文档库 最新最全的文档下载
当前位置:文档库 › 图像融合技术原理

图像融合技术原理

图像融合技术原理
图像融合技术原理

图像融合技术原理

1引言

图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。该技术有基本的体系,主要包括的内容有:图像预处理,图像融合算法,图像融合评价,融合结果。图像融合系统的层次划分为:像素层融合、特征层融合、决策层融合,目前绝大多数融合算法研究都集中在这一层次上。图像预处理技术主要包括两个方面的任务:图像去噪、图像配准;图像融合算法从最初简单的融合算法(加权、最大值法)发展为复杂多分辨率的算法(金字塔、小波法等);图像融合的性能评价主要有两个大的方面:主观评价及客观评价,由于在实际中不存在理想图源,所以一般采用较易实现的评价标准,结合主观视觉给出最合理的评价。

2图像融合设计

2.1总体设计流程

系统的总体设计流程如图1所示:

图1多源图像融合系统流程示意图

根据待融合图像自身的特点,图像传感器类型以及图像融合的目标,系统总体设计流程如下:

①对图像进行预处理,如去除噪声、图像配准等;

②确定合适的图像融合算法;

③对图像融合的结果进行评估;

④如果评估结果不满意,则调整参数,重新进行图像融合,转到步骤3;

⑤输出图像融合结果。

2.2 图像的预处理

在图像融合前,对输入图像进行特征抽取、分割和匹配前所进行的处理。图像预处理的主要目的是消除图像中无关的信息,恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据,从而改进图像融合的效果。预处理过程一般有数字化,平滑,复原和增强等步骤。根据所选用的图像传感器类型及图像融合的目标,对待融合图像进行预处理。主要包括以下几个方面:

①数字化

一幅原始照片的灰度值是空间变量(位置的连续值)的连续函数。在M*N点阵上对照片灰度采样并加以量化(归为2b个灰度等级之一),可以得到计算机能够处理的数字图像。为了使数字图像能重建原来的图像,对M、N和b值的大小就有一定的要求。在接收装置的空和灰度分辨能力范围内,M、N和b的数值越大,重建图像的质量就越好。

当取样周期等于或小于原始图像中最小细节周期的一半时,重建图像的频谱等于原始图像的频谱,因此重建像与原始图像可以完全相同。由于M、N和b三者的乘积决定一幅图像在计算机中的存储量,因此在存储量一定的条件下需要根据图像的不同性质选择合适的M、N和b值,以获取最好的处理效果。

②平滑

消除图像中随机噪声的技术。对平滑技术的基本要求是在消去噪声的同时不使图像轮廓或线条变得模糊不清。常用的平滑方法有中值法、局部求平均法和k 近邻平均法。局部区域大小可以是固定的,也可以是逐点随灰度值大小变化的。

③复原

校正各种原因所造成的图像退化,使重建或估计得到的图像尽可能逼近于理想无退化的像场。在实际应用中常常发生图像退化现象。例如大气流的扰动,光学系统的像差,相机和物体的相对运动都会使遥感图像发生退化。基本的复原技术是把获取的退化图像g(x,y)看成是退化函数h(x,y)和理想图像f(x,y)的卷积。它们的傅里叶变换存在关系G(u,v=H(u,讨F(u,v)。

根据退化机理确定退化函数后,就可从此关系式求出F(u,v),再用傅里叶反变换求出f(x,y)。图像复原的代数方法是以最小二乘法最佳准则为基础。寻求一估值,使优度准则函数值最小。

这种方法比较简单,可推导出最小二乘法维纳滤波器。当不存在噪声时,维纳滤波器成为理想的反向滤波器。

④增强

对图像中的信息有选择地加强和抑制,以改善图像的视觉效果,或将图像转变为更适合于机器处理的形式,以便于数据抽取或识别。一个图像增强系统可以通过高通滤波器来突出图像的轮廓线。图像增强技术有多种方法,反差展宽、对

数变换、密度分层和直方图均衡等都可用于改变图像灰调和突出细节。实际应用时往往要用不同的方法,反复进行试验才能达到满意的效果。

⑤图像去噪

为提高融合图像的质量,根据各图像传感器采集到的图像的特点,进行图像去噪。传统的图像去噪方法是空域滤波,常见的空域滤波器有均值滤波器、中值滤波器等。由于这些滤波方法以平滑数据的方式去除噪声,通常也会模糊数据本身。

近年来出现了几种更有效的去噪方法,在有效去除噪声的同时可以更好地保持图像的边缘信息。一些方法借鉴了偏微分方程的思想,还有一些方法利用了小波域隐马尔可夫模型。

选择去噪方法的思想是根据图像自身的特点,研究合适的图像去噪方法以及合适的参数进行图像去噪,能有利于后续处理。

⑥图像配准

图像配准是在进行图像融合之前,非常重要的一个步骤。

图像配准是对来自同一场景的两幅或多幅图像,在空间位置上匹配其中对应于相同物理位置的像素点,这些图像可能来自不同时间、或不同的视点位置、或不同的传感器。对于图像融合而言,特别是像素级的融合方法要求待融合的图像已经配准。

一般的图像配准方式可分为以下几个步骤:

1)特征提取。即决定用什么样的特征来匹配图像。常用的特征可以是图像本身,还有图像边缘、角点和区域等。需要考虑采用什么样的方法以及利用图像的哪些属性提取特征。

2)相似性度量。相似性度量是度量图像之间的相似程度,它同特征选择紧密相关。常用的相似性度量有相关系数,交互信息量,欧式距离等等。

3)搜索空间。搜索空间是指存在什么类型的变换可以匹配两幅图像,它依赖于具体的应用领域,主要可以分为全局变换和局部变换。

4)搜索策略。搜索策略是指如何在搜索空间中找到最佳的变换。常用的搜索策略有松弛迭代方法、动态规划方法等。

图像配准的常用方法有:基于图像灰度的配准方法;基于图像特征的配准方法;基于区域互信息的特征级图像配准方法[2] 。

图像配准应尽可能利用采集设备,争取在采集设备处达到较高的配准精度;然后根据待融合图像的特点,研究图像配准的技术与方法。

2.3图像融合分层

图像融合系统的层次划分:像素层融合,特征层融合,决策层融合。

①像素层图像融合:如图2所示,像素级图像融合直接在采集到的原始图像数据上进行融合,然后基于融合的图像进行分析和处理,这种融合的优点是融合中心可以获得尽可能多的现场数据,提供其它融合层次所不能提供的细微信息,精度比较高。融合之前首先要对图像进行预处理的工作,包括降噪、几何校正、辐射校正、空间上精确配准等,如果参加融合的图像具有不同的分辨率,则需要在图像相应区域作映射处理。

图2像素层图像融合示意图

②特征层图像融合:如图3所示,特征级图像融合是从各个传感器图像中提取特征信息,然后综合分析和处理的过程。提取的特征信息是像素信息的充分表示量或充分统计量,典型的特征信息包括边缘、形状、轮廓、角、纹理、相似亮度区域等。它属于中间层次的图像融合,为决策级融合做准备。特征级融合对传感器对准要求不如像素级严格,因此图像传感器可分布于不同平台上。特征级图像融合的优点在于实现了可观的信息压缩,变于实时处理。

图3特征层图像融合示意图

③决策层图像融:如图2.4所示,决策级图像融合是对来自多幅图像的信息进行逻辑推理或统计推理的过程。这种方法对图像传感器的配准要求最低,当信号表示形式差异很大或者涉及图像的不同区域时,决策级融合也许是融合多图像

的唯一方法。决策级融合是图像最高层次的融合。

图2.4 决策层图像融合示意图

各个层次上的图像融合算法具有各自的优缺点。研究和应用最多的是像数级图像融合,目前已提出的绝大多数的图像融合算法均属于该层次上的融合。图像融合狭义上指的就是像数级图像融合。本文研究的也正是像素级图像融合。

2.4融合规则

本节简要介绍多尺度融合方案中的另一个环节——融合规则。源图像的边缘、纹理等重要信息均包含在高频分解系数中,因此融合规则主要针对高频系数实施;对低频系数通常采用加权平均的方法融合。融合规则问题可以描述为:对源图像A 和B 的某一组高频分解系数A c 和B c 应用一定的规则合并得到融合后的

系数F c 。

3基于像素的图像融合

该融合规则分为均值法和最大值法:像素绝对值取大(Choose-Max,CM )规则是最简单、直接的融合规则。高频分解系数对应输入图像的边缘、纹理等细节信息,而像素绝对值是对这种细节信息强度的最直观的度量。

CM 规则正是基于这一点对系数进行合并。CM 规则可描述为:

(,)(,)(,)

(,)(,)A A B F B c m n c m n c m n c m n c m n ?≥?=???当其他 (18)

CM 规则具有简单、易实现、运算速度快等优点;但是仅仅依赖单独的像素点作为细节信息的强度度量是不稳定的;尤其当MSD 缺乏移变性时,分解系数的能量会随源图像的平移、旋转等规则变化发生剧烈的不规则的变化,导致融合后的图像缺乏一致性;另外CM 规则传递并放大源图像中的噪声和死点。

3.1基于区域的图像融合

基于区域的图像融合规则分为:基于区域的最大值法,基于区域能量的图像

融合。

为克服CM 规则的不稳定性,人们提出了基于面积(或窗口)的融合规则。细节信息强度的度量不再仅仅依赖某一点,而是由该点周围固定面积内的多个点按照一定比例决定。基于面积的规则通常采用固定大小的窗口对系数图像进行滤波,滤波后的像素值作为该点细节信息强度的度量。常用的基于面积的规则有Burt 等[4]提出的加权平均规则(Weighted Average, WA)规则,以及Li 等[5]提出的窗口基验证(Window Based Verification, WBV)规则。

① Burts 方法的具体步骤:

第一步:在系数图像(,)c m n ?(?=A,B)中,计算以(m ,n)点为中心周围窗口区域内的能量(或方差)作为该点细节信息强度的度量(,)S m n ?;

第二步,计算A c 和B c 之间局部的、归一化的互相关系数(,)AB M m n ; 第二步,根据互相关系数大小,采取不同的融合方式:当(,)AB M m n a ≤时(a 一般去0.85) ,说明源图像系数间相关性比较低,选取局部方差大的系数为融合后系数比较合理,即

(,)(,)(,)(,)(,)

A A

B F B c m n S m n S m n c m n c m n ≥?=??当其他 (19) 当(,)AB M m n a >时,说明系数间相关性比较大,采用加权平均的方法更为合

理,即 11(,)(,)(,)[(,)(,)](,)F A B c m n w m n c m n E m n w m n c m n =+- (20)

其中(,)E m n 为单位矩阵,权系数1(,)w m n 由下式确定:

11(,)11()(,)(,)221(,)1(,)11()221AB A B AB M m n S m n S m n a w m n M m n a -?+≥??-?-?-?-?当其他

(21) ② Lis 方法的具体步骤:

第一步,在系数图像(,)c m n ?(?=A,B)中,选取点周围某窗口区域内的最大值作为该点细节信息的强度度量(,)S m n ?;

