列或多帧图像的超分辨率重建问题。

1982,D.C.C.Youla和H.Webb在总结前人的基础上,提出了凸集投影图像复原(Pocs)方法。1986年,S.E.Meinel提出了服从泊松分布的最大似然复原(泊松-ML)方法。1991年和1992年,B.R.Hunt和PJ.Sementilli在Bayes分析的基础上,提出了泊松最大后验概率复原(泊松-MAP)方法,并于1993年对超分辨率的定义和特性进行了分析,提出了图像超分辨率的能力取决于物体的空间限制、噪声和采样间隔。

近年来,图像超分辨率研究比较活跃,美国加州大学Milanfar等提出的大量实用超分辨率图像复原算法,Chan等从总变差正则方面,Zhao等、Nagy等从数学方法、多帧图像的去卷积和彩色图像的超分辨率增强方面,对超分辨率图像恢复进行了研究。Chan等研究了超分辨率图像恢复的预处理迭代算法。此外,Elad 等对包含任意图像运动的超分辨率恢复进行了研究;Rajan和Wood等分别从物理学和成像透镜散射的角度提出了新的超分辨率图像恢复方法;韩国Pohang理

工大学对各向异性扩散用于超分辨率。Chung-Ang图像科学和多媒体与电影学院在基于融合的自适应正则超分辨率方面分别进行了研究。

国内许多科研院所和大学等对超分辨率图像恢复进行研究,其中部分是关于频谱外推、混叠效应的消除,其他主要是对国外超分辨率方法所进行的改进,包括对POCS算法和MAP算法的改进,对超分辨率插值方法的改进,基于小波域隐马尔可夫树(HMT)模型对彩色图像超分辨率方法的改进以及对超分辨率图像重构方法的改进。

2 图像超分辨率研究的主要方法

2.1图像超分辨率方法的分类

图像超分辨率按要处理的图像源可分为单幅图像超分辨和多幅图像超分辨。单幅图像超分辨率是指恢复出由于图像获取时丢失的信息(主要是指高频信息),多幅图像超分辨率是指从低分辨率的图像序列恢复出高分辨率的图像。基于序列或多幅图像的超分辨率增强就是利用这些不同,但相互补充的信息以及目标的先验信息,从一系列低分辨率的图像恢复出高分辨率的单幅图像。该思想与前述的单幅图像超分辨率方法相比,其优点是除了利用物体的先验信息和单幅图像的信息之外,还充分利用了不同图像之间的补充信息,因此,其超分辨率增强能力高于单幅图像超分辨率方法。但是在实际应用中,获得同一场景的图像序列常常是很困难,例如在未来高技术局部战争条件下,战场环境瞬息万变,战场信息稍纵即逝,因此给军事侦察提出了更高的要求,在这种情况下,要想获得同一场景的多幅图像很难,因此,单幅图像的超分辨率技术就显得尤为重要。同时,多幅图像的超分辨率方法大多都是以单幅图像的超分辨率为基础的,只有对单幅图像的超分辨率图像进行更广泛深入地研究,多幅图像的超分辨率技术才能有更广阔的前景。目前,单幅图像的超分辨率研究较少,多幅图像超分辨率已经成为研究的热点,就是因为多幅图像比单幅图像所含的可利用的信息量大。

图像超分辨率按实现的具体方法主要可分为空域法和频域法。频域方法是在频域上消除频谱混叠,改善空间分辨率;空间域方法是在图像像素的尺度上,通过对图像像素点的变换、约束而改善图像质量的方法。

频率域方法是图像超分辨率中的一类重要方法。目前比较流行的是能量连续降减法和消混叠重建方法。消混叠重建方法是通过解混叠而改善影像的空间分辨率实现超分辨率。中国科学院遥感应用研究所从分辨率低的欠采样图像会导致相

应空间频率域频谱混叠的理论出发,给出了多次欠采样图像在频率域混叠的更一般的公式,并给出一种针对不同分辨率图像解频谱混叠的逐行迭代方法,该方法在有噪声的情况下也具有很好的收敛性,取得了很好的效果。

频域方法实际上是在频域内解决图像内插问题,其观察模型是基于傅里叶变换的移位特性。频域方法基于以下三条基本性质:(1)傅里叶变换的平移特性。(2)连续傅里叶变换和离散傅里叶变换之间的混叠关系。(3)原始场景的带宽有限。频域方法理论简单,运算复杂度低,很容易实现并行处理,具有直观的去变形超分辨率机制。但这类方法的缺点是所基于的理论前提过于理想化,不能有效地应用于多数场合,只能局限于全局平移运动和线性空间不变降质模型,包含空域先验知识的能力有限。

空域方法的适用范围较广,具有很强的包含空域先验约束的能力,主要包括迭代反投影方法(IBP)、集合论方法(如凸集投影:POCS)、统计复原方法(最大后验概率估计MAP 和最大似然估计ML),混合MAP/POCS 方法以及自适应滤波方法,人工神经网络法、基于非均匀采样的插值法、基于最优化技术的方法等。其中,非均匀样本内插方法、迭代反投影方法等结合先验信息的能力很弱,在改善图像超分辨率效果方面受到了一定的限制。因此,研究和应用较多的是凸集投影方法和最大后验概率估计方法。下面重点介绍几种常用的超分辨率方法的特点。

2.2 几种常用的图像超分辨率方法

2.2.1 超分辨率系统模型及技术概述

对超分辨率问题的求解,通常是构造一个前向关系模型,低分辨率图像和高分辨率图像之间的关系可以表述为

,,1,,p k j n x M DB y j j j k j k ≤≤+= (1)

其中,p 为图像序列帧数,j x 、k y 和j n 分别为待求的第j 帧高分辨率图像、第k 帧观察到的低分辨率图像和图像获取时的噪声,矩阵D 、j B 和j k M ,分别为下采样矩阵、模糊矩阵和第j 帧和第k 帧之间运动矢量所构成的运动矩阵。关于模糊矩阵和运动矩阵的先后关系,WANG Z Z 等[2]指出,如果更换两者的位置会引起系统误差。设H=DBM ,则式(1)即可简化为

n Hx y += (2)

求解式(2)需要确定H ,

也就是求解或者确认式(1)中的D 、B 、M 和噪声n ,这包括以下几个问题:(1)运动估计,需要从观察到的低分辨率图像得到精确的

运动矢量,并使用插值等方法去近似高分辨率图像的运动矢量;(2)图像模糊的估计,通常需要对点扩散函数进行计算或假设;(3)噪声估计,噪声会极大地影响系统的求解,对于噪声的估计是非常重要的一步。

SR 技术在早期研究中仅指基于多幅图像的还原方法,将基于单幅图像的增强称为插值,而目前多数文献中将这2种情况均称为超分辨率。超分辨率技术自Tsai 和Huang 提出利用多帧图像序列来恢复高分辨率图像以来,至今已有二十余年,其间大量算法被提出。目前,图像超分辨率研究可分为3个主要范畴:基于插值、基于重建和基于学习的方法。

