文档库 最新最全的文档下载
当前位置:文档库 › 三元锂电池使用寿命详解

三元锂电池使用寿命详解

三元锂电池使用寿命详解
三元锂电池使用寿命详解

无锡派瑞得新能源科技有限公司

三元锂电池使用寿命详解

三元磷酸铁锂电池组循环寿命是多少?三元锂电池组真实循环寿命多长等问题都是一些常规的关于三元锂电池的问题,那我们又应该如何解决它呢?锂电池市场,最主要的两种电池还是磷酸铁锂电池组和三元锂电池电池,每种电池都有自己的特点,三元锂电池组拥有耐低温、高能量密度、重量轻等等一系列优点。本文重点描述三元锂电池的的各项优点和优势,先从认识三元锂电池开始。

首先我们需要知道的是,三元锂电池到底是什么?三元锂电池是正极材料使用镍钴锰酸锂三元正极材料的,三元复合正极材料前驱体产品,是以镍盐、钴盐、锰盐为原料。这种产品建立在钴酸锂良好的循环性能的前提下,是眼下最炙手可热的一种锂电池,值得更高的关注和大家的了解

了解了什么是三元锂电池,我们来了解下三元锂电池的具体使用寿命。理论上来说一般的三元磷酸铁锂电池组寿命是1200次,是在完全充放电的前提下,按使用频率来说,三天进行一次完全充放电,一年一百二十次,三元锂电池可以用长达十年之久,即使在使用的时候有损耗或者充放电的减少,也有八年左右的时间。

那电池的循环使用寿命又都是多少呢?三元理论上来说有八百次左右,但具体情况我们是要具体分析的,具体分为以下三种情况,我们来一一分析1、三元材料循环次数约800次。2、磷酸铁锂电池组循环次数大概2500次。3、正品电池和不良品电池循环次数也是不同的,正品电池都是严格按照规定来制作的,而不良的产品大多粗制滥造,甚至连50次都不一定能达到。

本文由无锡派瑞得新能源科技有限公司提供,更多详情请登陆https://www.wendangku.net/doc/e1646653.html,进行详细咨询。

高中化学有关原电池知识点的总结

高中化学有关原电池知识点的总结 一、构成原电池的条件构成原电池的条件有: (1)电极材料。两种金属活动性不同的金属或金属和其它导电性(非金属或某些氧化物等);(2)两电极必须浸没在电解质溶液中; (3)两电极之间要用导线连接,形成闭合回路。说明: ①一般来说,能与电解质溶液中的某种成分发生氧化反应的是原电池的负极。②很活泼的金属单质一般不作做原电池的负极,如K、Na、Ca等。 二、原电池正负极的判断(1)由组成原电池的两极材料判断:一般来说,较活泼的或能和电解质溶液反应的金属为负极,较不活泼的金属或能导电的非金属为正极。但具体情况还要看电解质溶液,如镁、铝电极在稀硫酸在中构成原电池,镁为负极,铝为正极;但镁、铝电极在氢氧化钠溶液中形成原电池时,由于是铝和氢氧化钠溶液发生反应,失去电子,因此铝为负极,镁为正极。 (2)根据外电路电流的方向或电子的流向判断:在原电池的外电路,电流由正极流向负极,电子由负极流向正极。(3)根据内电路离子的移动方向判断:在原电池电解质溶液中,阳离子移向正极,阴离子移向负极。(4)根据原电池两极发生的化学反应判断:原电池中,负极总是发生氧化

反应,正极总是发生还原反应。因此可以根据总化学方程式中化合价的升降来判断。 (5)根据电极质量的变化判断:原电池工作后,若某一极质量增加,说明溶液中的阳离子在该电极得电子,该电极为正极,活泼性较弱;如果某一电极质量减轻,说明该电极溶解,电极为负极,活泼性较强。 (6)根据电极上产生的气体判断:原电池工作后,如果一电极上产生气体,通常是因为该电极发生了析出氢的反应,说明该电极为正极,活动性较弱。 (7)根据某电极附近pH的变化判断 析氢或吸氧的电极反应发生后,均能使该电极附近电解质溶液的pH增大,因而原电池工作后,该电极附近的pH增大了,说明该电极为正极,金属活动性较弱。 三、电极反应式的书写(1)准确判断原电池的正负极是书写电极反应的关键 如果原电池的正负极判断失误,电极反应式的书写一定错误。上述判断正负极的方法是一般方法,但不是绝对的,例如铜片和铝片同时插入浓硝酸溶液中,由于铝片表明的钝化,这时铜失去电子,是负极,其电极反应为:负极:Cu-2e-=Cu2+正极:NO3- 4H+ 2e-=2H2O 2NO2↑再如镁片和铝片同时插入氢氧化钠溶液中,虽然镁比铝活泼,但由于镁不与氢氧化钠反应,而铝却反应,失去电子,