第二步,基于(,)A S m n 和(,)B S m n 生成一个二元的融合决策图:

1(,)(,)

(,)0A B S m n S m n Map m n >?=??当其他 (22)

第三步,利用周围像素值对决策图进行一致性检验。统计决策图点周围窗口区域内“1”值的个数:

1(,)(,)u U v V

N m n Map m u n v ∈∈=++∑∑ (23)

式2.23中U 和V 分别为窗口模板行号和列号组成的集合,若1N 值大于半数

G (2

UV G =)则新的决策图在该点取1,即'(,)Map m n =1;若小于半数(说明0值大于半数)则'(,)Map m n =0;

第四步,根据新的决策图,确定融合后的系数表示:

''(,)(,)(,)(,)(,)F A B c m n Map m n c m n Map m n c m n =+ (24)

4灰度调整技术

在图像融合的过程中,可以根据输入图像的特征,选择对融合过程加入灰度调整技术。例如,由于传感器采集得到的数据存在差异,当我们对图像序列进行融合时,如果相邻的两幅图像灰度差异很大,用灰度调整技术进行处理后,使整个亮度差异不大,视觉观察更连续。本文中介绍两种灰度调整技术,即:

① 亮度—对比度传递技术;

② 直方图规格化技术。

4.1 亮度—对比度传递技术

设M 为输入图像,F 为调整后的输出图像,该技术的核心算子为:

()()_msref F M mean mean ref ms

=?-+ (25) 式25中mean 代表M 的均值,_mean ref 是参考图像的均值,ms 为M 的均值方差,msref 为参考图像的均值方差。

均值可以反映图像的平均亮度,方差可以表示图像的对比度,因此经过映射变换后,参考图像的亮度和对比度特征就会传递到灰度融合图像中,这也是本文称其为亮度-对比度传递(Luminance_contrast_adjust_transfer )技术的原因。这样,只要选取一幅合适的灰度参考图像,就可以用式25所示的方法来改善灰度融合图像的效果(也就是改善彩色融合图像强度分量的亮度和对比度),从而提高最终彩色融合图像的质量。LCAT 融合方法的融合效果与灰度参考图像的亮度和对比度有关,参考图像亮度过高(或过低)、对比度过低都会造成最终彩色融合图像细节的丢失。由式25可以看出,亮度-对比度传递过程中只用到参考图像的一阶(均值)和二阶(方差)统计量,这就表明,在实际的融合系统中没有必要存储一幅真正的图像,只要存储参考图像的两个特征参数,即均值和方差就足够了。所以在设计中,采用给定的参考均值和方差来处理,使处理过程得以简化,处理速度更快。

4.2直方图规格化

定义:生成具有指定直方图的图像的方法称为直方图规格化。这样方法的原理为:

在归一化[0 ,1]的连续区间中,令r 和z 分别表示输入图像与输出图像的灰度级。输入灰度级的概率密度函数()r p r ,输出灰度级的概率密度函数()z p z 。有直方图均衡化可得变换:

0()()r r s T r p w dw ==? (26-1) 0()()z

z H z p w dw s ==? (26-2) 由于在规格化处理中,要得到的灰度级为z 的输出图像,具有指定的概率密度函数()z p z 。由26式变换可得关系式:

11()[()]z H s H T r --== (27) 在式26-1中,有输入图像可以得到()T r ,所以27式中的关键时如何确定1H -,这样就能使输出图像得到变换后的灰度级z 。

5图像融合评价

在前面的小节中,已经介绍了多种图像融合方法,对相同的图像处理后,不同的融合方法可以得到不同的融合效果,如何评价融合的结果,是图像融合的一个重要步骤。对图像观察者而言,图像的含义主要包括两个方面,一个是图像的逼真度,另一个是图像的可理解性。现有的图像融合性能评价的方式可分为:融合质量主观评价和融合质量客观评价。

主要的客观评价方法:由于不存在理想的标准参考图像,因而我们采用基于融合图像自身统计特性以及反映融合图像与源图像之间关系的性能指标客观地评价图像的融合效果。

① 图像均值(Average Value A V )

均值的大小表示了图像像素值的平均大小,它是属于统计特性的评价指标。图像的均值定义为:

11

001(,)m n i j M A i j m n --===?∑∑ (28)

式28中(,)A i j 表示图像在该点的像素值;m 和n 分别为图像的宽度和高度;M 为均值。

② 标准偏差(Standard Deviation )

标准偏差是由均值间接求得的,图像的标准偏差反映了图像像素值的分布情况。标准偏差的定义为:

SD = (29) 标准差越大,灰度级分布越分散,目视效果越好。

③ 信息熵(Entropy )

信息熵是衡量图像信息丰富程度的一个重要指标,融合图像的熵越大,说明融合图像的信息量增加得越多,图像的融合效果越好。其定义如下:

120log ()L i i i H P P -==-∑

(30)

其中,L 表示融合图像F 的总灰度级数,行数和列数为m n ?,i P 表示灰度值

为i 的像素数目i N 与图像总像素数N 之比,即:/i i P N N =,

其反映了图像中灰度值为i 的像素的概率分布,可看作是图像的归一化直方图。

④ 平均梯度(Average Gradient )

平均梯度也称为清晰度,它反映了图像中的微小细节反差与纹理变化特征,同时也反映了图像的清晰度,其定义为:

101m n i j g m n --==?=? (31)

式31中x I ?与y I ?分别为x 与y 方向上的差分。一般来说,图像的平均梯度越大,表示图像越清晰度,融合效果也越好。

⑤ 相关系数(Correlation Coefficient )