2.2.2 基于插值的方法

基于多帧图像插值技术的方法是超分辨率研究中最直观的方法。这类方法首先估计各帧图像之间的相对运动信息,获得HR 图像在非均匀间距采样点上的像素值,接着通过非均匀插值得到HR 栅格上的像素值,最后采用图像恢复技术来去除模糊和降低噪声。典型的方法包括:Rajan 和Chaudhuri 通过分解、插值和融合3个步骤实现的通用插值方法;TAOHJ 等提出的小波域的双线性插值;Lertrattanapanich 和Bose 提出的使用基于光滑性约束的Delaunay 三角化插值算法等。这类方法的优点是算法快速易行,适合并行计算,基本可以满足实时要求,但因为不能引入额外有用的高频信息,因而很难在SR 图像中得到锐化的效果,同时,也没有考虑到LR 图像的像素值并不是HR 图像的理想采样值,而是对HR 图像像素值的空间平均和卷积效应这一事实。

2.2.3 基于重建的方法

(1) 凸集投影法(POCS)

Stark 和Oskoui [3]最早提出的凸集投影方法可以简单而有效地求解超分辨率问题,通过把高分辨率图像的解空间上与一系列的代表高分辨率图像性质的约束集(如非负性、能量有界性、观测数据一致性、局部光滑性等)相交,可以得到一个更小的解空间。从高分辨率图像空间的一点出发,不断利用迭代投影的方法寻找满足所有约束凸集的下一点,最终获得高分辨率图像的估计。对于初始值0x ,设每一个约束集定义一个凸集投影算子k P ,则计算过程为

0123...x P P P P x N n = (3) 凸集投影法的优点在于算法简单,能够充分利用先验知识。但是缺点在于解不惟一,收敛过程依赖初值的选择,解不稳定。

(2) 贝叶斯分析方法

贝叶斯分析法包括最大后验概率估计法(MAP)和最大似然估计法(ML),最大后验概率估计方法的优点是在解中可以直接加入先验约束、能确保解的存在和唯

一、降噪能力强和收敛稳定性高等。缺点是收敛慢和运算量大。另外,最大后验概率估计方法的边缘保持能力不如凸集投影方法,由这类方法获得的高分辨率图像上的细节容易被平滑掉。

(3) 迭代反投影法(IBP)

Irani 和Peleg [4]提出的迭代反向投影法是超分辨率图像复原中具有代表性的一种方法。首先估计一个高分辨率图像作为初始解0x ,通常采用单幅低分辨率图像的插值结果。然后根据系统模型,计算其模拟低分辨率图像:

n Hx y +=00 (4) 如果0

x 与原始高分辨率图像精确相等,并且若式(4)模拟的成像过程符合实际情况,则模拟低分辨率序列0y 应与观察得到的实际低分辨率图像y 相同。当两者不同时,将它们之间的误差0y y ?反向投影到0x 上使其得到修正: )(001y y H x x BP ?+= (5) 当误差满足要求时,迭代结束,Irani 和Peleg 证明了算法是收敛的。算法简单、直观。但是,BP H 较难选择,并且没有能够利用到先验知识,解不稳定、不惟一。

(4) 最大后验概率方法

Schultz 和Stevenson [5]提出的MAP 方法是典型的概率论方法,他们把高分辨率图像和观察得到的低分辨率图像当作两个不同的随机过程。根据MAP 准则:

)]|[Pr(max arg y x x x map = (6) 使用条件概率对式(6)进行变形、取负对数并舍弃常数项,可得

)]Pr(log )|Pr(log [arg x x y mix x x map ??= (7) 其中,高分辨率图像的先验模型)(x P r 可以由图像的先验知识确定,通常采用的MRF 模型使图像的局部在光滑性和边缘保持上同时获得了比较好的效果,条件概率密度)|(x y P r 则由系统的噪声统计量确定。

其它还有基于高斯先验假设和动态树推理算法等。MAP 方法的优点在于有惟一解,如果有合理的先验假设可以获得非常好的图像边缘效果。但是其显著的缺点就在于计算量相对比较大。

(5) 正规化法

Nguyen [6]等提出的正则有参超分辨率图像恢复把模糊矩阵C 表示为带参数σ的B(σ),对应地将H 表示为H(σ),则系统模型式(2)改写为:

n x H y +=)(σ (8) 正则有参超分辨率恢复采用恒定正则算子,使用一个最优正则参数,构造关于图像模糊参数σ、正则参数λ和高分辨率图像x 的Tikhonov 最小化能量泛函,形成正则超分辨率恢复模型:

]||||||)([||},,{222

2min arg x x H y x λσλσ+?= (9)

Nguyen 等采用广义交叉验证(GCV)的参数估计方法确定参数σ和λ,最后使用预处理共轭梯度法(PCG)求解式(9)导出的线性方程:

y H x H H H T T =+?1)( (10) 正则化算法的优点在于不要求点扩散函数(PSF)为圆形,也不需要对图像和噪声做任何统计假设,但是正则化项在抑制噪声的同时也抑制了图像的细节,容易产生过于平滑的效果。

(6) 混合方法

通过最小化有特定集合约束的最大后验概率/最大似然估计(MAP/ML)的损失函数,得到高分辨率图像的估计就是最大后验概率/最大似然估计/凸集投影(MAP/ML/POCS)混合方法。Schultz 和Stevenson 最早将MAP 优化与投影约束相结合,后来Elad 和Feuer 提出了一种通用的最大似然估计/凸集投影(ML/POCS)超分辨率方法:

}1,{]},[][][]{[min 2M k C x Sx V Sx Hx y W Hx y k T T ≤≤∈+??=βε (11)

其中,W 为噪音的自相关函数,S 为Laplacian 算子,V 为控制光滑程度的加权矩阵,k C 为其他的非椭圆约束。

混合方法结合了MAP 和POCS 各自的优点,充分利用了先验知识并且收敛的稳定性也比较好,是目前为止最好的基于重建的算法。

上述介绍的6类常用的基于重建的超分辨率方法,共同的优点是只需要一些局部性的先验假设,就能在一定程度上缓解了插值方法所产生的模糊或者锯齿效果。但缺点也是显而易见的:当抽取率较大(如4倍以上)时,获取准确的亚像素运动信息是不现实的,且不准确的运动信息对重建效果影响很大。鉴于亚像素的配准困难,不少文献中都假设已经获得准确的亚像素精度的运动。即便假设已获得准确的亚像素运动信息,当抽取率较大时,重建效果通常也不太理想,主要原因是重建过程中能够使用的先验知识太少,低分辨率图像提供的信息不满足高分辨率需求。

2.2.4 基于学习的方法

基于学习的方法是近年来超分辨率算法研究的热点方向。其基本思路是通过给定的训练图像集,计算测试样本的patch与训练图像集patches之间的邻域关系,并构造最优权值约束,来获得先验知识并逼近测试样本的高分辨率图像。当低分辨率数据提供的信息不满足高分辨率需求时,基于学习的方法可以获得更多的图像高层信息,因而具有很大优势,在图像超分辨率应用中可能得到比较理想的结果,为在大抽取率情况下恢复必要的高频信息给出了新的思路。基于学习的方法认为,低分辨率的图像已经拥有充分的用于推理预测其所对应的高分辨率部分(例如边缘等)的信息,通过对一组同时包括高分辨率图像和低分辨率图像的训练集合的训练,学习到一个联合的系统模型。这个模型的表现形式可以是一组学习到的插值核、一个低分辨率patch的查找表、低分辨率patch与高分辨率patch 之间的映射系数等。