常见原电池方程式

1.电化腐蚀:发生原电池反应,有电流产生 (1)吸氧腐蚀 负极:Fe-2e-==Fe2+ 正极:O2+4e-+2H2O==4OH- 总式:2Fe+O2+2H2O==2Fe(OH)2 4Fe(OH)2+O2+2H2O==4Fe(OH)32Fe(OH)3==Fe2O3+3H2O (2)析氢腐蚀:CO 2+H2O H2CO3H++HCO3- 负极:Fe -2e-==Fe2+ 正极:2H+ + 2e-==H2↑ 总式:Fe + 2CO2 + 2H2O = Fe(HCO3)2 + H2↑ Fe(HCO3)2水解、空气氧化、风吹日晒得Fe2O3。 常见原电池 (1)一次电池 ①碱性锌锰电池 构成:负极是锌,正极是MnO2,正极是KOH 工作原理:负极Zn+2OH—-2e-=Zn(OH)2;正极:2MnO2+2H2O+2e-=2MnOOH+2OH- 总反应式:Zn+2MnO2+2H2O=2MnOOH+Zn(OH)2 特点:比能量较高,储存时间较长,可适用于大电流和连续放电。 ②钮扣式电池(银锌电池) 锌银电池的负极是Zn,正极是Ag20,电解质是KOH,总反应方程式:Zn+Ag20=2Ag+ZnO 特点:此种电池比能量大,电压稳定,储存时间长,适宜小电流连续放电。 ③锂电池 锂电池用金属锂作负极,石墨作正极,电解质溶液由四氯化铝锂(LiAlCl4)溶解在亚硫酰氯(SOC12)中组成。 锂电池的主要反应为:负极:8Li-8e—=8Li+;正极:3SOC12+8e—=SO32-+2S+6Cl— 总反应式为:8Li+3SOC12=6LiCl+Li2SO3+2S 特点:锂电池是一种高能电池,质量轻、电压稳定、工作效率高和贮存寿命长的优点。 (2)二次电池 ①铅蓄电池:

元锂电池的优点和缺点

三元锂电池的优点和缺点 2016-01-07 作者:宇宁来源:中国客车网 三元聚合物锂电池是指正极材料使用镍钴锰酸锂(Li(NiCoMn)O2)三元正极材料的锂电池,三元复合正极材料前驱体产品,是以镍盐、钴盐、锰盐为原料,里面镍钴锰的比例可以根据实际需要调整,三元材料做正极的电池相对于钴酸锂电池安全性高,但是电压太低,用在手机上(手机截止电压一般在左右)会有明显的容量不足的感觉。 优点 从2014年初以来,三元材料锂电池各方面不断改性,循环次数不断增加,目前适当增加成本,已经可以达到1500次以上,而且三元材料的锂电池安全性能也在不断改善,越来越向磷酸铁锂靠近。近两年新出现的镍钴铝新三元材料,虽然在电池制造过程中对环境要求较高,但是其稳定性与安全性进一步提高,为多家电池厂所认可、试产。 1、电压平台高。电压平台是电池能量密度的重要指标,决定着电池的基本效能和成本,因此对电池材料的选用,有重要的意义。电压平台越高,比容量越大,肯定同样体积、重量,甚至同样安时的电池,电压平台比较高的三元材料锂电池续航里程更远。三元材料的电压平台明显比磷酸铁锂高,高线可以达到伏,放电平台可以达到或者伏。 2、能量密度高 3、振实密度高 缺点 1、安全性差 2、耐高温性差 3、寿命差 4、大功率放电差 5、元素有毒(三元锂电池大功率充放电后温度急剧升高,高温后释放氧气极容易燃烧)

八月份公告中都有哪些新面孔客车品牌? 2018-08-09 作者:寒玉来源:中国客车网 2018年8月初,工信部按例发布了道路机动车辆生产企业及产品(第310批)和《新能源汽车推广应用推荐车型目录》(2018年第8批)。中国客车网了解到,《公告》涉及到的客车品牌比较丰富,宇通、东风、申龙、中通、金旅、中车电动、福田欧辉、北方、比亚迪、金龙、海格、珠海银隆等企业都有申报,此外,还有不少半生不熟和完全不熟的品牌列入公告。 今天,我们就来扒一扒,这些生面孔的客车品牌和企业。 各品牌渊源不完整版 凌河牌 辽宁凌源凌河汽车制造有限公司建于2007年,前身是成立于1959年的辽宁省凌源新生联合企业公司,2016年凌河汽车经中国航天科技集团有限公司下属北京发射技术研究所和航天投资控股有限公司共同注资重组。 现已形成商用车、专用车、纯电动乘用车三大产品为主线的汽车产业园,占地面积1005亩,规划建筑面积万平方米、具有10万辆整车产能,现官网自称为航天凌河汽车。 (名字好霸气……) 宏远牌 东莞中汽宏远汽车有限公司成立于2013年,注册资本亿元,主要生产6-12米纯电动城市公交车、纯电动商务客车、纯电动物流车、纯电动豪华团体车等新能源汽车产。

原电池电极方程式书写练习题

常见原电池电极方程式书写练习 1、写出下列原电池的有关反应式 ⑴铜铝强碱溶液的原电池(电极材料:铜片和铝片,电解质溶液:氢氧化钠溶液)总反应:____________________________________________________ ①正极():____________________________________________________ ②负极():_____________________________________________________ ⑵铝铜电池浓硝酸原电池(电极材料:铜片和铝片,电解质溶液:浓硝酸) 总反应:____________________________________________________ ①正极():____________________________________________________ ②负极():_____________________________________________________ (3)镁铝电池稀硫酸原电池(电极材料:镁片和铝片,电解质溶液:) 总反应:____________________________________________________ ①正极():____________________________________________________ ②负极():_____________________________________________________ (4)镁铝电池强碱原电池(电极材料:镁片和铝片,电解质氢氧化钠溶液:) 总反应:____________________________________________________ ①正极():____________________________________________________ ②负极():_____________________________________________________ (5)氢氧燃料原电池(电极材料:碳棒和碳棒,电解质氯化钠溶液) 总反应:____________________________________________________ ①正极():____________________________________________________ ②负极():_____________________________________________________ (6)氢氧燃料原电池(电极材料:碳棒和碳棒,电解质盐酸溶液) 总反应:____________________________________________________ ①正极():____________________________________________________ ②负极():_____________________________________________________ (7)氢氧燃料原电池(电极材料:惰性电极,电解质氢氧化钾溶液) 总反应:____________________________________________________ ①正极():____________________________________________________ ②负极():_____________________________________________________

