文档库 最新最全的文档下载
当前位置:文档库 › 数学分析函数的连续性

数学分析函数的连续性

数学分析函数的连续性
数学分析函数的连续性

第四章 函数的连续性

第一节 连续性概念

1.按定义证明下列函数在其定义域内连续:

(1)x

x f 1)(=; (2)x x f =)(。 2.指出函数的间断点及类型: (1)=)(x f x x 1+

; (2)=)(x f x x sin ; (3)=)(x f ]cos [x ; (4)=)(x f x sgn ; (5)=)(x f )sgn(cos x ;

(6)=)(x f ???-为无理数为有理数x x x x ,,;(7)=)(x f ???

????+∞<<--≤≤--<<∞-+x x x x x x x 1,11sin )1(17,7

,71 3.延拓下列函数,使在 ),(+∞-∞上连续:

(1)=)(x f 283--x x ; (2)=)(x f 2cos 3x

x -; (3)=)(x f x

x 1cos 。

4.若f 在0x 点连续,则f ,2f 是否也在0x 连续?又若f 或2f 在I 上连续,那么f 在I 上是否连续?

5.设当0≠x 时,)()(x g x f ≡,而)0()0(g f ≠,试证f 与g 这两个函数中至多有一个在0=x 连续。

6.证明:设f 为区间I 上的单调函数,且I x ∈0为f 的间断点,则0x 必是f 的第一类间断点。

7.设函数f 只有可去间断点,定义)(lim )(y f x g x

y →=,证明g 为连续函数。 8.设f 为R 上的单调函数,定义)0()(+=x f x g ,证明函数g 在R 上每点都连续。

9.举出定义在]1,0[上符合下列要求的函数:

(1)在

31,21和4

1三点连续的函数; (2)只在31,21和41三点连续的函数;

(3)只在

),2,1(1 =n n

上间断的函数; (4)仅在0=x 右连续,其它点均不连续的函数。

第二节 连续函数的性质

1. 讨论复合函数g f 与f g 的连续性:

(1)=)(x f x sgn ,21)(x x g +=;

(2)=)(x f x sgn ,x x x g )1()(2

-=。

2.设g f ,在点0x 连续,证明:

(1)若)()(00x g x f >,则存在),(0δx U ,使在其内有)()(x g x f >;

(2)若在某)(00x U 内有)()(x g x f >,则)()(00x g x f ≥。

3.设g f ,在区间I 上连续,记)}(),(max {)(x g x f x F =,)}(),(min{)(x g x f x G =, 证明F 和G 也都在I 上连续。 4.设f 为R 上连续函数,常数0>c ,记?????>≤-<-=.

)(,,)(),(,)(,)(c x f c c x f x f c x f c x F 若若若

证明F 在R 上连续,提示:)}}(,min{,max {)x f c c x F -=(。

5.设x x f s i

n )(=,???>+≤-=0,0,)(x x x x x g ππ,证明复合函数g f 在0=x 连续,但g 在0

=x 不连续。 6.设f 在),[+∞a 上连续,且)(lim x f x +∞

→存在。证明:f 在),[+∞a 上有界。又问f 在),[+∞a 上必有最大值或最小值吗?

7.若对任何充分小的0>ε,f 在],[εε-+b a 上连续,能否由此推出f 在),(b a 内连续。

8.求极限:

(1)x x x tan )(lim 4

-→ππ

(2)1

121lim 21+--++→x x x x x 。 9.证明:若f 在],[b a 上连续,且对任何],[b a x ∈,0)(≠x f ,则f 在],[b a 上恒正或恒

负。

10.证明:任一实系数奇次方程至少有一个实根。

11.试用一致连续的定义证明:若g f ,都在区间I 上一致连续,则g f +也在I 上一致连续。

12.证明x x f =)(在),0[+∞上一致连续。

13.证明:2)(x x f =在],[b a 上一致连续,但在),(+∞-∞上不一致连续。

14.设函数f 在区间I 上满足利普希兹(Lipschitz )条件,即存在常数0>L ,使得对I 上

任意两点''',x x 都有≤-)()("