(1) Example-based方法

Freeman[7]等首次使用Markov网络对图像的空间关系进行建模,他把图像分成一些5×5或7×7的小块,成为patch,通过学习,获得表示高分辨率patch 之间的转移概率矩阵Ψ和表示高分辨率patch和低分辨率patch之间的转移概率矩阵Φ。对于一个给定的测试图像,同样把它分割成patch之后,对于每一个patch 在寻找它在Markov网络中的位置,同时获得它与一些高分辨率patch之间的关系,再根据训练得到的转移概率把高频分量添进去。

Example-based方法是较早提出使用学习的方法实现超分辨率,相对于之前的基于插值和基于重建的方法,这种方法可以获取丰富的高频信息,在放大4倍时,仍能获得较高的图像质量。但缺点也比较明显,训练样本的选择要求比较高,并且对于图像中的噪声极为敏感。

(2) 邻域嵌入方法(neighbor embedding)

Chang等首次提出了基于邻域嵌入的图像超分辨率方法,其假定了高分辨率和对应的低分辨率图像块在特征空间可以形成具有相同局部几何结构的流形。首先通过训练得到高分辨率patch和低分辨率patch的流形,接着对于测试样本中的每一个patch,寻找其在低维流形中的k近邻表示,最后使用这些系数加权得到其在高维流形中patch的估计,即高分辨率patch.但是,高低分辨率块在邻域嵌入时并不是总具有邻域保持,要提高邻域保持,有2个可能的途径:一个是选择更合理的描述图像块的特征,以便能更好地保持邻域关系,一个是给定高分辨率邻域块,选择更好的重建函数。因此,为了改进邻域嵌入方法的不足,张军平

提出了基于直方图匹配的训练样本选择算法,基于残差局部嵌入的方法和基于边缘检测和特征选择的方法。

相对于Example-based的方法,邻域嵌入的方法需要较少的训练样本,并且对于噪声的敏感度不是非常强。

(3) 支持向量回归方法(SVR)

Karl和Nguyen等提出了使用支持向量回归实现图像的超分辨率,他们通过加入一些额外的约束条件把kernel学习由半正定规划问题转化为二次规划问题求解。对于测试数据,则先对图像patch进行内容分类,再在其所属的类中做支持向量回归,得到高分辨率patch。

SVR方法实现了对样本的自动选择,训练集较小,并且该算法在频域中同样适用。但是从实验结果来看,图像的对比度有所下降。

(4) 虚幻脸(hallucination face)

Baker和Kanade最早提出仅对人脸做超分辨率,他们的复原算法采用从训练patch数据库中查询与测试低分辨率patch最相近的作为输出,并且取得了8倍的放大效果。

LIUC等通过主成分分析(PCA)估计一个全局的脸而后采用非参数的局部模型进行拟合。同样采用特征脸表示的还有文献。另外,还有一些工作是针对人脸视频做超分辨率,其中Dedeoglu等的算法在特定的人脸库中甚至取得了16倍的放大效果。相对于其他的超分辨率技术,虚幻脸由于增加了人脸这个非常重要的先验条件,使得超分辨率的质量大幅提高,但是如果针对通用人脸(更多的表情、更多的人种和更广的年龄分布),目前的算法就只能获得4倍左右的放大效果。

(5) 稀疏表示法(sparse presentation)

最近,Yang[8]等提出了使用图形patch的稀疏表示来实现超分辨率。他们从一些高分辨率图像中随机选取一些patch组成一个过完备的词典(overcomplete dictionary),接着对于每一个测试patch,通过线性规划的方法求得该测试patch 在这个过完备的词典下的稀疏表示,最后以这组系数加权重构出高分辨率的图像。

这种方法克服了邻域嵌入方法中对于邻域大小的选择问题,即在求解稀疏表示的时候,无需指定重构所需要基的个数,其表示系数和基的个数将同时通过线性规划求解得到。然而,目前该方法的缺陷就在于过完备词典的选择,随机的选择只能实现特定领域的图像的超分辨率,对于通用图像的超分辨率效果较差。

3 图像超分辨率的发展前景

图像超分辨率在视频、遥感、医学和安全监控等领域具都有十分重要的应用,另外其应用也逐步涉及到其它各个领域。在高清数字电视方面采用超分辨率技术会进一步减少成本,提高画面的质量。超分辨率技术在采集军事与气象遥感图像应用可实现高于系统分辨率的图像观测。在医学成像系统中(如CT、MRI和超声波仪器等),可以用图像超分辨率技术来提高图像质量,对病变目标进行仔细的检测。在银行、证券等部门的安全监控系统中,当有异常情况发生后。可对监控录像进行超分辨率重建,提高图像要害部分的分辨率,从而为事件的处理提供重要的线索。在未来超分辨技术广泛的应用前景必然会推动这一技术不断发展。

为了获得高质量的高分辨率的图像,满足不同情况下的实际应用要求,未来的发展主要集中在以下几个方面:

(1) 精确有效的运动估计算法[9]。图像的运动变形、模糊和噪声等降质因素具有密切的关系,在图像超分辨率增强中,需要对图像序列进行亚像素精度的运动估计。由于运动估计只能利用低分辨率序列上的信息,所以很难达到精确的运动估计。虽然目前已经有很多比较成熟的运动估计方法,但在实际应用场合仍然无法获得令人满意的运动补偿效果,同时这些方法的适用场合非常有限,需要发展和寻求新的运动模型,对运动进行精确估计。

(2) 针对视频压缩格式和编解码技术,在图像超分辨率算法中综合考虑成像模型和压缩算法带来的图像污染效果,以及运动补偿和编码传输机制,提高压缩视频的超分辨率能力。

(3) 完善现有算法,不断发展新的算法。目前的很多图像超分辨率算法在一定程度上解决了实际应用中存在的问题,但这些方法仍然存在着较大的缺陷和不足。所以在超分辨率算法方面,还需要进一步提高超分辨率图像增强的能力,减小计算量,加快运算的收敛速度,适用于不同的图像要求。

(4) 在应用范围上将不局限于单色和单张高分辨率图像的恢复,还要扩展到多通道和彩色图像、三维立体成像、动态多媒体序列、压缩图像、CCD阵列成像和核磁共振成像的超分辨率恢复与增强。

(5) 提高算法的效率,目前已有的超分辨率算法很多,不少算法的效果还是不错的,但由于算法复杂度高,运算量大,因此实用性不强。

(6)盲重建。很多算法都假设模糊函数(PSF函数)已知,但是在实际中,准确

的估计PSF函数有一定的困难,通常都只能知道PSF函数的部分信息,因此,盲重建也是一个重要的研究方向。

4结束语

随着图像超分辨率技术的进一步发展必将导致这一技术拓宽到一些新的应用领域,图像超分辨率技术更广泛地应用会进一步加快该技术的发展。此外,超分辨率技术的理论研究结果还可为未来我国

新型传感器的硬件设计与实现提供理论指导与参考,图像超分辨率技术会有更广阔的前景。

参考文献:

[1] KANG M, CHAUDHURIS. Super-resolution image reconstruction[J]. IEEE Signal Processing Magazine, 2003,20(3).