相关系数反映了两幅图像的相关程度,两幅图像的相关系数越接近于1,表明图像的接近度越好,其定义为:

[((,))((,))](,)A i j A B i j B C A B -?-=∑ (32) 式32中(,)A i j 和(,)B i j 分别为两幅图像的灰度值,A 和B 分别为其均值。在实验中,假设B 为融合的结果,A 为参考图像,若将B 与理想的标准参考图像进行比较,很容易客观反映融合结果的好坏。但是,在实际中,很难存在这样的理想的标准参考图像,所以在实验中,本文选择了输入的可见光图像作为参考图像A 。因此,就需要通过客观指标,结合主观分析来进行判断。

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

数字图像处理课程题目和要求教材

数字图像处理课程内容、要求 题目一:图像处理软件 1、设计内容及要求: (1)、独立设计方案,实现对图像的十五种以上处理(比如:底片化效果、灰度增强、图像复原、浮雕效果、木刻效果等等)。 (2)、参考photoshop软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与其他软件实现的效果进行比较、分析。总结设计过程所遇到的问题。 2、参考方案(所有参考方案若无特殊说明,均以matlab为例说明): (1)实现图像处理的基本操作 学习使用matlab图像处理工具箱,利用imread()语句读入图像,例如 image=imread(flower.jpg),对图像进行显示(如imshow(image)),以及直方图计算和显示。 (2)图像处理算法的实现与显示 针对课程中学习的图像处理内容,实现至少十五种图像处理功能,例如模糊、锐化、对比度增强、复原操作。改变图像处理的参数,查看处理结果的变化。自己设计要解决的问题,例如引入噪声,去噪;引入运动模糊、聚焦模糊等,对图像进行复原。 (3)参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视功能多少而定;参考matlab软件中GUI设计,学习软件界面的设计。

题目二:数字水印 1、设计内容及要求: 为保护数字图像作品的知识产权,采用数字水印技术嵌入水印图像于作品中,同时尽可能不影响作品的可用性,在作品版权发生争执时,通过提取水印信息确认作品版权。通常情况下,水印图像大小要远小于载体图像,嵌入水印后的图像可能遇到噪声、有损压缩、滤波等方面的攻击。因此,评价水印算法的原则就是水印的隐藏性和抗攻击性。根据这一要求,设计水印算法。 (1)、查阅文献、了解数字水印的基本概念。 (2)、深入理解一种简单的数字水印嵌入与提取方法。 (3)、能够显示水印嵌入前后的载体图像。 (4)、能够显示嵌入与提取的水印。 (5)、选择一种以上的攻击方法,测试水印算法的鲁棒性等性能。 (6)、设计软件界面 2、参考方案 (1)对水印图像进行编码置乱(可采用伪随机码,提高水印图像的隐蔽性); (2) 对图像进行子图像分解(如8*8),对子块分别进行DCT变换; (3) 对DCT系数按照zig-zag排序进行排列,选择一种频系数,对该种频系数相邻 的系数进行水印嵌入 (4) 低通滤波检验水印算法的抗攻击性。 (5) 设计数字水印的软件界面。

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

图像处理技术原理及其在生活中的应用探讨

图像处理技术原理及其在生活中的应用探讨 摘要在社会生活实践中,图像处理技术获得了广泛的应用。这种技术之所以可以得到广泛应用,与其极强的功能所分不开的。在计算机算法不断改善的过程中,图像处理技术的发展前景是非常广阔的。笔者对图像处理技术的原理进行了分析,并其对在生活中的应用进行了探究[1]。 关键词图像处理技术原理;生活;应用 1 图像处理技术的原理分析 所谓的图像处理技术,就是通过计算机技术以及相关的技术来对图像进行处理,从而使图像更好地为我们所利用的一种技术。在这个过程中,需要运用到几个技术要点。第一个就是使图像进行转换,从而得到计算机容易识别的矩阵,这种矩阵被称为是“数字矩阵”。这样得到的矩阵更容易被计算机所存储。第二就是通过多种算法来实现对计算机所存储的图像进行有关处理,其中用到的常用算法就有基于人眼视觉特性的阈值算法、具有去噪功能的图像增强算法等。第三就是在进行了一些技术性的处理,然后获取图像信息。通过中国知网、万方数据库等平台所查阅到的图像类型相关资料可知,图像的类型主要可以分为两大类,一类是数字化图像,另一类是模拟图像。前者不仅处理便捷,而且精度较高,能够适应现代社会的发展要求,后者在现实生活中的应用更为常见,比如在相机图片中的应用。模拟图像输出较为简单,灵活性和精度不太高,因此其使用的限制性较大[2]。 2 图像处理技术原理在生活中的应用探讨 2.1 图像处理技术原理在安全防范中的应用 在安全防范监控系统不断发展的过程中,系统从模拟向数字的方向发展,这跟人们要求图像的精准度越来越高有关。在安防领域,图像处理技术如果能够得到很好的利用,那么就可以实现对图像的去噪声处理,对失真的图像进行矫正处理。在公安部门破案的过程中,有时会根据犯罪现场的指纹特征来对视频采集参数进行调节,比如色彩补偿就是一种很好的调節方法,这样方便公安部门更快地破案。尽管现在的监控系统越来越完善,但是如果遇到暴风暴雨和雾霾或者光线较弱的天气,那么监控得到的视频图像往往还是比较模糊的,对于这些模糊的图像,可以通过图像增强技术进行一些处理,从而为后续的公安部门调查和取证提供便利,模糊图像处理技术这时就排上了用场[3]。 2.2 图像处理技术原理在娱乐休闲领域的应用 在娱乐休闲领域,图像处理技术原理主要的应用场合就是平时我们利用手机或数码相机摄影以及电影特效制作等场合。在数码相机出现以前,图像只能使用传统相机通过胶片的形式保存。在数码相机出现之后,人们就可以短时间内对相