'x f x f "'x x L -,证明f 在I 上一致连续。 15.证明x sin 在),(+∞-∞上一致连续。

16.设函数f 满足第6题的条件,证明f 在),[+∞a 上一致连续。

17.设函数f 在]2,0[a 上连续,且)2()0(a f f =,证明:存在点],0[0a x ∈,

使得)()(00a x f x f +=。

18.设f 为],[b a 上的增函数,其值域为)](),([b f a f ,证明f 在],[b a 上连续。

19.设f 在],[b a 上连续,],[,,21b a x x x n ∈ 。证明:存在∈ξ],[b a ,使得

)]()()([1)(21n x f x f x f n

f +++= ξ 20.证明x x f cos )(=在),0[+∞上一致连续。

第三节 初等函数的极限

1.求下列极限:

(1))

1ln(15cos lim 20x x x e x x -+++→; (2))(lim x x x x x -+++∞→;

(3)]111111[lim 0x

x x x x x x +--+++→;

(4)+∞→x lim 1

+++x x

x x ; (5)0lim →x x x cot )sin 1(+。

2.设0lim >=∞→a a n n ,b b n n =∞→lim ,证明 b b n n a a n =∞→lim 。

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

高三数学Word版教案第78课时 函数的极限和连续性

高三数学Word版教案第课时函数的极限和连续性 课题:函数的极限和连续性 教学目标:了解函数极限的概念;掌握极限的四则运算法则;会求某些数列与函数的极限;了解函数连续的意义;理解闭区间上连续函数有最大值和最小值的性质 (一)主要知识及主要方法: 函数极限的定义: 当自变量取正值并且无限增大时,如果函数无限趋近于一个常数,就说当趋向于正无穷大时,函数的极限是,记作:,或者当时,;当自变量取负值并且绝对值无限增大时,如果函数无限趋近于一个常数,就说当趋向于负无穷大时,函数的极限是. 记作或者当当时, 如果且,那么就说当趋向于无穷大时,函数的极限是,记作:或者当时,. 常数函数: (),有. 存在,表示和都存在,且两者相等所以中的既有,又有的意义,而数列极限中的仅有的意义. 趋向于定值的函数极限概念:当自变量无限趋近于()时,如果函数无限趋近于一个常数,就说当趋向时,函数的极限是,记作.特别地,;. . 其中表示当从左侧趋近于时的左极限,

表示当从右侧趋近于时的右极限. 对于函数极限有如下的运算法则: 如果,,那么, , . 当是常数,是正整数时:, 这些法则对于的情况仍然适用. 函数在一点连续的定义: 如果函数在点处有定义,存在, 且,那么函数在点处连续. 函数在内连续的定义:如果函数在某一开区间内每一点处连续,就说函数在开区间内连续,或是开区间内的连续函数. 函数在上连续的定义:如果在开区间内连续,在左端点处有,在右端点处有就说函数在闭区间上连续,或是闭区间上的连续函数. 最大值:是闭区间上的连续函数,如果对于任意,≥,那么在点处有最大值. 最小值:是闭区间上的连续函数,如果对于任意,≤,那么在点处有最小值. 最大值最小值定理 如果是闭区间上的连续函数,那么在闭区间上有最大值和最小值. 极限问题的基本类型:分式型,主要看分子和分母的首项系数; 指数型(和型),通过变形使得各式有极限; 根式型(型),通过有理化变形使得各式有极限; 根的存在定理:若①函数在上连续,②,则方程至少有一根在区