原电池电极反应方程式

一、原电池电极反应方程式的书写 1、根据原电池发生的氧化还原反应书写正负极反应式及总反应式: 负极: 氧化反应(失电子)正极: 还原反应(得电子) 总反应式═负极反应式+正极反应式 (对总反应式、负极反应式和正极反应式,只要知其中任两个,就可以通过加或减求第三个) 2、注意正负极反应生成的离子与电解质溶液能否共存,若不能共存,则参与反应的物质也要 写入电极反应式中。如O2- 不能在溶液中稳定存在,先遇H+ 必然生成H 2O,遇H 2O必然生成OH。 3、注意质量守恒、电荷守恒,电子得失守恒,特别是电子得失守恒,这样可以避免在由电极反应式写总反应方程式,或由总反应方程式改写成电极反应式所带来的失误,同时,也可避免在有关计算中产生误差。 二、常见原电池电极反应方程式的书写 1、锌-铜-硫酸原电池 负极:

Zn - 2e═ Zn正极:2H+2e═ H 2↑总反应式: Zn+2H═ Zn+H 2↑ 2、利用反应Fe + 2FeCl 3═ 3FeCl 2设计原电池 负极: Fe - 2e- ═ Fe2+ 正极:2Fe3+ +2e-═ 2Fe2+ 3、普通锌锰干电池(酸性电池)负极: Zn - 2e- ═ Zn2+ 正极:2MnO 2+ 2NH 4+ + 2e- ═ 2MnO(OH) + 2NH

3总反应式: Zn + 2MnO 2+ 2NH 4+ ═ Zn2+ + 2MnO(OH) + 2NH3知多点: 电池xxMnO 2的作用是将正极xxNH 4还原生成的H氧化成为水,以免产生H 2附在石墨表面而增加电池内阻。由于反应中锌筒不断消耗变薄,且有液态水生成 [2MnO(OH)→Mn 2O 3+H 2O],故电池用久后会变软。 4、碱性锌锰电池,电解质为KOH溶液 负极: Zn + 2OH- - 2e- ═ Zn(OH) 2正极:2MnO

常见原电池方程式归纳

常见原电池方程式归纳 1.Cu─H2SO4─Zn原电池 负极:Zn—2e—=Zn2+ 正极:2H++2e—=H2↑总反应式:Zn+2H+=Zn2++H2↑2. Fe─CuSO4─Cu原电池 负极:Fe—2e—=Fe2+ 正极:Cu2++2e—=Cu总反应式:Fe+ Cu2+= Fe2++Cu 3.Cu─FeCl3─C原电池 负极:Cu—2e—=Cu2+ 正极:2Fe3++2e—=2Fe2+总反应式:2Fe3++Cu=Cu2++2Fe2+ 4.Fe─FeCl3─Cu原电池 负极:Fe—2e—=Fe2+ 正极:2Fe3++2e—=2Fe2+总反应式:2Fe3++Fe=3Fe2+ 5.氢氧燃料电池(中性介质) 负极:2H2—4e—=4H+ 正极:O2+2H2O+4e—=4OH—总反应式:2H2 + O2 = 2H2O 6.氢氧燃料电池(H2SO4做电解质) 负极:2H2—4e—=4H+ 正极:O2+4e—+4H+=2H2O总反应式:2H2+O2 = 2H2O 7.氢氧燃料电池(KOH做电解质) 负极:2H2—4 e—+4OH—=4H2O 正极:O2 + 2H2O + 4e—= 4OH— 总反应式:2H2 + O2 == 2H2O 8.铅蓄电池(放电) 负极(Pb) :Pb—2 e—+ SO42- = PbSO4 正极(PbO2) :PbO2+2e—+SO42—+4H+ = PbSO4 + 2H2O 总反应式:Pb+PbO2+4H++ 2SO42- == 2PbSO4 + 2H2O 9.Al─NaOH─Mg原电池 负极:2Al—6e—+ 8OH—= 2AlO2—+ 4H2O 正极:6H2O + 6e—= 3H2↑+ 6OH— 总反应离子方程式:2Al+2OH—+2H2O==2AlO2—+ 3H2↑ 10.Al─浓HNO3─Cu原电池 负极:Cu—2e—= Cu2+ 正极:4H++2e—+2NO3—=2NO2↑+2H2O 总反应式:Cu+4H++2NO3—= Cu2++2NO2↑+2H2O 11.CH4燃料电池(KOH做电解质) 负极:CH4—8e—+10OH—= CO32—+ 7H2O 正极:O2 + 2H2O + 4e—= 4OH— 总反应式:CH4 + 2O2 + 2OH- == CO32- + 3H2O 12. CH3OH燃料电池(KOH做电解质) 负极:CH3OH—6e—+ 8OH—= CO32—+ 6H2O 正极:O2 + 4e—+ 2H2O = 4OH— 总反应式:2CH3OH + 3O2 + 4OH—== 2CO32—+ 6H2O

