文档库 最新最全的文档下载
当前位置:文档库 › 同济大学高等数学上第七版教学大纲(64学时)

同济大学高等数学上第七版教学大纲(64学时)

同济大学高等数学上第七版教学大纲(64学时)
同济大学高等数学上第七版教学大纲(64学时)

福建警察学院

《高等数学一》课程教学大纲

课程名称:高等数学一

课程编号:

学分:4

适用对象:

一、课程的地位、教学目标和基本要求

(一)课程地位

高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。

(二)教学目标

通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。

(三)基本要求

1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。

2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。

二、教学内容与要求

第一章函数与极限

【教学目的】

通过本章学习

1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分

解,掌握基本初等函数的性质及其图形,理解初等函数的概念。

2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。

3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与

左、右极限之间的关系,了解函数极限的性质。

4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。

5、掌握极限运算法则。

6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极

限的方法。

7、掌握无穷小的比较方法,会用等价无穷小求极限。

8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

9、了解连续函数的运算和初等函数的连续性,

10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),

并会应用这些性质。

【教学重点与难点】

本章重点是求函数极限的方法(极限运算法则、两个重要极限、无穷小的比较、初等函数的连续性)。难点是数列、函数极限的证明方法。

【教学内容】

第一节映射与函数

一、映射

1.映射概念

2.逆映射与复合映射

二、函数

1.函数的概念

2.函数的几种特性

3.反函数与复合函数

4.函数的运算

5.初等函数

第二节数列的极限

一、数列极限的定义

二、收敛数列的性质

第三节函数的极限

一、函数极限的定义

1.自变量趋于有限值时函数的极限

2.自变量趋于无穷大时函数的极限

二、函数数列的性质

第四节无穷小与无穷大

一、无穷小

二、无穷大

第五节极限运算法则

第六节极限存在准则两个重要极限

一、准则一:夹逼准则

二、第一个重要极限

三、准则二:单调有界数列必有极限

四、第二个重要极限

第七节无穷小的比较

一、高阶无穷小、低阶无穷小、同阶无穷小、k阶无穷小、等价无穷小的概念

二、等价无穷小在求极限中的应用

第八节函数的连续性与间断点

一、函数的连续性

二、函数的间断点

第九节连续函数的运算与初等函数的连续性

一、连续函数的和、差、积、商的连续性

二、反函数与复合函数的连续性

三、初等函数的连续性

第十节闭区间上连续函数的性质

一、有界性与最大值最小值定理

二、零点定理与介值定理

【教学建议】教学条件使用多媒体教学,本章教学内容与高中知识联系紧密,可采取指导自学法。

第二章导数与微分

【教学目的】

通过本章学习

1、理解导数的定义,掌握用导数的定义求导数的方法,理解可导与连续的关系,

会利用导数的几何意义求平面曲线的切线方程和法线方程,会求分段函数的导数。

2、掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导

数公式。

3、了解高阶导数的概念,会求某些简单函数的n阶导数。

4、掌握隐函数和由参数方程确定的函数的求导法(一、二阶导数)阶、掌握对数

求导法。

5、理解微分的定义,掌握微分公式和运算法则,了解一阶微分形式的不变性、掌

握微分在近似计算中的应用。

6、掌握一元函数的极限存在、连续、可导、可微四者关系

【教学重点与难点】本章教学重点是:应用导数的定义求导、复合函数的求导法则、隐函数和由参数方程确定的函数的求导法、对数求导法、微分在近似计算中的应用导数的应用。难点是导数的定义和极限存在、连续、可导、可微四者关系。【教学内容】