数学分析·下定义及定理

第十二章 数项级数 1、级数的收敛性 定义1 给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 ???++???++n u u u 21 (1) 称为数项级数或无穷级数(也常简称级数),其中n u 称为数项级数(1)的通项. 数项级数(1)也常写作: ∑∞ =1 n n u 或简单写作 ∑n u . 数项级数(1)的前n 项之和,记为 n n k k n u u u u S +???++==∑=211 , (2) 称它为数项级数(1)的第n 个部分和,也简称部分和. 定义 2 若数项级数(1)的部分和数列{}n S 收敛于S (即S S n n =∞ →lim ),则称数项级 数(1)收敛,称S 为数项级数(1)的和,记作 ???++???++=n u u u S 21或∑=n u S . 若{}n S 是发散数列,则称数项级数(1)发散. 定理12.1(级数收敛的柯西准则)级数(1)收敛的充要条件是:任给正数ε,总存在正整数N ,使得当m >N 以及对任意的正整数,都有 p m m m u u u ++++???++21<ε. (6) 定理12.2 若级数∑n u 与 ∑n υ 都收敛,则对任意常数,,d c 级数 ()∑+n n d cu υ亦收 敛,且 ()∑∑∑+=+. n n n n d u c d cu υυ 定理12.3 去掉、增加或改变级数的有限个项并不改变级数的收敛性.

定理12.4 在收敛级数的项中任意加括号,即不改变级数的收敛性,也不改变级数的和。 正向级数 定理12.5 正项级数 ∑n u 收敛的充要条件:部分和数列{}n S 有界,即存在某个正数M , 对一切正整数n 有n S N 都有,n n u υ≤,则 (i )若级数 ∑n υ 收敛,则级数 ∑n u 也收敛; (ii )若级数∑n υ 发散,则级数 ∑n υ 也发散. 推论 设 ???++???++???++???++n n u u u υυυ2121, ()()43 是两个正项级数,若 , lim l u n n n =∞ →υ 则 (i )当+∞<

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

高考数学难点-函数的连续及其应用

难点33函数的连续及其应用 函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系. ●难点磁场 (★★★★)已知函数f (x )=?????≤<-≤≤-+-<)51( )1(log )11( )1()1( 32 x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究 [例1]已知函数f (x )=242+-x x ,(1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0; (3)对f (x )补充定义,使其是R 上的连续函数. 命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法. 知识依托:本题是分式函数,所以解答本题的闪光点是能准确画 出它的图象. 错解分析:第(3)问是本题的难点,考生通过自己对所学连续函数 定义的了解.应明确知道第(3)问是求的分数函数解析式. 技巧与方法:对分式化简变形,注意等价性,观察图象进行解答. 解:(1)当x +2≠0时,有x ≠-2 因此,函数的定义域是(-∞,-2)∪(-2,+∞) 当x ≠-2时,f (x )=2 42+-x x =x -2,其图象如上图 (2)由定义域知,函数f (x )的不连续点是x 0=-2. (3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 2 2-=-→-→x x f x x =-4.因此,将f (x )的表达式改写为f (x )=?? ???-=--≠+-2)( 4)2( 242x x x x 则函数f (x )在R 上是连续函数. [例2]求证:方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b . 命题意图:要判定方程f (x )=0是否有实根.即判定对应的连续函数y =f (x )的图象是否与x 轴有交点,因此根据连续函数的性质,只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可.本题主要考查这种解题方法. 知识依托:解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正. 错解分析:因为本题为超越方程,因而考生最易想到画图象观察,而忽视连续性的性质在解这类题目中的简便作用 .

(整理)函数的连续性及其应用

函数的连续性及其应用 函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系. ●难点磁场 (★★★★)已知函数f (x )=?????≤<-≤≤-+-<)51( )1(log )11( )1()1( 32 x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究 [例1]已知函数f (x )=2 42+-x x , (1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0; (3)对f (x )补充定义,使其是R 上的连续函数. 命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法. 知识依托:本题是分式函数,所以解答本题的闪光点是 能准确画出它的图象. 错解分析:第(3)问是本题的难点,考生通过自己对所学 连续函数定义的了解.应明确知道第(3)问是求的分数函数解析式. 技巧与方法:对分式化简变形,注意等价性,观察图象 进行解答. 解:(1)当x +2≠0时,有x ≠-2 因此,函数的定义域是(-∞,-2)∪(-2,+∞) 当x ≠-2时,f (x )=242+-x x =x -2, 其图象如上图 (2)由定义域知,函数f (x )的不连续点是x 0=-2. (3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 2 2-=-→-→x x f x x =- 4.