数字图像技术在医学领域的应用

图像处理技术在医学领域的应用 摘要:介绍了图像处理技术在医学领域的发展,阐释了图像分割、图像融合和图像重建技术在医学领域的发展。提出了图像处理技术发展所面临的相关问题及其发展方向。 关键词:图像处理技术图像分割图像融合图像重建 图像处理技术是20世纪60年代发展起来的一门新兴学科。近几十年来,由于大规模集成电路和计算机科学技术的迅猛发展,离散数学理论的创立和完善,以及军事、医学和工业等方面需求的不断增长,图像处理的理论和方法的更加完善,已经在宇宙探测、遥感、生物医学、工农业生产、军事、公安、办公自动化、视频和多媒体系统等领域得到了广泛的应用,成为计算机科学、信息科学、生物学、医学等学科研究的热点。 图像处理在医学界的应用非常广泛,无论是病理研究还是临床诊断都大量采用图像处理技术。它因直观、无创伤、方便安全等优点而受到人们青睐。图像处理首先应用于细胞分类、染色体分类和放射图像分析等,20世纪70年代图像处理在医学上的应用有了重大突破,1972年X射线断层扫描CT得到实用:1977年白血球自动分类仪问世:1980实现了CT的立体重建。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理,医学图像在临床诊断、教学科研等方面有重要的作用。目前

的医学图像主要包括CT(计算机断层扫描)图像、MRI(核磁共振)图像、B超扫描图像、数字X光机图像、X射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但由于医学成像设备的成像机理、获取条件和显示设备等因素的限制,使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度,突出重点内容,抑制次要内容,来适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 什么是医学图像处理 医学图像处理就是利用计算机系统对生物学图像进行的具有临床医学意义的处理和分析。 医学图像处理是一个和复杂的过程。医学图像作为一种信息源,也和其他的有关病人的信息一样,是医生做出判断时的依据。医生在判断医学图像时,要把图像与其他解剖学、生物学和病理学等知识作对照,还要根据经验来捕捉图像中的有重要意义的细节和特征。所以要从一副或几副医学图像中判断出是否有异常,或是属于什么疾病,如果不是训练有素的医生,是难以发现图像上的异常的。所以对医学领域的图像处理显得尤为重要。 图像处理技术及其在医学领域的应用 (一)图像分割

Camera 图像处理原理分析- 亮度及曝光控制

Camera 图像处理原理分析- 亮度及曝光控制 1.1亮度感应及曝光 1.1.1感光宽容度 从最明亮到最黑暗,假设人眼能够看到一定的范围,那么胶片(或CCD等电子感光器件)所能表现的远比人眼看到的范围小的多,而这个有限的范围就是感光宽容度。 人眼的感光宽容度比胶片要高很多,而胶片的感光宽容度要比数码相机的ccd高出很多!了解这个概念之后,我们就不难了解,为什么在逆光的条件下,人眼能看清背光的建筑物以及耀眼的天空云彩。而一旦拍摄出来,要么就是云彩颜色绚烂而建筑物变成了黑糊糊的剪影,要么就是建筑物色彩细节清楚而原本美丽的云彩却成了白色的一片 再看人眼的结构,有瞳孔可以控制通光量,有杆状感光细胞和椎状感光细胞以适应不同的光强,可见即使人眼有着很高的感光宽容度,依然有亮度调节系统,以适应光强变化。 那么对于camera sensor来说,正确的曝光就更为重要了! 1.1.2自动曝光和18%灰 对于sensor来说,又是如何来判断曝光是否正确呢?很标准的做法就是在YUV空间计算当前图像的Y值的均值。调节各种曝光参数设定(自动或手动),使得该均值落在一个目标值附近的时候,就认为得到了正确的曝光。 那么如何确定这个Y的均值,以及如何调整参数使得sensor能够将当前图像的亮度调整到这个范围呢? 这就涉及到一个概念18%灰,一般认为室内室外的景物,在通常的情况下,其平均的反光系数大约为18%,而色彩均值,如前所述,可以认为是一种中灰的色调。这样,可以通过对反光率为18%的灰板拍摄,调整曝光参数,使其颜色接近为中等亮度的灰色(Y值为128)。然后,对于通常的景物,就能自动的得到正确的曝光了。 当然这种自动判断曝光参数的AE功能不是万能的,对于反光率偏离通常均值的场景,比如雪景,夜景等,用这种方法就无法得到正确的曝光量了。所以在sensor的软件处理模块中,通常还会提供曝光级别的设定功能,强制改变自动曝光的判断标准。比如改变预期的亮度均值等。 1.1.3曝光级别设定 在多数数码相机和拍照手机上都可以看到曝光级别设定的功能,如前所述,这种设定实际上是在自动曝光的基础上给用户提供一定的曝光控制能力,强制改变camera sensor的曝光判断标准,获得用户想要的效果。