[2] WANG Z Z, QI F H. On ambiguities in super-resolution modeling[J]. Signal Processing Letters, 2004, 11(8).

[3] STARK H, OSKOUI P. High-resolution image recovery from image- plane arrays, using convex projections[J]. Journal of the O-

ptical Society of America A, 1989, 6.

[4] IRANI M, PELEG S. Super resolution from image sequences[J].

ICPR-C, 1990.

[5] SCHULTZ R, STEVENSON R. Video resolution enhancement[C]//I- mage and Video Processing III, Proceedings of the SPIE. San Jose,

CA: Society of Photo Optical Instrumentation Engineers, 1995:23-24.

[6] NGUYEN N, MILANFAR P, GOLUB G. Efficient generalized cross validation with applications to parametric image restoration and reso- lution enhancement[J]. IEEE Trans Image Processing,2001,10(9). [7] FREEMAN W T, JONES T R, PASZTOR E C. Example based super- Resolution[J]. IEEE Computer Graphics and Applications,2002,22(2)

[8] YANG J C, WRIGHT J, MA Y. Image super-resolution as sparse repr- esentation of raw image patches[C]

[9] 苏秉华,金伟其.超分辨率影像复原及其进展[J]. 光学技术, 2001, 21(7):6-9.

超分辨率图像重建方法综述_苏衡

第39卷第8期自动化学报Vol.39,No.8 2013年8月ACTA AUTOMATICA SINICA August,2013 超分辨率图像重建方法综述 苏衡1,2周杰1张志浩1 摘要由于广泛的实用价值与理论价值,超分辨率图像重建(Super-resolution image reconstruction,SRIR或SR)技术成为计算机视觉与图像处理领域的一个研究热点,引起了研究者的广泛关注.本文将超分辨率图像重建问题按照不同的输入输出情况进行系统分类,将超分辨率问题分为基于重建的超分辨率、视频超分辨率、单帧图像超分辨率三大类.对于其中每一大类问题,分别全面综述了该问题的发展历史、常用算法的分类及当前的最新研究成果等各种相关问题,并对不同算法的特点进行了比较分析.本文随后讨论了各不同类别超分辨率算法的互相融合和图像视频质量评价的方法,最后给出了对这一领域未来发展的思考与展望. 关键词超分辨率图像重建,计算机视觉,图像处理,方法综述 引用格式苏衡,周杰,张志浩.超分辨率图像重建方法综述.自动化学报,2013,39(8):1202?1213 DOI10.3724/SP.J.1004.2013.01202 Survey of Super-resolution Image Reconstruction Methods SU Heng1,2ZHOU Jie1ZHANG Zhi-Hao1 Abstract Because of its extensive practical and theoretical values,the super-resolution image reconstruction(SRIR or SR)technique has become a hot topic in the areas of computer vision and image processing,attracting many researchers attentions.This paper categorizes the SR problems according to their input and output conditions into three main cat-egories:reconstruction-based SR,video SR and single image SR.For each category,the development history,common algorithm classes and state-of-the-art research achievements are reviewed comprehensively.We also analyze the charac-teristics of di?erent algorithms.Afterwards,we discuss the combination of di?erent super-resolution categories and the evaluation of image and video qualities.Thoughts and foresights of this?eld are given at the end of this paper. Key words Super-resolution image reconstruction,computer vision,image processing,survey Citation Su Heng,Zhou Jie,Zhang Zhi-Hao.Survey of super-resolution image reconstruction methods.Acta Auto-matica Sinica,2013,39(8):1202?1213 超分辨率图像重建(Super resolution image re-construction,SRIR或SR)是指用信号处理和图像处理的方法,通过软件算法的方式将已有的低分辨率(Low-resolution,LR)图像转换成高分辨率(High-resolution,HR)图像的技术.它在视频监控(Video surveillance)、图像打印(Image printing)、刑侦分析(Criminal investigation analysis)、医学图像处理(Medical image processing)、卫星成像(Satellite imaging)等领域有较广泛的应用. 收稿日期2011-08-31录用日期2013-01-29 Manuscript received August31,2011;accepted January29, 2013 国家自然科学基金重大国际(地区)合作研究项目(61020106004),国家自然科学基金(61005023,61021063),国家杰出青年科学基金项目(61225008),教育部博士点基金(20120002110033)资助 Supported by Key International(Regional)Joint Research Pro-gram of National Natural Science Foundation of China(6102010 6004),National Natural Science Foundation of China(61005023, 61021063),National Science Fund for Distinguished Young Scholars(61225008),and Ph.D.Programs Foundation of Min-istry of Education of China(20120002110033) 1.清华大学自动化系北京100084 2.北京葫芦软件技术开发有限公司北京100084 1.Department of Automation,Tsinghua University,Beijing 100084 2.Beijing Hulu Inc.,Beijing100084 超分辨率问题的解决涉及到许多图像处理(Im-age processing)、计算机视觉(Computer vision)、优化理论(Optimization problem)等领域中的基本问题[1],例如图像配准(Image registration)、图像分割(Image segmentation)、图像压缩(Image com-pression)、图像特征提取(Image feature extrac-tion)、图像质量评价(Image quality estimation)、机器学习(Machine learning)、最优化算法(Opti-mization algorithm)等,超分辨率是这些基本问题的一个具体应用领域,同时也对它们的研究进展起到了推动的作用.因此超分辨率问题本身的研究具有重要的理论意义.目前超分辨率问题已经成为相关研究领域的热点之一. 在上世纪80~90年代,就有人开始研究超分辨率图像重建的方法,1984年Tsai的论文[2]是最早提出这个问题的文献之一.在这之后有很多相关的研究对超分辨率的问题进行更加深入的讨论.有关超分辨率问题的研究成果,在计算机视觉、图像处理与信号处理领域的顶级会议和期刊都有大量收录. 1998年,Borman等[3]发表了一篇超分辨率图像重建的综述文章.2001年,Kluwer出版了一本详细介