数学分析第一章

第一章 实数集与函数 §1 实数 Ⅰ.教学目的与要求 1.理解实数的概念,掌握实数的表示方法 2.了解实数的性质, 并在有关命题中正确地加以应用 3.理解绝对值的概念,掌握绝对值的性质,并在有关命题中正确地加以应用. Ⅱ.教学重点与难点 重点: 实数的定义及性质、绝对值与不等式. 难点: 实数的定义及其应用. Ⅲ.讲授内容 一 实数及其性质 实数的组成:实数由有理数与无理数两部分组成. 有理数的表示:有理数可用分数形式q p (p ?q 为整数,q ≠0)表示,也可用有限十进 小数或无限十进循环小数来表示. 无理数:无限十进不循环小数则称为无理数.有理数和无理数统称为实数. 有限小数(包括整数)也表示为无限小数.规定如下:对于正有限小数(包括整数)x,当x=a 0.a 1a 2n a 时,其中0,9≤≤i a i=1,2, n, na ,0≠0a 为非负整数,记x=a 0.a 1a 2-n a ( 1)?.999 9, 而当x=a 1为正整数时,则记x=(a 0—1).999 9…, 例如2.001记为2.000 999 9…;对于负有限小数(包括负整数)y ,则先将—y 表示为无限小数,再在所得无限小数之前加负号,例如—8记为—7.999 9…;又规定数0表示为0.000 0….于是,任何实数都可用一个确定的无限小数来表示. 我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系. 定义1 给定两个非负实数 x= 0a .a a 1n a , y=,.210 n b b b b 其中00,b a 为非负整数,k k b a ,(k=1,2,…)为整数,0≤a k ≤9,0≤b k ≤9.若有==k b a k k ,0,1,2,, 则称x 与y 相等,记为x=y ;若00b a >或存在非负整数L ,使得 a k =b k (k=0,1,2,…,L)而11++>l l b a ,则称x 大于y 或y 小于x ,分别记为x>y 或y-,则分别称x=y 与xx).另外,自然规定任何非负实数大于任何负实数. 定义2 : x =a 0.a 1a 2n a 为非负实数.称有理=n x a 0.1a a 2n a 为实数

函数的连续性在高等代数中的应用

函数的连续性在高等代数中的应用 摘要:数学分析和高等代数是大学数学专业非常重要的基础课程,这两门课程的一些问题如果只是从学科内部出发很难解决,而运用另一门学科的知识解决,问题就变得简单易行. 关键词:连续函数;行列式;矩阵;二次型 Applications of Continuity of Function in Advanced Algebra Zhou Yuxia (College of Mathematics and the Information Science, Northwest Normal University, Lanzhou 730000) Abstract: The mathematical analysis and advanced algebra are very important foundation courses of university mathematics special ?eld,some of the problems of both courses within the discipline, if only from the start are dif-?cult to resolve but used of the knowledge of other disciplines to solve, the problem becomes very easy. Key words: continuous function; matrix; determinant; quadratic form 本文记号说明:const: 常数;A T : 矩阵A的转置;A*:矩阵A的伴随矩阵; f(x) C(a,b):f(x)在(a,b)上连续.

高等数学课件:函数的连续性

高等数学课件:函数的连续性 1.7函数的连续性 教学目的:理解函数连续性的概念,会判断函数的连续性。掌握连续函数的四则运算,知道反函数及复合函数的连续性,掌握初等函数的连续性, 知道间断点的概念及分类,会判断其类型。 教学重点:函数连续性的概念, 连续函数的四则运算,知道反函数及复合函数的连续性. 教学内容: 1.6.1函数的连续性 1 函数在一点的连续性 xUx()xx定义1 设函数在点的某个邻域内有定义,自变量在点处有增量 yfx,()000 ,相应地函数值的增量 ,x ,,,,,yfxxfx()() 00 xx如果,就称函数fx()在点处连续,称为函数fx()的连续点。 lim0,,y00,,x0 x函数fx()在点处连续还可以描述如下。 0 xUx()设函数yfx,()在点的某个邻域内有定义,如果,就称函数 lim()()fxfx,000xx,0 xfx()在点处连续。 0 左连续及右连续的概念。 xlim()()fxfx,lim()()fxfx,如果,称函数fx()在点处左连续;如果,称函000,,xx,xx,00