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

数字图像融合技术

数字图像融合技术 摘要:数字图像技术在遥感、医学、军事、刑事执法等多个领域已经广为普及,图像资料在作为信息情报载体的地位越来越重要。数字图像融合技术将多个传感器在同一时间或不同时间获取的对于某个对象的图像加以综合,产生新的有关该物体的图像信息。 关键词: 图像,图像融合 1、引言 数字图像处理技术起源于20世纪20年代,由于当时技术手段的限制,图像处理科学与技术的发展相当缓慢。直到第三代计算机问世后,借助于现代科技发展所带来的技术突破数字图像处理才开始迅速发展并得到普遍应用。同时,图像处理的许多技术也日趋成熟。数字图像融合技术正是图像处理技术发展的热点之一。对它的研究也呈上升之势而应用的领域遍及遥感、医学、军事、刑事执法等多个领域。然而由于图像融合技术本身的发展比较短,图像处理界对它的研究并未完全形成一个完整的体系,往往主要是针对单一融合方法的研究较多,相应的至今尚没有几部对图像融合技术系统论述的著作。 2、数字图像融合技术概述 数字图像融合是信息融合的一种。而信息融合的一般定义是:利用计算机技术对按时序获得的若干传感器的观测信息在一定准则下加以自动分析,优化综合以完成所需的决策和估计任务而进行的信息处理过程。按这个定义,各个传感器是信息融合的基础,多传感器网络是信息传输通道,多元信息是信息融合的加工对象,协调优化和综合处理是信息融合的核心。 多传感器信息融合实际上是对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中各种传感器提供的信息可能是具有不同的特征:时变或非时变,实时或非实时的,快变的或缓变的,模糊的或确定的,精确的或不完整的,可靠的或非可靠的,相互支持或互补的,也可能是相互矛盾的或冲突的。信息融合的目标是基于各个传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。这是最佳协同作用的结果,它的最终目的是利用多个传感器共同或联合操作的优势,来提高整个传感器系统的有效性。 图像融合,主要是指将多个传感器在同一时间或不同时间获取的对于某个对象的图像加以综合,产生新的有关该物体的图像信息。也就是通过一定的算法将多个图像数据结合在一起生成一个新的影像。用形象的说法来做个比喻,对于人来说要充分了解外部某一对象的状况,通常是通过眼睛、耳朵、鼻子等多个感觉器官来获取对方信息,然后经过大脑的综合、分析得出相关结论,在完成这一过程

图像融合

图像融合 实验目的 1.熟悉图像融合的意义和用途,理解图像融合的原理; 2.掌握图像融合的一般方法; 3.掌握运用MATLAB软件进行图像融合的操作。 实验原理 图像融合(Image Fusion)技术是指将多源信道所采集到的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成同一图像以供观察或进一步处理。 高效的图像融合方法可以根据需要综合处理多源通道的信息,从而有效地提高了图像信息的利用率、系统对目标探测识别地可靠性及系统的自动化程度。其目的是将单一传感器的多波段信息或不同类传感器所提供的信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,以增强影像中信息透明度,改善解译的精度、可靠性以及使用率,以形成对目标的清晰、完整、准确的信息描述。 这诸多方面的优点使得图像融合在医学、遥感、计算机视觉、气象预报及军事目标识别等方面的应用潜力得到充分认识、尤其在计算机视觉方面,图像融合被认为是克服目前某些难点的技术方向;在航天、航空多种运载平台上,各种遥感器所获得的大量光谱遥感图像(其中分辨率差别、灰度等级差别可能很大)的复合融合,为信息的高效提取提供了良好的处理手段,取得明显效益。 一般情况下,图像融合由低到高分为三个层次:数据级融合、特征级融合、决策级融合。数据级融合也称像素级融合,是指直接对传感器采集来得数据进行处理而获得融合图像的过程,它是高层次图像融合的基础,也是目前图像融合研究的重点之一。这种融合的优点是保持尽可能多得现场原始数据,提供其它融合层次所不能提供的细微信息。 图像融合最简单的理解就是两个(或多个)图像间的相加运算。这一技术广泛

应用于多频谱图像理解和医学图像处理等领域。主要分为空域和频域相加。 一、应用MATLAB软件进行两幅图像的融合的主要方法有: 1.图像直接融合; 2.图像傅立叶变换融合; 3.图像小波变换融合。 图像融合的MATLAB程序如下: (1)调入、显示两幅图像的程序语句 load A; X1=X;map1=map; load B; X2=X;map2=map; %打开图像 subplot(1,2,1) image(X1),colormap(map1); title(‘图像map1’) subplot(1,2,2) image(X2),colormap(map2); title(‘图像map2’) %显示两幅图像 (2)两幅图像直接融合的程序语句 figure,subplot(1,3,1) image((X1+X2)/2),colormap(map2); %在空域内直接融合 title(‘两图像直接相加融合’) %显示融合后的图像,并命名为“两图像直接相加融合” (3)两幅图像傅立叶变换融合的程序语句 F1=fft2(X1); F2=fft2(X2); %分别计算两幅图像的快速傅立叶变换

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

数字图像处理简答题及答案..

数字图像处理简答题及答案 简答题 1、数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。 2、什么是图像识别与理解? 3、简述数字图像处理的至少3种主要研究内容。 4、简述数字图像处理的至少4种应用。 5、简述图像几何变换与图像变换的区别。 6、图像的数字化包含哪些步骤?简述这些步骤。 7、图像量化时,如果量化级比较小会出现什么现象?为什么? 8、简述二值图像与彩色图像的区别。 9、简述二值图像与灰度图像的区别。 10、简述灰度图像与彩色图像的区别。 11、简述直角坐标系中图像旋转的过程。 12、如何解决直角坐标系中图像旋转过程中产生的图像空穴问题? 13、举例说明使用邻近行插值法进行空穴填充的过程。 14、举例说明使用均值插值法进行空穴填充的过程。 15、均值滤波器对高斯噪声的滤波效果如何?试分析其中的原因。 16、简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。 17、中值滤波器对椒盐噪声的滤波效果如何?试分析其中的原因。 18、使用中值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?