高分辨率影像的空间定位误差分析

高分辨率影像的空间定位误差分析 高分辨率遥感影像的空间几何精纠正是影像处理的一个重要步骤,其空间定位的误差与不确定性已成为遥感与GIS研究的一个热点。高分辨率影像的空间定位误差是在几何校正、地面控制点判读和选取、1:1万地形图上地面控制点的坐标读取等过程中引入的误差而产生的,并导致误差与不确定性从地形图上传播到影像上。为了验证高分辨率影像定位的误差,本文通过使用手持GPS进行野外测点,用实测坐标与SPOT5(2.5m)遥感影像的同名点的空间坐标进行对比,确定两者的一致性,验证SPOT5(2.5m)遥感影像的空间定位。同时通过两台GPS平行观测,对比同步观测机的数据,分析手持GPS的误差来源以及稳定性对定位精度的影响,并探讨手持GPS测点作为高分辨率影像空间定位的可能性。 标签:高分辨率影像地面标志定位精度误差分析 0 引言 本文的遥感影像是采用法国SPOT5生成的2.5m分辨率的图像产品。但遥感影像的获取会由于平移、缩放、旋转、偏扭、弯曲而产生几何畸变,如像元大小与地面大小对应不准确,将给位置配准造成困难。同时,进行几何校正和数据空间配准时,由于地形图的现势性弱,许多明显地物在地图上都没有显示,很难从地形图上选择符合精度的地面控制点,而且在几何校正的过程中,地面控制点的判读和选取,从1:1万地形图上选取地面控制点坐标的过程,以及使用PCI配准影像产生的误差都会将误差累积传播到最终结果,影响空间定位的精确度。因此,本文希望通过GPS野外测量与遥感影像数据的误差计算来提高高分辨率影像定位精度。 1 高分辨率遥感影像的几何精纠正 几何精纠正的方法及原理 几何纠正包括粗纠正和精纠正两种,粗纠正根据有关参数进行纠正;经常用的是精纠正。几何精纠正是将一幅含有几何畸变和比例尺差异的原始遥感影像,通过一种数学变换,生成一幅符合数字化地图实际的新的遥感影像。几何精纠正的具体方法为: 先在每幅原始遥感影像上选取若干个控制点,再求出这些控制点在数字化地图上对应点的真实坐标,然后把这些已知坐标的控制点代入计算机的校正软件进行运算。校正运算实际上包含着两个基本的运算过程: 一是将每个原始像素点的行列值换算成它在新生成的遥感影像中的坐标值,二是重新计算出每个原始像素点在新生成的遥感影像中的像元亮度值。当所有的控制点被选好后,其校正运算的过程由计算机校正软件自动完成。而控制点的选取则需要人工干预,其选择的准确性与合理性将直接影响到校正的处理效果。 2 东圳水库SPOT5(2.5m)遥感影像图几何纠正过程

提高显微镜分辨率的方法简述

目录 1 选题背景 (1) 2 方案论证及过程论述 (1) 2.1 像差 (1) 2.1.1 球面像差 (1) 2.1.2 慧形像差 (2) 2.1.3 色像差 (2) 2.2 照明对显微镜分辨率的影响 (2) 2.2.1 非相干光照明 (2) 2.2.2 相干光照明 (2) 2.2.3 部分相干光照明 (3) 2.2.4 临界照明 (3) 2.3 衍射 (3) 2.3.1 对两个发光点的分辨率 (3) 2.3.2 对不发光物体的分辨率 (4) 2.4 光噪声 (6) 3 结果分析 (6) 4 结论 (7) 4.1 提高光学显微镜与电子显微镜分辨率的方法 (7) 4.1.1 提高光学显微镜分辨率的方法 (7) 4.1.2 如何提高电子显微镜分辨率 (7) 参考文献 (9)

1 选题背景 显微镜是实验室最重要的设备之一,对观察微小物体细节的显微镜来说,评价光学显微镜及电子显微镜的重要指标之一是分辨本领。显微镜的分辨能力是指其分辨近距离物体细微结构的能力,它主要是显微镜的性能决定。通常是以显微镜的分辨率级即显微镜能分辨开两个物点的最小距离d来表示,d值越小,则显微镜的分辨能力越强。 人眼本身就是一台显微镜,在标准照明条件下,人眼在明视距离(国际公认为25cm)上的分辨率约等于1/10mm。对于观察两条直线来说,由于直线能刺激一系列神经细胞,眼睛的分辨率还能提高一些,这就是显微镜的分划板使用双线对准的原理所在。人眼的分辨率只有1/10mm,那么比1/10mm小的物体或比1/10mm近的两个微小物体的距离,人眼就无法分辨了。这时人们开始研制出放大镜和显微镜,显微镜的分辨率计算公式为:d=0.61入/NA;式中:d为分辨率(μm);入为光源波长(μm);NA为物镜的数值口径(也称镜口率)。 造成显微镜光学像欠缺的因素主要在物镜组,有像差、衍射和光噪声等,它们是影响显微镜分辨率的主要因素,其次照明对显微镜的分辨率也有一定的影响。 对于显微镜的使用者来讲,应该对造成显微镜分辨率下降的因素有比较清楚的认识,并知道克服和减少这些因素的方法。本文从几何像差、色像差、衍射、干涉和照明几个方面分析了对显微镜分辨率的影响,指出了孔径数的增加,从衍射角度看对显微镜分辨率的提高有好处,但从几何像差的角度看则会降低显微镜的分辨率;并指出了照明对显微镜分辨率的影响是不可忽略的等。 2 方案论证及过程论述 2.1 像差 像差可分为单色像差和色像差两大类。单色像差有五种:(1)球面像差;(2)彗形像差;(3)像散;(4)像场弯曲;(5)畴变。其中(1)和(2)是由大孔径引起的,(3)、(4)、(5)是由大视场引起的。显微镜需要大孔径,但不需要大视场,所以显微镜的单色像差主要是(1)和(2)。 2.1.1 球面像差 单球面公式只有在满足近轴光线的条件下才能成立。当孔径较大时,有许多远轴光线也进入了透镜,近轴光线和远轴光线经透镜折射后不能在同一点上会聚。换句话说,主轴上一物点经透镜成像后,像不是一个点,而是一个圆斑,这样就产生了球面像差。消除的方法有二:一是在透镜前加一光阑,用以限制远轴光线的进入。这样做,会使显微镜的孔径数降低,从而降低了显微镜的分辨率。二是用复合透镜法,显微镜物镜就是采用这种方法制作的。

超分辨率算法综述

超分辨率复原技术的发展 The Development of Super2Re solution Re storation from Image Sequence s 1、引言 在图像处理技术中,有一项重要的研究内容称为图像融合。通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥 补观测图像上的有限信息量是一个需要解决的问题。图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅) 携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。 (图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提 高图象的空间分辨率。对图象空间分辨率进行增强的技术也叫超分辨率 (super2resolution) 技术,或亚像元分析技术。本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。) (我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如 光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。按照傅里叶光学的观点,光学成像系统是一个低通滤波器,由于受到光学衍射的影响,其传递函数在由衍射极限分辨率所决定的某个截止频率以上值均为零。显然,普通的图像复原技术如去卷积技术等只能将物体的频率复原到衍射极

超分辨率算法综述

图像超分辨率算法综述 摘要:介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法,对图像超分辨率的方法进行了分类对比,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望。 关键词:图像超分辨率;插值;重建;学习; Abstract:This paper introduced the conception and origin of image super resolu- tion technology. By reviewing these three kinds of methods(interpolation,reconstruct, study), it contrasted and classified the methods of image super-resolution,and at last, some perspectives of super-resolution are given. Key words: image super-resolution;interpolation;reconstruct;study;