x数fx()lim()lim()fxfx,在点处右连续。由于lim()fx存在的充要条件是,因此,根0,,xx,xxxx,,000 xx据函数连续的定义有下述结论:若函数yfx,()在点的某个邻域内有定义,则它在点处00 x连续的充分必要条件是在点处左连续且右连续。 0 2 区间上的连续函数 如果函数在开区间上每一点都连续,我们称函数在开区间内连续,如果函数开区间内连续,在区间的左端点右连续,右端点左连续,就称函数在闭区间上连续。 yx,sin(,),,,,例1 证明在内连续。 x,,,,,,x(,)证明,当有增量时,对应的函数值的增量,x ,,xx,,,,,,,,,yxxxxsin()sin2sincos ,,22,, ,,xx,x,,sin,由于, cos1x,,,,222,, ,,,xxx,,所以 02sincos2,,,,,,,yxx,,222,, 45 xx当时,由夹逼准则得,因此在点处连续,由于的任 ,,y0yx,sin,,x0 意性,在内连续。 yx,sin(,),,,, xya,例2 证明()在内连续。 (,),,,,a,0a,1 x证明,当有增量时,对应的函数值的增量,,,,,,x(,),x xxxxx,,,,,,,,yaaaa(1) x由于时,,因此 axa,1lnx,0 xxx, limlim(1)lim(ln)0,,,,,,yaaaxa000,,,,,,xxx xxya,ya,xx因此,在点处连续,由于的任意性,在内连续。 (,),,,, 1.6.2 函数的间断点

数学分析学习方法与心得体会

数学分析学习方法 数学分析是基础课、基础课学不好,不可能学好其他专业课。工欲善其事,必先利其器。这门课就是器。学好它对计算科学专业的学生都是极为重要的。这里,就学好这门课的学习方法提一点建议供同学们参考。 1.提高学习数学的兴趣 首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必须的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。用兴趣推动学习,而不是用任务观点强迫自己被动地学习数学。 2.知难而进,迂回式学习 首先要培养学习数学分析的兴趣和积极性,还要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学分析时尤为重要。 中学数学和大学数学,由于理论体系的截然不同,使得同学们会在学习该课程开始阶段遇到不小的麻烦,这时就一定得坚持住,能够知难而进,继续跟随老师学习。

数学分析定义、定理、推理一览表

定义1 给定两个非负实数 其中00,a b 为非负整数,(),1,2,k k a b k =L 为整数,若有 则称x 与y 相等,记为x y =. 定义2 定义3 绝对值得一些性质 定义4 区间和邻域 定义5 有界的定义 定义6 确界的定义 定理1 定理一 确界原理 定理2 推广的确界原理 任一非空数集必有上、下确界(正常的或非正常的). 函数的概念 定义1 函数的四则运算 初等函数 定义2 几个重要的等式(不等式) 数列极限 定义1 收敛数列的性质 定义1 设{}n a 为数列,{}k n 为正整数集N +的无限子集,且12k n n n <<<

无穷小量阶的比较(定义见下页末) 函数极限存在的条件 两个重要极限 常见的几个等价无穷小量 函数的连续 区间上的连续函数 连续函数的性质 导数和微分 定义2单侧导数 导函数 导数的几何意义 求导法则 反函数的导数 复合函数的导数 基本求导法则 基本初等函数导数公式 参变量函数的导数

高阶导数 定义略 微分 定义1 定理5.10 可微函数 若函数在定义区间上每一点都可微,则称函 数为可微函数. 微分的运算法则 高阶微分

数学分析课程简介

导言数学分析课程简介 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 sin、实数定义等问题引入. 32 2.极限 ( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值 函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算, 利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究 一些非初等函数. 数学分析基本上是连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累 时期. 3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时 期: 三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的 ), 后面的学习就会容易一些; 只要

在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法: 1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材: [1]华东师范大学数学系编,数学分析(第三版),高等教育出版社,2001; [2] 陈纪修於崇华等编,《数学分析》(第二版)高等教育出版社,2001 [3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003; [4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999; [5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003. 2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。带星号的内容略讲或删去,相应的内容作为选修课将在数学分析方法课开设.