19、使用均值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象? 20、写出腐蚀运算的处理过程。 21、写出膨胀运算的处理过程。 22、为什么YUV表色系适用于彩色电视的颜色表示? 23、简述白平衡方法的主要原理。 24、YUV表色系的优点是什么? 25、请简述快速傅里叶变换的原理。 26、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的高通滤波中的应用原理。 27、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的低通滤波中的应用原理。 28、小波变换在图像处理中有着广泛的应用,请简述其在图像的压缩中的应用原理。 29、什么是图像的无损压缩?给出2种无损压缩算法。 2、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01 e=11 a=10 b=001 c=0001 d=0000。若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用霍夫曼编码有所提高? 31、DCT变换编码的主要思想是什么? 32、简述DCT变换编码的主要过程。 33、什么是一维行程编码?简述其与二维行程编码的主要区别。 34、什么是二维行程编码?简述其与一维行程编码的主要区别。 35、简述一维行程编码和二维行程编码的异同。 36、压缩编码算法很多,为什么还要采用混合压缩编码?请举例说明。 37、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01 e=11 a=10 b=001 c=0001 d=0000。若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用行程编码有所提高? 38、连续图像和数字图像如何相互转换?

像素级图像融合技术在军事领域应用研究

像素级图像融合技术在军事领域应用研究 史玉龙、李林、侯海婷 摘要像素级图像融合是在基础层面上进行的图像融合,它能够提供其它层次上的融合处理所不具有的更丰富、更精确、更可靠的细节信息,有利于图像的进一步分析、处理与理解,它在整个图像融合技术中是最为复杂、实施难度最大的融合处理技术。本文分析了像素级多源图像融合技术的主要研究内容,阐述了像素级多源图像融合方法及其在军事领域的应用,进而对其未来发展方向进行了展望。 关键字像素级图像融合;图像处理;发展与军事应用 1 引言 在现代战争中,信息主导权是影响战略全局的关键因素,现代信息系统通向智能化的重要一环是其感知系统必须包括能够获取足够信息的多种类型的传感器。各种传感器的信息具有不同的特征,每种传感器仅能给出目标和环境的部分或某个侧面的信息。而多传感器数据融合的基本原理就是充分利用各个传感器资源,通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在空间或时间上的冗余或互补信息依据某种准则进行组合,以获得被测对象的一致性解释或描述,使该信息系统由此而获得比它的各组成部分的子集所构成的系统更优越的性能。 图像融合就是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理,以获取对同一场景的更为准确、更为全面、更为可靠的图像描述。图像融合的目的是充分利用多个待融合源图像中包含的冗余信息和互补信息,融合后的图像应该更适合于人类视觉感知或计算机后续处理。 2 像素级图像融合技术概述 2.1 像素级图像融合概念 图像融合技术是一种先进的综合多个源图像信息的图像处理技术。所谓多源图像融合是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理。图像是二维信号,图像融合技术是多源信息融合技术的一个重要分支,因此,图像融合与多传感器信息融合具有共同的优点。通过图像融合可以强化图像中的有用信息、增加图像理解的可靠性、获得更为精确的结果,使系统变得更加实用。同时,使系统具有良好的鲁棒性,例如,可以增加置信度、减少模

图像处理斜切原理

在photoshop的图像变换中有斜切这个功能,可以将图像进行任意方向的缩放,并且还具有透视效果。我们要完全模拟这个功能现在几乎是不可能的。所以我们降低难度:不考虑透视,也不考虑斜方向的缩放。事实上,每个点进行移动也涉及大量函数,实现困难,但是与图像处理并不是很相关。我们主要领悟一下斜切浅层次的思想。其实他是图像缩放的一个升华。 那么下面我简单给出进行一个点移动的斜切方法 package { import flash.display.Bitmap; import flash.display.BitmapData; import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import imgChange.*; public class Cant extends Sprite { public function Cant() { stage.scaleMode = StageScaleMode.NO_SCALE; stage.align=StageAlign.TOP_LEFT; [Embed(source="死神.jpg")] var LL:Class;Number var srcBitmap:Bitmap = new LL() as Bitmap; var percent:Number=0.6; var destBitmap:Bitmap=cantProcess(srcBitmap,percent); addChild(destBitmap); } //此方法为矩形ABCD,B点沿A点方向斜切,percent为移动的长度占宽度的百分比 public function cantProcess(srcBitmap:Bitmap,percent:Number):Bitmap { var srcData:BitmapData =srcBitmap.bitmapData; var srcW:Number=srcBitmap.width; var srcH:Number=srcBitmap.height; var destBMP:Bitmap = null; var destData:BitmapData = new BitmapData(srcW,srcH); var tan:Number=srcW*percent/srcH; for(var j:int=0;j