动力电池基础知识普及讲解

锂电池基础的方方面面介绍 目录 1. 锂电池的构成 2. 锂电池的优缺点 3. 锂电池的分类 4. 常用术语解释 5. 锂电池命名规则 6. 锂电池工艺 7. 锂电池成组和串并联 8. 各种动力电池对比 9. 锂电池模型 10. 锂电池电气特性与关键参数 11. 锂电池保护和管理系统 12. 锂电池应用领域 13. 锂电池相关标准

(一)锂电池的构成 锂电池主要由两大块构成,电芯和保护板PCM(动力电池一般称为电池管理系统BMS),电芯相当于锂电池的心脏,管理系统相当于锂电池的大脑。 电芯主要由正极材料、负极材料、电解液、隔膜和外壳构成,而保护板主要由保护芯片(或管理芯片)、MOS管、电阻、电容和PCB板等构成。 锂电池的产业链结构如下图: 电芯的构成如下面两图所示:

锂电池的PACK的构成如下图所示:

●(二)锂电池优缺点 锂电池的优点很多,电压平台高,能量密度大(重量轻、体积小),使用寿命长,环保。锂电池的缺点就是,价格相对高,温度范围相对窄,有一定的安全隐患(需加保护系统)。 ●(三)锂电池分类 锂电池可以分成两个大类:一次性不可充电电池和二次充电电池(又称为蓄电池)。 不可充电电池如锂二氧化锰电池、锂-亚硫酰胺电池。 二次充电电池又可以分为下面根据不同的情况分类。 1.按外型分:方形锂电池(如普通手机电池)和圆柱形锂电池(如电动工具的18650);2.按外包材料分:铝壳锂电池,钢壳锂电池,软包电池; 3.按正极材料分:钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、三元锂(LiNixCoyMnzO2)、磷酸铁锂(LiFePO4); 4.按电解液状态分:锂离子电池(LIB)和聚合物电池(PLB); 5.按用途分:普通电池和动力电池。 6.按性能特性分:高容量电池、高倍率电池、高温电池、低温电池等。

各种储能系统优缺点对比

史上最全储能系统优缺点梳理 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research 的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。 不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞

高中常见原电池电极反应式书写总结

高中常见的原电池电极反应式的书写 书写过程归纳:列物质,标得失(列出电极上的物质变化,根据价态变化标明电子得失)。 选离子,配电荷(根据介质选择合适的离子,配平电荷,使符合电荷守)。 巧用水,配个数(通常介质为水溶液,可选用水配平质量守恒) 一、一次电池(负极氧化反应,正极还原反应) 1、伏打电池:(负极—Zn,正极—Cu,电解液—H2SO4) 负极:Zn–2e-==Zn2+(氧化反应)正极:2H++2e-==H2↑(还原反应) 总反应离子方程式Zn + 2H+ == H2↑+ Zn2+ 2、铁碳电池(析氢腐蚀):(负极—Fe,正极—C,电解液——酸性) 负极:Fe–2e-==Fe2+(氧化反应)正极:2H++2e-==H2↑(还原反应) 总反应离子方程式Fe+2H+==H2↑+Fe2+ 3、铁碳电池(吸氧腐蚀):(负极—Fe,正极—C,电解液——中性或碱性) 负极:2Fe–4e-==2Fe2+(氧化反应)正极:O2+2H2O+4e-==4- OH(还原反应)总反应化学方程式:2Fe+O2+2H2O==2Fe(OH)2 4Fe(OH)2+O2+2H2O==4Fe(OH)3 ;2Fe(OH)3==Fe2O3 +3 H2O (铁锈的生成过程) 4.铝镍电池:(负极—Al,正极—Ni,电解液——NaCl溶液) 负极:4Al–12e-==4Al3+(氧化反应)正极:3O2+6H2O+12e-==12- OH(还原反应)总反应化学方程式:4Al+3O2+6H2O==4Al(OH)3 (海洋灯标电池) 5、铝–空气–海水(负极--铝,正极--石墨、铂网等能导电的惰性材料,电解液--海水) 负极:4Al-12e-==4Al3+ (氧化反应)正极:3O2+6H2O+12e-==12OH-(还原反应) 总反应式为:4Al+3O2+6H2O===4Al(OH)3(铂网增大与氧气的接触面)(海洋灯标电池) 6、普通锌锰干电池:(负极——Zn,正极——碳棒,电解液——NH4Cl糊状物) 负极:Zn–2e-==Zn2+(氧化反应)正极:2MnO2+2NH4++2e-==Mn2O3 +2NH3+H2O(还原反应)总反应化学方程式:Zn+2NH4Cl+2MnO2=ZnCl2+Mn2O3+2NH3+H2O 7、碱性锌锰干电池:(负极——Zn,正极——碳棒,电解液KOH糊状物) 负极:Zn + 2OH– 2e-== Zn(OH)2(氧化反应)正极:2MnO2 + 2H2O + 2e-==2MnO(OH) +2OH-(还原反应) 总反应化学方程式:Zn +2MnO2 +2H2O == Zn(OH)2 + MnO(OH) 8、银锌电池:(负极——Zn,正极--Ag2O,电解液NaOH ) 负极:Zn+2OH-–2e-== ZnO+H2O(氧化反应)正极:Ag2O + H2O + 2e-== 2Ag + 2OH-(还原反应)总反应化学方程式:Zn + Ag2O == ZnO + 2Ag 9、镁铝电池:(负极--Al,正极--Mg,电解液KOH) 负极(Al):2Al + 8OH-+6e-=2AlO2-+4H2O(氧化反应)正极(Mg):6H2O + 6e-=3H2↑+6OH–总反应化学方程式:2Al + 2OH-+ 2H2O =2AlO2-+ 3H2↑ 10、一次性锂电池:(负极--金属锂,正极--石墨,电解液:LiAlCl4-SOCl2) 负极:8Li -8e-=8 Li + 正极:3SOCl2+8e-=SO32-+2S+6Cl- 总反应化学方程式8Li+3SOCl2 === Li2SO3 +6LiCl +2S 二、二次电池(又叫蓄电池或充电电池) 1、铅蓄电池:(负极—Pb 正极—PbO2 电解液—稀硫酸) 放电时:负极:Pb-2e-+SO42-==PbSO4正极:PbO2+2e-+4H++SO42-==PbSO4+2H2O 总化学方程式Pb+PbO2 + 2H2SO4==2PbSO4+2H2O 2、镍镉电池(负极--Cd、正极—NiOOH、电解液: KOH溶液) 放电时负极:Cd-2e—+ 2 OH– == Cd(OH)2 Ni(OH)2+Cd(OH)2 正极:2NiOOH + 2e—+ 2H2O == 2Ni(OH)2+ 2OH– 总化学方程式Cd + 2NiOOH + 2H2O===Cd(OH)2 + 2Ni(OH)2