关于高等数学函数的极限与连续习题及答案

关于高等数学函数的极 限与连续习题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所 以()x f 与()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x

高三数学教案:第四节函数的连续性及极限的

第四节 函数的连续性及极限的应用 1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义, lim x x →f (x )存在,且 lim x x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续. 2..函数f (x )在点x =x 0处连续必须满足下面三个条件. (1)函数f (x )在点x =x 0处有定义; (2)0 lim x x →f (x )存在; (3)0 lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点的函数值. 如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算: ①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)?g(x),)()(x g x f (g(x)≠0)也在 点x 0处连续。 ②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。 4.函数f (x )在(a ,b )内连续的定义: 如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数. f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a ,b )内的每一点处连续,在a 点处右极限存在等于f (a ),在b 点处左极限存在等于f (b ). 5.函数f (x )在[a ,b ]上连续的定义: 如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有 + →a x lim f (x )=f (a ),在右端点x =b 处有 - →b x lim f (x )=f (b ),就说函数f (x )在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上 的连续函数. 6. 最大值最小值定理 如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值 7.特别注意:函数f(x)在x=x 0处连续与函数f(x)在x=x 0处有极限的联系与区别。“连续必有极限,有极限未必连续。” 二、问题讨论 ●点击双基 1.f (x )在x =x 0处连续是f (x )在x =x 0处有定义的_________条件. A.充分不必要 B.必要不充分

数学分析9.1定积分概念

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1 i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

数学分析答案第四版

数学分析答案第四版 【篇一:数学分析(4)复习提纲(全部版)】 >第一部分实数理论 1 实数的完备性公理 一、实数的定义 在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。 (1)域公理: (2)全序公理: 则或a中有最大元而a?中无最小元,或a中无最大元而a?中有最小元。 评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。 二、实数的连续性(完备性)公理 实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。主要有如下几个公理: 确界原理: 单调有界定理: 区间套定理: 有限覆盖定理:(heine-borel) 聚点定理:(weierstrass)

致密性定理:(bolzano-weierstrass) 柯西收敛准则:(cauchy) 习题1 证明dedekind分割原理和确界原理的等价性。 习题2 用区间套定理证明有限覆盖定理。 习题3 用有限覆盖定理证明聚点定理。 评注以上定理哪些能够推广到欧氏空间r?如何叙述? n 2 闭区间上连续函数的性质 有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4 最值定理:上册p169;下册下册p102,th16.8 介值定理和零点存在定理:上册p169;下册p103,th16.10 一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4 用有限覆盖定理证明有界性定理 习题5 用致密性定理证明一致连续性定理 3 数列的上(下)极限 三种等价定义:(1)确界定义;(2)聚点定义;(3)??n定义 评注确界定义易于理解;聚点定义易于计算;??n定义易于理论证明 习题6 用区间套定理证明有界数列最大(小)聚点的存在性。 (p173) 习题7 证明上面三种定义的等价性。 第二部分级数理论 1 数项级数

数学分析知识点总结

第一章实数集与函数 §1实数 授课章节:第一章实数集与函数——§1实数 教学目的:使学生掌握实数的基本性质. 教学重点: (1)理解并熟练运用实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具) 教学难点:实数集的概念及其应用. 教学方法:讲授.(部分内容自学) 教学程序: 引 言 上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始. [问题]为什么从“实数”开始. 答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质. 一、实数及其性质 1、实数 (,q p q p ?≠??????有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示. {}|R x x =为实数--全体实数的集合. [问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: 01(1)9999n n a a --0,a 则记x =表示为无限小数,现在所得的小数之前加负号.