MATLAB数字图像处理技术

MATLAB 数字图像处理技术 4 MATLAB 图像增强 4.1 原理、方法及体系结构 三个阶段:图像预处理、特征抽取阶段、识别分析阶段。 目的:改善图像的视觉效果,提高图像成分的清晰度;是图像变得有利于计算机处理。 方法:空间域增强方法、频域增强方法。 体系: 图像增强:空间域、频率域、彩色增强 空间域:像素点处理(图像灰度变换、直方图修正(中值滤波、均值滤波))、领域处理(图像平滑滤波、图像锐化滤波) 频率域:低通滤波、高通滤波、同态滤波 彩色处理:真彩色处理、伪彩色处理(灰度分层法、灰度变换法、频域伪彩色) 4.2 对比度增强 线性变换:(,)[(,)]N n g x y f x y m n M m -= -+-。其中功能是把函数的灰度值(,)f x y 从 范围[m,M]变为[n,N]。 非线性变换:分为对数变换和Gamma 变换。前者表达式为(,)log[(,)1]g x y c f x y =+, 其中c 为常数。后者表达式为r f cr =,r 为CCD 图像传感器或胶片等的入射光的强度,为 常数,灰度与光强成正比,则有1 ()r f g kr k c ==,k 为常数通常为1,1/r 取0.4~0.8。 我们可以用一个函数imadjust 函数来实现: J=imadjust(I); J=imadjust(I,[low_in;high_in],[low_out;high_out]); J=imadjust(I,[low_in;high_in],[low_out;high_out],gamma)。 其中灰度范围用归一化灰度值,范围[0,1]。整个图像的[low_in;high_in]可以用函数stretch 函数来获得。 MATLAB image toolbox5.4还提供一个手动调节的控制面板,调用函数imconstrast 。 4.3 空域变换增强 分为基于像素点和基于模板的两类方法。 像素选择:pixval 和impixel 。用法如下: Pixval(‘on/off ’);pixval ;pixval(fig,option); [C,R,P]=impixel(X,MAP)。 说明:MAP 仅仅当是索引图的时候采用此参数。C 为像素的颜色,R,P 为像素的坐标。Pixval 可以得到更多的像素信息,impixel 可以返回指定像素的颜色值。 强度描述图:improfile ,用以描述图像一条线段或多条线段的强度值。格式:

多传感器图像融合技术综述

收稿日期:2002203217 作者简介:毛士艺(1935-),男,浙江黄岩人,教授,100083,北京. 多传感器图像融合技术综述 毛士艺 赵 巍 (北京航空航天大学电子工程系) 摘 要:对国内外多传感器图像融合技术的发展状况进行了介绍,描述了 图像融合的主要步骤,概括了目前主要图像融合方法的基本原理,并对各种方法的性能进行了定性分析.给出了评价图像融合效果的标准和方法,指出了图像融合技术的发展方向. 关 键 词:图像处理;图像合成;传感器;图像融合 中图分类号:T N 911.73文献标识码:A 文章编号:100125965(2002)0520512207 近20年,随着传感器技术和计算机计算能力的提高,多传感器图像融合技术的应用越来越广泛.在军事领域,以多传感器图像融合为核心内容的战场感知技术已成为现代战争中最具影响力的军事高科技.20世纪90年代,美国海军在SS N 2 691(孟菲斯)潜艇上安装了第1套图像融合样机,可使操纵手在最佳位置上直接观察到各传感器的全部图像[1],[2].1998年1月7日《防务系统月刊》电子版报道,美国国防部已授予BTG 公司2项合同,其中一项就是美国空军的图像融合设计合同,此系统能给司令部一级的指挥机构和网络提供比较稳定的战场图像.在遥感领域,大量遥感图像的融合为更方便、更全面地认识环境和自然资源提供了可能[3]~[5],其成果广泛应用于大地测绘、植被分类与农作物生长势态评估、天气预报、自然灾害检测等方面.1999年10月4日,由我国和巴西联合研制的“资源一号”卫星发射升空,卫星上安装了我国自行研制的CC D 相机和红外多光谱扫描仪,这两种航天遥感器之间可进行图像融合,大大扩展了卫星的遥感应用范围.在医学成像领域,CT 、MR 和PET 图像的融合提高了计算机辅助诊 断能力[6].2001年11月25日~30日在美国芝加哥召开了每年一度的RS NA 北美放射学会年会,在会议上GE 公司医疗系统部展销了其产品Dis 2covery LS.Discovery LS 是GE 公司于2001年6月 刚推出的最新PET/CT ,是世界上最好的PET 与最高档的多排螺旋CT 的一个完美结合,具有单体PET 不能比拟的优势.它可以完成能量衰减校正、 分子代谢影像(PET )与形态解剖影像(CT )的同机 图像融合,使检查时间成倍地降低.在网络安全领域,多尺度图像融合技术可将任意的图像水印添加到载体图像中,以确保信息安全[7]. 在各个应用领域的需求牵引下,各国学者对多传感器图像融合技术的研究也越来越重视.在多传感器信息融合领域中,图像融合是应用最为广泛,发表文献最多的一个方向.从文献[8]可看出,在参与统计的信息融合文章中,信号层的信息融合文章占53%.同时,我们做了这样一个调查,在Ei C om pendexWeb 数据库中用“image fusion ”作为关键词,检索从1980年到2001年摘要中出现这一词组的文章数目.1980年至1984年,这方面的文章只有4篇;1995年至1999年增加到603篇;2000年和2001年两年就有299篇.从中可以看出国际学术界对图像融合技术的重视程度与日俱增. 为了使国内同行对图像融合技术有一个较为全面的了解,本文在参考国内外文献的基础上,对目前常用的图像融合技术进行了概括和评述.文章首先介绍了图像融合研究的基本内容,将图像融合的概念界定到像素级;接着描述了各种图像融合技术的基本原理,对它们的优缺点进行了定性分析,给出了评价图像融合技术的方法. 1 多传感器图像融合技术研究内容 多传感器图像融合属于多传感器信息融合的范畴,是指将不同传感器获得的同一景物的图像   2002年10月第28卷第5期北京航空航天大学学报 Journal of Beijing University of Aeronautics and Astronautics October 2002V ol.28 N o 15

相关文档
相关文档 最新文档