18650锂电池与软包锂电池的区别

18650锂电池与软包锂电池的区别 18650锂电池与软包锂电池从外观看的话最直观的区别就是18650锂电池是圆柱形的钢壳电池,大小尺寸基本是一样的,而软包锂电池是可以是任意形状和尺寸的外形,外壳是铝塑膜包装的电池。18650锂电池与软包锂电池的区别从内在来看的话就是使用的材料如电解液、导电剂、电极配方比例等方面是不同的,同时在生产工艺方面也是不同的。 一、18650锂电池与软包锂电池电解质的区别 18650锂电池与软包锂电池虽然外形和内部结构有所不同,但是这两种电池的原理基本一样。两种电池都有正极、负极以及电解液,正极材料一般为钴酸锂、镍钴锰酸锂(三元材料)、磷酸铁锂或锰酸锂等,负极材料一般为石墨,电解液则为六氟磷酸锂溶液。 作为目前市场上两种主流的锂电池,18650锂电池和锂聚合物软包电池按外壳封装材质而区分。18650锂电池一般是钢外壳封装(18表示直径为18mm,65表示长度为65mm,0表示为圆柱形电池),内部电极片与隔膜的结构是卷绕式。锂聚合物软包电池外包装使用的是铝塑膜,内部电极片与隔膜是层叠式(一层一层堆叠起来)。 18650锂电池与软包锂电池主要的区别在于电池内部材料电解质的形态不同:锂聚合物软包电池内部的电解质采用的是聚合物,一般为凝胶或者固态,而18650锂电池内部的电解质一般是液态。 二、18650锂电池与软包锂电池的优缺点和应用领域不同 18650锂电池和锂聚合物软包电池各有优缺点。目前,18650锂电池生产自动化程度高,电池的一致性、安全性均达到了较高水准,加上电池本身体积小、重量轻,使其在系统开发的模块化以及标准化程度上均具有独特优势。很多人认为,采用18650锂电池作为新能源电动汽车的动力之源,在现阶段是更优的选择。 与18650锂电池相比,锂聚合物软包电池单体容量较高,而且具有可薄形化、任意面积化与任意形状化等优点(可以制作出0.33mm、0.50mm等型号的超薄电池),其主要缺点在于一致性较差、机械强度差。基于锂聚合物软包电池的特点,锂聚合物软包电池正越来越多地被用在手机、笔记本电脑、移动电源等领域。但是,由于胶体(或固态)电解质的导电性不太好,内阻较大,锂聚合物软包电池现在很少应用在电动汽车上。 但是,18650锂电池也有无法回避的缺点,那便是单体容量较低(普遍在 2~4Ah左右)。这让18650锂电池在应用时所需的电池数量非常多,保持电芯一致性、电池散热的电池管理系统也更为复杂。 三、18650锂电池与软包锂电池大电流放电性能不同 在锂电池倍率大电流放电性能方面,软包锂电池可以做到比18650锂电池更高的倍率,同时大电流放电稳定性能方面,软包锂电池的性能更加好的。在同等放电要求和容量方面,软包锂电池可以根据产品电池仓空间形态而定制相应的形状电池,实现更加轻便的形式。

新能源汽车各种电池详细解释

随着国家对新能源汽车行业扶植力度的加大,越来越多的新能源汽车走进大众的视野。很多汽车品牌强势进军新能源汽车领域,使得新能源汽车技术不断成熟、供消费者选择的车型也越来越多,加上新能源汽车经济实用、绿色环保的特点,越来越多的家庭和企业将新能源汽车作为买车、换车的第一选择。 新能源汽车江湖有句话:“新能源汽车,得电池者得天下”。动力电池技术成了关乎一台新能源汽车性能的关键,因此本期文章,知科君为大家普及一下新能源电动汽车最重要的核心部件---汽车动力电池 首先我们了解下电池,总称为化学电池,现阶段我们将总类的化学电池可以分为; 一次电池,也称干电池,即不能够再充电的电池,如生活中常用的5号碱性电池; 二次电池,即可充电的电池,这也是汽车动力电池最基本的要求; 燃料电池,指正负极本身不含活性物质,活性材料连续不断从外部加入,如氢燃料电池; 对于新能源汽车动力电池,我们主要关注化学电池中的二次电池和燃料电池,也就是有两条技术路线。一条是以锂电池为主要研究方向的二次电池,目前发展迅速可谓“炙手可热”;另一条是一直被寄予厚望的以氢燃料为主要研究方向的燃料电池, 氢燃料电池,目前与二次电池比起来,有一个很大的优势,就是可以在很快时间(五分钟左右)给电池加满燃料,而不是等上几个小时来充满电。氢燃料电池充入的是氢气,而最终产生水分,也没有废旧电池回收的问题,可以说是真正的新能源汽车,但由于氢的来源问题还未实现大规模量产和工业化应用、以及最重要的安全、储存等方面因素,目前发展还是很大的瓶颈,不如二次电池发展的成熟。