1 引言 1.1 超分辨率的概念 图像超分辨率率(super resolution,SR)是指由一幅低分辨率图像(low resolution,LR)或图像序列恢复出高分辨率图像(high resolution, HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制[1],在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像(参见图1)具有重要的现实意义。 图1 图像超分辨率示意图 图像超分辨率技术分为超分辨率复原和超分辨率重建,许多文献中没有严格地区分这两个概念,甚至有许多文献中把超分辨率图像重建和超分辨率图像复原的概念等同起来,严格意义上讲二者是有本质区别的,超分辨率图像重建和超分辨率图像复原有一个共同点,就是把在获取图像时丢失或降低的高频信息恢复出来。然而它们丢失高频信息的原因不同,超分辨率复原在光学中是恢复出超过衍射级截止频率以外的信息,而超分辨率重建方法是在工程应用中试图恢复由混叠产生的高频成分。几何处理、图像增强、图像复原都是从图像到图像的处理,即输入的原始数据是图像,处理后输出的也是图像,而重建处理则是从数据到图像的处理。也就是说输入的是某种数据,而处理结果得到的是图像。但两者的目的是一致的,都是由低分辨率图像经过处理得到高分辨率图像。另外有些文献中对超分辨率的概念下定义的范围比较窄,只是指基于同一场景的图像序列和视频序列的超分辨处理,实际上,多幅图像的超分辨率大多数都是以单幅图像的超分辨率为基础的。在图像获取过程中有很多因素会导致图像质量下降,如传感器的形

关于图像超分辨率重构的现状研究

关于图像超分辨率重构的现状研究 摘要:图像超分辨率的重构技术是近20年来兴起的一门新的数字图像处理技术。随着计算机硬件技术和软件设计技术的不断发展,各种图像超分辨率重构算法被提出。综述超分辨率重构的相关研究,指出图像超分辨率重构技术近几年来的一些研究成果。 关键字:图像超分辨率;图像超分辨率重构;迭代法投影法 Abstract:Image super-resolution reconstruction technology is nearly 20 years the rise of a new digital image processing technology. With the continuous development of computer hardware and software design technology, all kinds of image super-resolution reconstruction algorithm was proposed. Of related studies on super-resolution reconstruction, and points out that the technology of image super-resolution reconstruction in recent years, some of the research. Keywords:image super-resolution; image super-resolution reconstruction; iterative projection method 1引言 超分辨率重构算法始于20世纪80年代,其目的在于恢复一些已丢失的频率分量。在成像过程中,由于受成像系统的物理性质和天气条件的影响,图像中存在着光学和运动模糊、采样不足和附加噪声等退化现象,图像空间分辨率较低。而在实际应用中,需要高分辨率的图像,如在遥感检测、军事侦查、交通及安全监控、医学诊断和模式识别等方面。在现有的传感器不作改变的情况下,人们希望利用信号处理的方法,通过一系列低分辨率图像来重构高分辨率图像。这种从同一场景的低分辨率图像序列中,通过信息融合来提高空间分辨率的方法通常被称为超分辨率重构。

图像超分辨率重建

收稿日期:2008唱08唱21;修回日期:2008唱10唱28 作者简介:王培东(1953唱),男,黑龙江哈尔滨人,教授,硕导,CCF会员,主要研究方向为计算机控制、计算机网络、嵌入式应用技术;吴显伟(1982唱),男(回族),河南南阳人,硕士,主要研究方向为计算机控制技术(wu_xianwei@126.com). 一种自适应的嵌入式协议栈缓冲区管理机制 王培东,吴显伟 (哈尔滨理工大学计算机科学与技术学院,哈尔滨150080) 摘 要:为避免创建缓冲区过程中必须指定大小和多次释放而导致可能的内存泄露和代码崩溃的弊端,提出一种自适应的嵌入式协议栈的缓冲区管理机制AutoBuf。它是基于抽象缓冲区接口而设计的,具有自适应性,支持动态内存的自动分配与回收,同时实现了嵌入式TCP/IP协议栈各层之间的零拷贝通信。在基于研究平台S3C44B0X的Webserver网络数据监控系统上的测试结果表明,该缓冲区的设计满足嵌入式系统网络通信的应用需求,是一种高效、可靠的缓冲区管理机制。 关键词:嵌入式协议栈;抽象缓冲区;零拷贝;内存分配 中图分类号:TP316 文献标志码:A 文章编号:1001唱3695(2009)06唱2254唱03doi:10.3969/j.issn.1001唱3695.2009.06.077 Designandimplementationofadaptivebufferforembeddedprotocolstack WANGPei唱dong,WUXian唱wei (CollegeofComputerScience&Technology,HarbinUniversityofScience&Technology,Harbin150080,China) Abstract:Toavoidtraditionalmethodofcreatingbuffer,whichmusthavethesizeofbufferandfreememoryformanytimes,whichwillresultinmemoryleaksandcodescrash.ThispaperproposedaflexiblebuffermanagementmechanismAutoBufforembeddednetworkprotocolstack.Itwasadaptiveandscalableandbasedonanabstractbufferinterface,supporteddynamicme唱moryallocationandbackup.ByusingtheAutoBufbuffermanagementmechanismwithdatazerocopytechnology,itimplementedtotransferdatathroughtheembeddednetworkprotocolstack.ThemanagementmechanismhadbeenappliedtotheWebserversystembaseonS3C44b0Xplatformsuccessfully.Theresultsinrealnetworkconditionshowthatthesystemprovidesagoodper唱formanceandmeetsthenecessaryofembeddednetworksystem.Keywords:embeddedstack;abstractbuffer;zero唱copy;memoryallocation 随着网络技术的快速发展,主机间的通信速率已经提高到了千兆数量级,同时多媒体应用还要求网络协议支持实时业务。嵌入式设备网络化已经深入到日常生活中,而将嵌入式设备接入到互联网需要网络协议栈的支持。通过分析Linux系统中TCP/IP协议栈的实现过程,可以看出在协议栈中要有大量数据不断输入输出,而管理这些即时数据的关键是协议栈中的缓冲区管理机制,因此对嵌入式协议栈的缓冲区管理将直接影响到数据的传输速率和安全。通用以太网的缓冲区管理机制,例如4.4BSDmbuf [1] 和现行Linux系统中的sk_buf [2] 多是在大内存、 高处理速率的基础上设计的,非常庞大复杂。由于嵌入式设备的硬件资源有限,特别是可用物理内存的限制,通用的协议栈必然不适用于嵌入式设备,在应用时要对标准的TCP/IP协议进行裁剪 [3] 和重新设计缓冲区管理机制。 1 缓冲区管理机制的性能需求分析 缓冲区管理 [4] 是对内存提供一种统一的管理手段,通过该 手段能够对可用内存提供分配、回收、数据操作等行为。内存的分配操作是根据一定的内存分配策略从缓冲区中获得相应大小的内存空间;缓冲区的数据操作主要是向缓冲区写数据,从缓冲区读数据,在缓冲区中删除数据,对空闲的内存块进行合并等行为;内存的回收就是将已空闲的内存重新变为可用内存,以供存 储其他新的数据。 为了满足长度不一的即时数据的需求,缓冲区对内存的操作主要集中在不断地分配、回收、合并空闲的内存块等操作。因为网络中的数据包小到几个字节大到几千个字节,不同长度的数据对内存的需求必然不同。现存嵌入式设备中的内存多是以物理内存,即实模式形式存在的,没有虚拟内存的形式,对内存的操作实际是操作真实的物理内存,所以对内存操作要特别谨慎。在传统使用动态分配的缓冲区(通过调用malloc()/free())在函数之间传递数据。尽管该方法提供了灵活性,但它也带来了一些性能影响。首先考虑对缓冲区的管理(分配和释放内存块)。如果分配和释放不能在相同的代码位置进行,那么必须确保在某个内存块不再需要时,释放一次(且仅释放一次)该内存块是很重要的,否则就会导致内存泄露。其次是必须确定缓冲区的大小才能分配该内存块。然而,确定数据大小并非那么容易,传统做法是采用最大的数据尺寸的保守估计。而采用保守估计预分配的内存大小总是远超过实际需要的大小,而且没有一定的范围标准,这样难免会导致资源的严重浪费。 随着数据在协议栈中的不断流动,内存块的多次释放和多次分配是难以避免的,而保守估计对于有限的资源来说又是一种浪费的策略。因此为了能有效地利用资源,设计一种可自控的、不用预判断大小的数据缓冲区接口就势在必行。 第26卷第6期2009年6月  计算机应用研究 ApplicationResearchofComputers Vol.26No.6Jun.2009