第一节导数概念

一、引例

1.直线运动的速度

2.切线问题

二、导数的定义

1.函数在一点处的导数与导函数

2.求导数举例

3.单侧导数

三、导数的几何意义

四、函数可导性与连续性的关系

第二节函数的求导法则

一、函数的和、差、积、商的求导法则

二、反函数的求导法则

三、复合函数的求导法则

四、基本求导法则与导数公式

第三节高阶导数

第四节隐函数及由参数方程所确定的函数的导数

一、隐函数的导数

二、由参数方程所确定的函数的导数

三、对数求导法

第四节函数的微分

一、微分的定义

二、微分的几何意义

三、基本初等函数的微分公式与微分运算法则

四、微分在近似计算中的应用

1.函数的近似计算

【教学建议】教学条件使用多媒体教学,本章教学方法要注重例题分析和习题讲解。

第三章微分中值定理与导数的应用

【教学目的】

通过本章学习

1、理解并应用罗尔定理和拉格朗日中值定理,了解柯西中值定理,理解三个定理

的区别和联系。

2、掌握用洛必达法则求未定式极限的方法。

3、掌握用导数判断函数的单调性的方法,掌握用二阶导数判断曲线的凹凸性和拐

点的方法。

4、理解函数极值的概念和极值点和驻点之间的关系,掌握用导数求极值、最值的

方法,掌握最值在实际问题中的简单应用。

5、掌握函数水平、铅直和倾斜渐近线的求法,会利用导数和极限描绘函数的图形。【教学重点与难点】本章教学重点是:罗尔定理和拉格朗日中值定理的应用、应

用洛必达法则求未定式极限、函数极值和最值的求法、最值在实际问题中的应用。难点是最值在实际问题中的应用。

【教学内容】

第一节微分中值定理

一、罗尔定理

二、拉格朗日中值定理

三、柯西中值定理

第二节洛必达法则

第三节泰勒公式

第四节函数的单调性与曲线的凹凸性

一、函数单调性的判定法

二、曲线的凹凸性与拐点

第五节函数的极值与最大值最小值

一、函数的极值及其求法

二、最大值最小值问题

第六节函数图形的描绘

【教学建议】教学条件使用多媒体教学,本章教学方法要注重例题分析、习题讲解和数形结合。

第四章不定积分

【教学目的】

通过本章学习

1、理解原函数和不定积分的概念,掌握基本积分表,掌握不定积分的性质。

2、掌握换元积分法(第一换元法、第二换元法)。

3、掌握分部积分法。

4、掌握有理函数的积分。

5、了解积分表的使用。

【教学重点与难点】本章教学重点是:换元积分法和分部积分法。难点是有理函数的积分。

【教学内容】

第一节不定积分的概念与性质

一、原函数与不定积分的概念

二、基本积分表

三、不定积分的性质

第二节换元积分法

一、第一类换元法

二、第二类换元法

第三节分部积分法

第四节有理函数的积分

一、有理函数的积分

二、可化为有理函数的积分举例

第五节积分表的使用

【教学建议】教学条件使用多媒体教学,本章教学方法上要重点分析例题,并行比较几种积分方法的区别与联系。

第五章定积分

【教学目的】

通过本章学习

1、理解定积分的概念,掌握利用定积分的定义计算定积分的方法,掌握定积分的

性质,了解定积分的近似计算方法。

2、理解积分上限函数的概念,及其求导定理,掌握牛顿-莱布尼兹公式。

3、掌握定积分的换元积分法与分部积分法。

4、了解无穷限的反常积分和无界函数的反常积分的概念并会求反常积分。

【教学重点与难点】

本章重点是利用定积分的定义计算定积分、牛顿-莱布尼兹公式、定积分的换元积

分法与分部积分法。难点是换元法和分部积分法的使用。

【教学内容】

第一节定积分的概念与性质

一、定积分问题举例

1.曲边梯形的面积

2.变速直线运动的路程

二、定积分的定义

三、定积分的近似计算

四、定积分的性质

第二节微积分基本公式

一、变速直线运动中位置函数与速度函数之间的联系

二、积分上限函数及其导数

三、牛顿-莱布尼兹公式

第三节定积分的换元法和分部积分法

一、定积分的换元法

二、定积分的分部积分法

第四节反常积分

一、无穷限的反常积分

二、无界函数的反常积分

【教学建议】教学条件使用多媒体教学,本章教学方法上要注重例题分析、定积分与不定积分计算方法上的区别和联系。

第六章定积分的应用

【教学目的】

通过本章学习

1、理解定积分的元素法的基本思想。

2、掌握应用定积分表达和计算一些几何量(平面图形的面积、旋转体的体积、平

行截面面积为已知的立体体积、平面曲线的弧长)。

【教学重点与难点】

本章重点是定积分在几何上的应用。难点是元素法的应用。

【教学内容】

第一节定积分的元素法

第二节定积分在几何上的应用

一、平面图形的面积

1.直角坐标情形

2.极坐标情形

二、体积

1.旋转体的体积

2.平行截面面积为已知的立体的体积

三、平面曲线的弧长

【教学建议】教学条件使用多媒体教学,本章教学方法上要注重例题分析、习题讲解和数形结合。

三、学时分配

实验实训

合计序号内容理论学时

学时

第一章函数与极限16 16 第二章导数与微分12 12 第三章微分中值定理与导数的应用10 10 第四章不定积分10 10 第五章定积分10 10 第六章定积分的应用 6 6

总学时64 64

四、考核成绩分配比例(例:考试课)

平时成绩

出勤作业提问或实验实训

期中成绩期末成绩3% 14% 3%

20% 20% 60%

五、教材和参考资料

1、建议使用教材:

《高等数学》(第七版上册)同济大学数学系主编,高等教育出版社,2014年7月

2、主要参考资料:

①《高等数学习题全解指南》(第七版上册),同济大学数学系编,高等教育出版社,2014.7出版2015.4印刷。

【重磅】同济大学高等数学上第七版教学大纲(64学时)

福建警察学院 《高等数学一》课程教学大纲 课程名称:高等数学一 课程编号: 学分:4 适用对象: 一、课程的地位、教学目标和基本要求 (一)课程地位 高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。 (二)教学目标 通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。 (三)基本要求 1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟

悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。 2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。 二、教学内容与要求 第一章函数与极限 【教学目的】 通过本章学习 1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分 解,掌握基本初等函数的性质及其图形,理解初等函数的概念。 2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。 3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与 左、右极限之间的关系,了解函数极限的性质。 4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。 5、掌握极限运算法则。 6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 7、掌握无穷小的比较方法,会用等价无穷小求极限。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的运算和初等函数的连续性, 10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),

高等数学同济第七版7版下册习题 全解

数,故 /, =Jj( x2 + y1)3d(j =2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 )JJ/( x,y)clcr = JJ/( x,y)drr +jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个 I) b\ lh 尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

同济大学高等数学教学大纲

《高等数学A》课程教学大纲 (216学时,12学分) 一、课程的性质、目的和任务 高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学; 5、无穷级数(包括傅立叶级数); 6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题 的能力。 二、总学时与学分 本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。 三、课程教学基本要求及基本内容 说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。 高等数学A(一) 一、函数、极限、连续、 1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。会用两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷小求极限。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。 10.了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 二、一元函数微分学 1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。 3.了解高阶导数的概念。 4.掌握初等函数一阶、二阶导数的求法。 5.会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6.理解罗尔(Ro lle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylo r)定理。 7.会用洛必达(L’Ho sp ital)法则求不定式的极限。 8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9.会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形(包括水平和铅直渐进线)。 10.了解有向弧与弧微分的概念。了解曲率和曲率半径的概念并会计算曲率和曲率半径。 11.了解求方程近似解的二分法和切线法。 三、一元函数积分学 1.理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2.理解定积分的概念及性质,了解函数可积的充分必要条件。

高等数学同济第七版7版下册习题全解

第十章重积分9 5 y 2 D2 -1 O i T -2 图 10 - 1 数,故 /, = Jj( x 2 + y 1 ) 3 d(j = 2jj ( x2 + y 1 )3 dcr. fh i)i 又由于 D 3关于 ; t 轴对称,被积函数 ( / + r2) 3关于 y 是偶函数,故jj( x2 + j2 ) 3dcr = 2j( x2+ y2) 3 da =2/ 2 . Dy 1): 从而得 /, = 4/ 2 . ( 2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于 ^ 轴对称,而被积函数 / ( x, y) 关于 y 是奇函数,即 fix, -y) = -f(x,y) , PJ jf/ ( x, y)da = 0; D 如果积分区域 D 关于: K 轴对称,而被积函数 / ( x, y) 关于: c 是奇函数,即 / ( ~x, y) = - / ( 太, y) ,则 = 0. D ? 3. 利用二重积分定义证明: ( 1 ) jj da = ( 其 中 ( 7 为的面积 ) ; IJ (2) JJ/c/( X , y) drr = Aj | y’ (