在二次电池中,就目前锂电池无论在能量密度,循环寿命和环保性能上都具有很大的优势,是目前动力电池的首选,动力电池技术成了关乎一台新能源车型性能的关键,因此很多车企纷纷押宝在新能源电池领域。目前市面上主流的新能源电动汽车电池种类大致归为铅酸电池、镍氢电池、钴酸锂、锰酸锂、磷酸铁锂以及三元锂(镍钴锰酸锂)等几大门类。今天知科君就带大家从目前市场上动力电池的主流技术路线。去研究研究关于动力电池中的各种门道,看看这些电池都有什么优缺点!哪种才是适合咱们家用的电池类型。 铅酸电池 优点:成本低、低温性较好,价比高 不足:能量密度低、比功率低、寿命特别短、体积大、安全性差 作为比较成熟的技术,因其成本较低,而且能够高倍率放电,性价比高、依然是可供大批量生产的电动车用电池、如电动自行车、摩托车、低速电动车及老年代步车。但是铅酸电池的比能量、比功率和能量密度及使用寿命都很低,以此为动力源的电动车不可能拥有良好的车速及较高的续航里程、因此一般只能用于低速车的使用。 铅酸图片 镍氢电池 优点:价格低廉、技术成熟、寿命耐用性长

原电池有关反应方程式

大哥您要的原电池!!! 一次电池 1、伏打电池:(负极—Zn、正极—Cu、电解液—H2SO4) 负极: Zn–2e-==Zn2+ (氧化反应) 正极: 2H++2e-==H2↑ (还原反应) 离子方程式 Zn + 2H+ == H2↑+ Zn2+ 2、铁碳电池:(负极—Fe、正极—C、电解液H2CO3 弱酸性) 负极: Fe–2e-==Fe2+ (氧化反应) 正极:2H++2e-==H2↑ (还原反应) 离子方程式 Fe+2H+==H2↑+Fe2+ (析氢腐蚀) 3、铁碳电池:(负极—Fe、正极—C、电解液中性或碱性) 负极: 2Fe–4e-==2Fe2+ (氧化反应) 正极:O2+2H2O+4e-==4 OH (还原反应) 化学方程式2Fe+O2+2H2O==2Fe(OH)2 (吸氧腐蚀) 4Fe(OH)2+O2+2H2O==4Fe(OH)3 2Fe(OH)3==Fe2O3 +3 H2O (铁锈的生成过程) 4.铝镍电池:(负极—Al、正极—Ni 电解液 NaCl溶液、O2) 负极: 4Al–12e-==4Al3+ (氧化反应) 正极:3O2+6H2O+12e-==12OH-(还原反应) 化学方程式 4Al+3O2+6H2O==4Al(OH)3 (海洋灯标电池) 5、普通锌锰干电池:(负极—Zn、正极—C 、电解液NH4Cl、MnO2的糊状物) 负极:Zn–2e-==Zn2+ (氧化反应) 正极:2MnO2+2H++2e-==Mn2O3+H2O (还原反应) 化学方程式 Zn+2NH4Cl+2MnO2=ZnCl2+Mn2O3+2NH3↑ 6、碱性锌锰干电池:(负极—Zn、正极—C、电解液KOH 、MnO2的糊状物)负极: Zn + 2OH– 2e-== Zn(OH)2 (氧化反应) 正极:2MnO2 + 2H2O + 2e-==2MnOOH +2 OH-(还原反应) 化学方程式 Zn +2MnO2 +2H2O == Zn(OH)2 + MnOOH 7、银锌电池:(负极—Zn、正极--Ag2O、电解液NaOH ) 负极:Zn+2OH––2e-== Zn(OH)2 (氧化反应) 正极:Ag2O + H2O + 2e-== 2Ag + 2 OH-(还原反应) 化学方程式 Zn + Ag2O + H2O == Zn(OH)2 + 2Ag 8、铝–空气–海水(负极--铝、正极--石墨、铂网等能导电的惰性材料、电解液--海水) 负极:4Al-12e-==4Al3+ (氧化反应) 正极:3O2+6H2O+12e-==12OH-(还原反应) 总反应式为: 4Al+3O2+6H2O===4Al(OH)3 (铂网增大与氧气的接触面) 9、镁---铝电池(负极--Al、正极--Mg 电解液KOH) 负极(Al): 2Al + 8 OH–- 6e- = 2AlO2–+4H2O (氧化反应) 正极(Mg): 6H2O + 6e- = 3H2↑+6OH–(还原反应) 化学方程式: 2Al + 2OH– + 2H2O = 2AlO2–+ 3H2 10、锂电池一型:(负极--金属锂、正极--石墨、电解液LiAlCl4 -SOCl2)