高低分辨率影像解译对比

不同分辨率影像解译效果分析 根据地物的成像规律,在遥感影像上识别出它的性质和数量指标的过程,称为遥感影像的解译,也称为判读。遥感影像上不同地物有其不同的影像特征,这些特征是解译时识别各种地物的依据,这种依据叫做遥感影像的解译标志,也叫做识别特征。直接解译标志如色调、颜色、阴影、形状、大小、纹理、图形。间接解译标志如相关位置、相互关系等。 随着遥感技术的发展,人们得到的遥感影像的质量越来越好,空间分辨率越来越高。目前商用卫星可提供0.6米左右空间分辨率的卫星图像(如Quick bird,Worldview等),在这种具有高空间分辨率特性的图像上,大型建筑物、道路、飞机场和其它人造地物形状特征和纹理特征清晰可辨,这为从遥感影像中提取空间结构信息提供了物质基础。影像分辨率不同,在辨别地物上有很大的影响。主要地物有如下特征:

(一)低分辨率影像 低分辨率遥感适合进行一些宏观的地物监测,因为分辨率低,每个像元代表的面积很大,所以能覆盖地面较大的范围。另外,低分辨率遥感通常光谱分辨率会比较好,包含除可见光以外的近红外等波段,可以用来监测大面积的植被,区分植被和非植被。 低分辨率影像对于一些较小的图斑,很容易被遗漏,对于这些零星小地块的补测只有通过外业调查的方式对研究区展开全面覆盖调查,这不仅大大增加了外业调绘工作量,而且一定程度上否定了3S方法能够快速获取土地利用信息的这一特点。 低分辨率的一大优点是经济实惠,购置成本低。 (二)高分辨率影像 高分辨率卫星影像具有以下特点:具有丰富的空间信息、地物几何结构和纹理信息明显。例如本项目使用的Quickbird影像上人工地物、水体和植被之间的光谱差异明显,建筑物和道路形状结构特征突出,耕地和林地纹理信息丰富。 高分辨率卫星遥感影像,可以在较小的空间尺度上观察地表的细节变化、进行大比例尺遥感制图以及监测人为活动对环境的影响。影像纹理清晰,能够很清楚的分辨出道路、沟渠等水利设施。具有广阔的应用前景。 高分辨率遥感比较适合研究小尺度的地物。由于分辨率高,能看清地面的道路和建筑,适合进行城市的测绘。

能够充分提高照片像素的方法!

能够充分提高照片像素的方法! 初玩摄影的朋友,是否为照片的像素不高而烦恼?下面分享能够提高照片素质12招,希望可以给大家带来帮助! 1. 尽量使用三脚架 很多情况下,照片图像模糊、不清晰的原因,是拍摄者在按动快门时产生“手振”或相机反光板抬升产生“机振”所造成的。如果使用了三脚架,无论快门速度设定到如何的“慢”,甚至长时间的曝光,即可防止图像由于“抖动”而产生的图像模糊。但要注意,使用三脚架时,要尽可能地使用快门线,忽视这一点,仍有可能在手指接触快门时产生的震动而影响清晰度。 2. 尽可能地使用高速快门 在手持照相机拍照的情况下,尽可能采用高速快门来拍摄。没有经验的拍摄者,快门速度设定在1/30s以下时,照片拍虚的概率较大。即使专业摄影工作者,也不能保证在低速快门拍摄时有百分之百的把握。提高快门速度,会相应提高照片清晰度的概率。当然,在手持照相机提高快门速度的情况下,势必开大光圈,因而会失去“大景深”,但为保证照片的清晰度,放弃景深是不得已的办法。 3. 尽可能使用“最佳光圈” 任何镜头都存在不同程度的成像误差,这些成像误差将使镜头的成像质量受到不同程度的影响。由于镜头球面的曲率不同,光线经过透镜中心和边缘时因折射率不同而不能聚焦于同一焦点,从而导致清晰度下降。如使用镜头的最大光圈拍摄,将导致该镜头像差缺陷的最大暴露,导致图像清晰度下降,而使用镜头的最小光圈拍摄,会产生光的衍射,也会导致图像清晰度下降。为改善像差而引起的清晰度下降问题,通常采用缩小光圈的办法来提高成像的质量。一般来说镜头的最佳光圈为该镜头最大光圈缩小2~3档左右,拍摄者可对某个镜头的最佳光圈进行比较。 4. 尽可能采用手动对焦 目前大多数相机具有自动对焦功能。然而,在景深特别小的情况下,自动对焦往往会聚焦不准确,特别是在向主体近距离对焦,使用长焦距镜头,采用大光圈拍摄人像特写的情况下,要特别小心。如果此时采用自动对焦,“靶子”非要对在人物的眼睛上,如果没有十分的把握,宁可放弃自动对焦,而采用手动对焦。人们不希望照片上人物的耳朵或鼻子是清晰的,而传神的眼睛是模糊的。 5. 尽量使用遮光罩 遮光罩的使用,很多人并不在意。在用正面光、前侧光或侧光时,遮光罩的作用并不明显。但是在逆光或侧逆光拍摄时,必须使用遮光罩,有时即便使用了遮光罩,阳光仍会直射到镜头上,造成画面“冲光”,产生雾翳,影响被摄体的色彩饱和度和清晰度。这时,应调整镜头角度,避开直射到镜头上的光线。此外,遮光罩还有助于防止镜头镜面损伤,同时避免手指接触到镜面。 6. 合理利用景深 景深的大小是根据拍摄者拍摄的目的来决定。如果是拍摄风光摄影,景深就要求大,目的是为让照片上景物的清晰范围从近至远都表现得很清楚。如果是拍摄特写,景深就要求小,目的是让照片上主体的背景(也可能是前景)虚化(模糊),突出被摄主体。用小景深来表现风光题材,或用大景深去表现被摄体特写,从摄影表现手法上来说适得其反。如何合理运用景深呢?请记住:采用小光圈、短焦距镜头、远距离对焦拍摄三种方法,景深就大。采用大光圈、长焦距镜头、近距离对焦拍摄三种方法,景深就小。采用其中一种或两种拍摄方法也行,但效果没有三种方法合起来使用作用更明显。 7. 尽可能选用低值感光度 要获得影像的高清晰度,让照片看起来具有丰富的质感,除选择使用高像素的数码照相