例: 2.001 2.0009999→; 利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小? 2、两实数大小的比较 1)定义1给定两个非负实数01.n x a a a =,01.n y b b b =. 其中00,a b 为 非负整数,,k k a b (1,2,k =为整数,09,0 k k a b ≤≤≤≤.若有,0,1,2 k k a b k ==,则称x 与y 相等,记为x y =;若00a b >或存在非负整数l ,使得,0,1,2,,k k a b k l ==,而11l l a b ++>,则称x 大于y 或y 小于x ,分别记为x y >或y x <.对于负实数x 、y ,若按上述规定分别有x y -=-或x y ->-,则分别称为x y =与x y <(或y x >). 规定:任何非负实数大于任何负实数. 2)实数比较大小的等价条件(通过有限小数来比较). 定义2(不足近似与过剩近似):01 .n x a a a =为非负实数,称有理数01.n n x a a a =为实数x 的n 位不足近似;110 n n n x x =+称为实数x 的n 位过剩近似,0,1,2,n =. 对于负实数01 .n x a a a =-,其n 位不足近似011.10n n n x a a a =--;n 位过剩近似01.n n x a a a =-. 注:实数x 的不足近似n x 当n 增大时不减,即有012x x x ≤≤≤ ; 过剩近似n x 当n 增大时不增,即有012x x x ≥≥≥. 命题:记01.n x a a a =,01.n y b b b =为两个实数,则x y >的等价条件是:存在非负整数n ,使n n x y >(其中n x 为x 的n 位不足近似,n y 为y 的n 位过剩近似). 命题应用 例1.设,x y 为实数,x y <,证明存在有理数r ,满足x r y <<. 3 2.99992.001 2.0099993 2.9999 →-→--→-; ;

数学分析试卷及答案6套精品

【关键字】分析、满足 数学分析-1样题(一) 一. (8分)用数列极限的N ε- 定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分) 叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使lim )0x ax b →+∞ -=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1 样题(二) 一. (10分) 设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

高考数学复习备考知识点汇总及解题技巧第七节-极限

高考数学复习备考知识点汇总及解题技巧 第七节-极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1?=a ,则n n n n a )1(lim lim ?=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在

⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim ②b a b a n n n ?=?∞ →)(lim ③)0(lim ≠=∞→b b a b a n n n 特别地,如果C 是常数,那么 Ca a C a C n n n n n =?=?∞ →∞→∞→lim lim )(lim . ⑷数列极限的应用: 求无穷数列的各项和,特别地,当1 q 时,无穷等比数列的各项和为)1(11 q q a S ?=. (化循环小数为分数方法同上式) 注:并不是每一个无穷数列都有极限. 3. 函数极限; ⑴当自变量x 无限趋近于常数0x (但不等于0x )时,如果函数)(x f 无限趋进于一个常数a ,就是说当x 趋近于0x 时,函数)(x f 的极限为a .记作a x f x x =→)(lim 0 或当0x x →时,a x f →)(. 注:当0x x →时,)(x f 是否存在极限与)(x f 在0x 处是否定义无关,因为0x x →并不要求0x x =.(当然,)(x f 在0x 是否有定义也与)(x f 在0x 处是否存在极限无关.?函数)(x f 在0x 有定义是)(lim 0 x f x x →存在的既不充分又不必要条件.) 如???+??=1 111)( x x x x x P 在1=x 处无定义,但)(lim 1x P x →存在,因为在1=x 处左右极限均等于零. ⑵函数极限的四则运算法则: 如果b x g a x f x x x x ==→→)(lim ,)(lim 0 0,那么 ①b a x g x f x x ±=±→))()((lim 0 ②b a x g x f x x ?=?→))()((lim 0 ③)0()()(lim 0≠=→b b a x g x f x x 特别地,如果C 是常数,那么 )(lim ))((lim 0 0x f C x f C x x x x →→=?. n x x n x x x f x f )](lim [)]([lim 0 0→→=(+∈N n ) 注:①各个函数的极限都应存在. ②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. ⑶几个常用极限:

相关文档
相关文档 最新文档