浅析磷酸铁锂电池的优点及缺点

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/e1646653.html,)浅析磷酸铁锂电池的优点及缺点 磷酸铁锂电池的全名是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池。 一、工作原理 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。 二、意义 金属交易市场,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)存储量较多。正极材料的价格也与这些金属的价格行情一致。因此,采用LiFePO4正极材料做成的锂离子电池应是挺便宜的。它的另一个特点是对环境环保无污染。 作为充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C 放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 三、结构与工作原理

LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li可以通过而电子e-不能通过,右边是由碳(石墨)组成的电池负极,由铜箔与电池的负极连接。电池的上下端之间是电池的电解质,电池由金属外壳密闭封装。 LiFePO4电池在充电时,正极中的锂离子Li通过聚合物隔膜向负极迁移;在放电过程中,负极中的锂离子Li通过隔膜向正极迁移。锂离子电池就是因锂离子在充放电时来回迁移而命名的。 四、主要性能 LiFePO4电池的标称电压是3.2V、终止充电电压是3.6V、终止放电压是2.0V。由于各个生产厂家采用的正、负极材料、电解质材料的质量及工艺不同,其性能上会有些差异。例如同一种型号(同一种封装的标准电池),其电池的容量有较大差别(10%~20%)。 这里要说明的是,不同工厂生产的磷酸铁锂动力电池在各项性能参数上会有一些差别;另外,有一些电池性能未列入,如电池内阻、自放电率、充放电温度等。 磷酸铁锂动力电池的容量有较大差别,可以分成三类:小型的零点几到几毫安时、中型的几十毫安时、大型的几百毫安时。不同类型电池的同类参数也有一些差异。 五、过放电到零电压试验: 采用STL18650(1100mAh)的磷酸铁锂动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。

原电池电极反应式的书写汇总-练习和答案与解析

高中常见的原电池、电解池电极反应式的书写练习 一、一次电池 1、伏打电池:(负极—Zn,正极—Cu,电解液—H2SO4) 负极:正极: 总反应离子方程式 Zn + 2H+ == H2↑+ Zn2+ 2、铁碳电池(析氢腐蚀):(负极—Fe,正极—C,电解液——酸性) 负极:正极: 总反应离子方程式 Fe+2H+==H2↑+Fe2+ # 3、铁碳电池(吸氧腐蚀):(负极—Fe,正极—C,电解液——中性或碱性) 负极:正极: 总反应化学方程式:2Fe+O2+2H2O==2Fe(OH)2 ; (铁锈的生成过程) 4.铝镍电池:(负极—Al,正极—Ni,电解液——NaCl溶液) 负极:正极: 总反应化学方程式: 4Al+3O2+6H2O==4Al(OH)3 (海洋灯标电池) 5、普通锌锰干电池:(负极——Zn,正极——碳棒,电解液——NH4Cl糊状物) > 负极:正极: 总反应化学方程式:Zn+2NH4Cl+2MnO2=ZnCl2+Mn2O3+2NH3+H2O 6、碱性锌锰干电池:(负极——Zn,正极——碳棒,电解液KOH糊状物) 负极:正极: 总反应化学方程式:Zn +2MnO2 +2H2O == Zn(OH)2 + MnO(OH) 7、银锌电池:(负极——Zn,正极--Ag2O,电解液NaOH ) 负极:正极: 总反应化学方程式: Zn + Ag2O == ZnO + 2Ag \ 8、镁铝电池:(负极--Al,正极--Mg,电解液KOH) 负极(Al):正极(Mg): 总反应化学方程式: 2Al + 2OH-+ 6H2O = 2【Al(OH)4】-+ 3H2↑ 9、高铁电池(负极--Zn,正极--碳,电解液KOH和K2FeO4)

锂电池的特点与特性

锂电池的特点与特性(聚合物) 根据锂离子电池所用电解质材料的不同,锂离子电池分为液态锂离子电池(Liquified Lithium-Ion Battery,简称为LIB)和聚合物锂离子电池(Polymer Lithium-Ion Battery, 简称为PLB)或塑料锂离子电池(Plastic Lithium Ion Batteries, 简称为PLB)。聚合物锂离子电池所用的正负极材料与液态锂离子都是相同的,正极材料分为钴酸锂、锰酸锂、三元材料和磷酸铁锂材料,负极为石墨,电池工作原理也基本一致。它们的主要区别在于电解质的不同,液态锂离子电池使用液体电解质,聚合物锂离子电池则以固体聚合物电解质来代替,这种聚合物可以是“干态”的,也可以是“胶态”的,目前大部分采用聚合物凝胶电解质。那聚合物锂电池的特性有哪些?下面和中美通用电池公司一起来了解下。 1、单体电池的工作电压高 聚合物锂电池的工作电压在3.6V,是镍镉和镍氢电池工作电压的三倍。 2、比能量高。 聚合物电池比能量目前已达140Wh/kg,是镍镉电池的3倍,镍氢电池的1.5倍。 3、自放电小,在放置很长时间后其容量损失也很小。 4、循环寿命长。 目前聚合物锂电池循环寿命已达1000次以上,在低放电深度下可达几万次,超过了其他几种二次电池。 5、重量轻 聚合物锂电池重量较同等容量规格的钢壳锂电池轻40%,较铝壳锂电池轻20%。 6、形状可定制 制造商不用局限于标准外形,能够经济地做成合适的大小。聚合物电池可根据客户的需求增加或减少电芯厚度,开发新的电芯型号,价格便宜,开模周期短,有的甚至可以根据手机形状量身定做,以充分利用电池外壳空间,提升电池容量。 7、内阻小 聚合物电芯的内阻较一般液态电芯小,目前国产聚合物电芯的内阻甚至可以做到35mΩ以下,极大的减低了电池的自耗电。