人脸图像超分辨率的自适应流形学习方法

第20卷第7期2008年7月 计算机辅助设计与图形学学报 JO U RN A L O F COM PU T ER -AID ED D ESIG N &COM P U T ER G RA PH ICS Vo l 120,N o 17 July,2008 收稿日期:2007-11-06;修回日期:2008-03-111基金项目:国家科技支撑计划重点项目(2006BAK07B04).张雪松,男,1977年生,博士研究生,工程师,主要研究方向为数字图像复原与超分辨率、模式识别、红外图像实时处理.江 静,女,1979年生,硕士,讲师,主要研究方向为数字图像处理.彭思龙,男,1971年生,博士,研究员,博士生导师,主要研究方向为小波分析、图像处理、视频增强、模式识别. 人脸图像超分辨率的自适应流形学习方法 张雪松1) 江 静2) 彭思龙 1) 1)(中国科学院自动化研究所国家专用集成电路设计工程技术研究中心 北京 100190)2) (华北科技学院机械与电气工程系 北京 101601)(xuesong.zhang@https://www.wendangku.net/doc/e1469923.html,) 摘要 样本规模与使用方法是基于学习的超分辨率中的一个重要问题.面向人脸图像超分辨率重建,提出一种基 于局部保持投影(L P P)的自适应流形学习方法.由于能够揭示隐含在高维图像空间中的非线性结构,L PP 是一种可以在局部人脸流形上分析其内在特征的、有效的流形学习方法.通过在L P P 特征子空间中动态搜索出与输入图像块最相似的像素块集合作为学习样本,实现了自适应样本选择,并且利用动态样本集合通过基于像素块的特征变换方法有效地恢复出低分辨率人脸图像中缺失的高频成分.实验结果证实:通过在局部人脸流形上自适应地选择学习样本,文中方法可以仅使用相对少量的样本来获得很好的超分辨率重建结果.关键词 人脸图像;超分辨率;局部保持投影;流形学习;非监督学习中图法分类号 T P391.4 Adaptive Manifold Learning Method for Face Hallucination Zhang Xuesong 1) Jiang Jing 2) Peng Silong 1) 1)(National AS I C Desig n Eng inee ring Center ,Institute of A utomation,Chinese A cad emy of S cie nces ,B eij ing 100190)2) (Dep artment of M ec hanic s and E lectricity En gineering ,N or th Ch ina I nstitu te of S cie nce and Te chnolog y ,B eij ing 101601) Abstract T he size of training set as well as the usage thereof is an important issue of learning -based super -resolution.T his w or k presents an adaptive learning metho d for face hallucination using Locality Preserving Pr ojectio n (LPP).LPP is an efficient manifold learning m ethod that can be used to analy ze the lo cal intrinsic features on the manifold of local facial areas by virtue of its ability to reveal no n -linear structures hidden in the hig h -dim ensional image space.We fulfilled the adaptive sam ple selection by searching out patches online in the LPP sub -space,w hich makes the resultant training set tailor ed to the testing patch,and then effectively r estored the lo st hig h -frequency com ponents of the low -resolution face image by patched -based eig en transform ation using the dy namic training set.The ex perim ental r esults fully dem onstrate that the proposed m ethod can achieve goo d super -reso lution reconstruction perfo rmance by utilizing a relative small am ount o f samples. Key words face im ag e;super -r esolutio n;lo cality preserv ing projections;m anifold learning;unsuperv ised learning 超分辨率是指根据多张低分辨率图像重建出高分辨率图像的过程,在不同的应用中,输入的低分辨率图像可以是某个静态场景的图像序列 [1-3] (序列中 的图像间存在相对运动)或者是一段动态场景的视频[4-5].这些超分辨率方法通常是基于/重建约束0的:即认为低分辨率图像是待求高分辨率图像在不

高分辨率卫星影像卫星参数表

北京揽宇方圆信息技术有限公司 表1:商业光学高分辨率卫星参数一览表

北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。

优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。 7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。 8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。 技术能力说明 北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

课程设计参考报告——提高光学光刻分辨率的方法研究

微电子工艺课程设计 提供光学光刻分辨率的方法研究

目录 摘要 (5) 关键词 (5) 引言 (5) 正文 (5) 一、提高分辨率的方法 (5) 1. 影响图形光刻分辨率的主要因素 (5) 1.1掩膜(Mask) (6) 1.2照明系统(Illumination system) (6) 1.3投影(Projection) (7) 1.4发射和过滤特性 (7) 1.5成像(Image) (8) 1.6曝光(Expose) (9) 1.7烘烤(Bake) (10) 1.8显影(Develop) (10) 1.9一些效应的影响 (12) 2. 提高分辨率的措施 (14) 2.1掩膜 (14) 2.2照明系统 (15) 2.3投影(Projection) (16) 2.4发射和过滤特性 (17) 2.5成像(Image) (18) 2.6曝光(Expose) (18) 2.7烘烤(Bake) (19) 2.8显影(Develop) (20) 2.9一些常见且有效的技术 (22) 2.10采用先进的光刻技术 (28) 二、一个优化的工艺组合方案的各参数的确定 (31) 1 掩膜版和照明窗口的设计 (31) 仿真1 (33) 仿真2 (35) 仿真3 (36) 仿真4 (37) 仿真5 (39) 仿真6 (40) 结论 (41)

2 数值孔径 (42) 3光照波长 (42) 仿真1: (42) 仿真2: (43) 仿真3: (44) 仿真4: (45) 结论 (46) 4 照明系统与光轴的角度和离轴照明技术的结合使用 (46) 仿真1: (47) 仿真2: (47) 仿真3: (48) 仿真4: (49) 仿真5: (49) 结论: (50) 5 光刻胶的厚度、光照强度和曝光剂量 (50) 仿真1 (50) 仿真2 (51) 仿真3 (52) 仿真4 (52) 仿真5 (53) 仿真6 (54) 仿真7 (54) 仿真8 (55) 仿真9 (56) 仿真10 (56) 结论 (57) 6 耀斑数 (57) 仿真1 (58) 仿真2 (58) 仿真3 (59) 结论 (60) 7 损伤因子 (60) 仿真1 (60) 仿真2 (61) 仿真3 (63) 结论 (64) 8反射的次数和POWER MIN (64) 仿真1 (64)

相关文档
相关文档 最新文档