高中化学论文:原电池电极反应方程式的书写

原电池电极反应方程式的书写 原电池与其他的能源相比有许多的优点,如能量转换率高,供能稳定可靠;可制成各种形状大小,不同容量、电压的电池及电池组;使用方便、易于维护,是现代生产、生活、国防中大量使用的一种能源。正是由于这些原因,高考关于原电池的考题频频出现,电极反应方程式的书写更是考查的重点。 分析近年的高考试题,电极反应方程式的书写主要有两大类型:一是根据题给电池反应方程式书写;二是根据题意文字叙述书写。下面就结合2020年高考试题分别说明这两种情况下电极反应方程式的书写。 一、根据题给电池反应方程式书写 例1(07天津卷13)天津是我国研发和生产锂离子电池的重要基地。锂离子电池正极材料是含锂的二氧化钴(LiCoO2),充电时,LiCoO2中Li被氧化,Li+迁移并以原子形式嵌入电池负极材料碳(C6)中,以LiC6表示。电池反应为放电LiCoO2+C6,下列说法正确的是() CoO2+LiC6 充电 A.充电时,电池的负极反应为LiC6-e-=Li++C6 B.放电时,电池的正极反应为CoO2+Li++e-=LiCoO2 C.羧酸、醇等含活泼氢的有机物可用作锂离子电池的电解质 D.锂离子电池的比能量(单位质量释放的能量)低 解析:可充电电池放电时发生原电池反应,两个电极称为正、负极;充电时发生电解反应,两个电极称阴、阳极。 该充电电池放电时:CoO2+LiC6=LiCoO2+C6 ,B选项就是考查原电池电极反应方程式的书写。 首先分析元素化合价的变化(如果化合价确定较难,就要充分利用题给信息)根据题意:充电时,LiCoO2中Li被氧化,Li+迁移并以原子形式嵌入电池负极材料碳(C6)中,以LiC6表示。可知放电时CoO2中+4价的Co变为LiCoO2中+3价的Co,LiC6中0价的Li变为LiCoO2中+1价的Li 然后根据原电池负极发生氧化反应,正极发生还原反应的规律,写出两个电极的物质变化,但要注意物质的存在形式。如负极物质变化可表示如下:LiC6=Li+ 分析化合价的变化,此过程中要失去一个电子,可表示如下:LiC6-e-=Li+其次检查方程式左右两边电荷是否相等。上式中左右两边各带一个单位的正电荷。若不相等,就要选择合适的离子配平电荷,但这时要特别注意介质的影响。如酸性介质时,常选H+;而碱性介质时,常选OH-. 最后,还要检查是否符合质量守恒。 所以,负极的电极反应方程式就表示为:负极LiC6-e-=Li++ C6 将以上书写电极反应方程式的过程可归纳如下: 列物质,标得失(列出电极上的物质变化,根据价态变化标明电子得失) 选离子,配电荷(根据介质选择合适的离子,配平电荷,使符合电荷守恒) 巧用水,配个数(通常介质为水溶液,可选用水配平质量守恒)

锂离子电池三元正极材料的研究进展

锂离子电池三元正极材料的研究进展 2009年09月01日作者:丁楚雄/孟秋实/陈春华来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了锂离子电池正极材料层状三元过渡金属氧化物 Li-Ni-Co-Mn-O的研究进展,讨论了三元材料的结构特性与电化学反应特征,重点介绍了三元材料的制备方法和掺杂、表面修饰等改性手段,并分析了三元材料目前存在的问题和未来的研究重点。 关键词:锂离子电池;Li-Ni-Co-Mn-O;层状结构;制备方法;改性 Abstract: The research progress of the ternary transition metal oxides LiNi1-x-yCoxMnyO2 as layered cathode materials for lithium ion batteries is reviewed. The structure and electrochemical performances of the materials are discussed. Various synthesis methods, doping and surface-modification approaches are introduced in detail. Finally, the current main problems and further research trend of the materials are pointed out. Key words: lithium ion battery; cathode; layered structure; synthesis methods; modification 1、引言 锂离子电池因其电压高、能量密度高、循环寿命长、环境污染小等优点倍受青睐[1, 2],但随着电子信息技术的快速发展,对锂离子电池的性能也提出了更高的要求。正极材料作为目前锂离子电池中最关键的材料,它的发展也最值得关注。 目前常见的锂离子电池正极材料主要有层状结构的钴酸锂、镍酸锂,尖晶石结构的锰酸锂和橄榄石结构的磷酸铁锂。其中,钴酸锂(LiCoO2)制备工艺简单,充放电电压较高,循环性能优异而获得广泛应用。但是,因钴资源稀少、成本较高、环境污染较大和抗过充能力较差,其发展空间受到限制[3, 4]。镍酸锂(LiNiO2)比容量较大,但是制备时易生成非化学计量比的产物,结构稳定性和热稳定性差[5]。锰酸锂除了尖晶石结构的LiMn2O4外,还有层状结构的LiMnO2。其中层状LiMnO2比容量较大,但其属于热力学亚稳态,结构不稳定,存在Jahn-Teller效应而循环性能较差[6]。尖晶石结构LiMn2O4工艺简单,价格低廉,充放电电压高,对环境友好,安全性能优异,但比容量较低,高温下容量衰减较严重[7]。磷酸铁锂属于较新的正极材料,其安全性高、成本较低,但存在放电电

相关文档
相关文档 最新文档