A: , y) do■ ( 其 中 A :为常数 ) ; o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中/) = /)! U /) 2,, A 为两个 I) b \ lh 尤公共内点的 WK 域 . 证 ( 丨 ) 由于被 枳函数. / U, y) = 1 , 故山 二 t 积分定义得n "

9 6 一、 《高等数学》 (第七版 )下册习题全解 jj'ltr = Hm y^/( ,rji) A

同济大学高等数学习题答案共49页

习题一解答 1.在1,2,3,4,四个数中可重复地先后取两个数,写出这个随机事件的样本空间及事件A=“一个数是另一个数的2倍”,B=“两个数组成既约分数”中的样本点。 解Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1)(4,2),(4,3),(4,4)}; A={(1,2),(2,1),(2,4),(4,2)}; B={(1,2),(1,3},(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,1)(4,3)} 2. 在数学系学生中任选一名学生.设事件A={选出的学生是男生},B={选出的学生是三年级学生},C={选出的学生是科普队的}. (1)叙述事件ABC的含义. (2)在什么条件下,ABC=C成立? (3)在什么条件下,C?B成立? 解 (1)事件ABC的含义是,选出的学生是三年级的男生,不是科普队员. (2)由于ABC?C,故ABC=C当且仅当C?ABC.这又当且仅当C?AB,即科普队员都是三年级的男生. (3)当科普队员全是三年级学生时,C是B的子事件,即C?B成立. 3.将下列事件用A,B,C表示出来: (1)只有C发生;

(2)A 发生而B ,C 都不发生; (3)三个事件都不发生; (4)三个事件至少有一个不发生; (5)三个事件至少有一套(二个不发生)发生; (6)三个事件恰有二个不发生; (7)三个事件至多有二个发生; (8)三个事件中不少于一个发生。 解 (1)ABC ; (2)ABC : (3)ABC (4)A B C U U ; (5)AB BC AC U U ; (6)ABC ABC ABC U U ; (7)ABC ; (8)A B C U U 。 4.设 A , B , C 是三个随机事件,且 =====)()(,4 1)()()(CB P AB P C P B P A p 0,81 )(=AC P ,求A ,B ,C 中至少有 一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ). 又因为

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

同济大学高等数学2

同济大学高等数学(下)期中考试试卷2 一.简答题(每小题8分) 1.求曲线?????+=+=-=t z t y t t x 3cos 12sin 3cos 在点??? ??1,3,2 π处的切线方程. 2.方程1ln =+-xz e y z xy 在点)1,1,0(的某邻域内可否确定导数连续的隐函数),(y x z z =或),(x z y y =或),(z y x x =?为什么? 3.不需要具体求解,指出解决下列问题的两条不同的解题思路: 设椭球面1222222 =++c z b y a x 与平面0=+++D Cz By Ax 没有交点,求椭球面与平面 之间的最小距离. 4.设函数),(y x f z =具有二阶连续的偏导数,3x y =是f 的一条等高线,若 1)1,1(-=y f ,求)1,1(x f . 二.(8分)设函数f 具有二阶连续的偏导数,),(y x xy f u +=求y x u ???2 . 三.(8分)设变量z y x ,,满足方程),(y x f z =及0),,(=z y x g ,其中f 与g 均具有连续的偏导数,求dx dy . 四.(8分)求曲线 ???=--=01, 02y x xyz 在点)110(,,处的切线与法平面的方程. 五.(8分)计算积分) ??D y dxdy e 2,其中D 是顶点分别为)0,0(.)1,1(.)1,0(的 三角形区域. 六.(8分)求函数22y x z +=在圆9)2()2(22≤- +-y x 上的最大值和最小值. 七.(14分)设一座山的方程为2221000y x z --=,),(y x M 是山脚0=z 即等量线 1000222=+y x 上的点. (1)问:z 在点),(y x M 处沿什么方向的增长率最大,并求出此增长率; (2)攀岩活动要山脚处找一最陡的位置作为攀岩的起点,即在该等量线上找一点M 使得上述增长率最大,请写出该点的坐标. 八.(14分) 设曲面∑是双曲线2422=-y z (0>z 的一支)绕z 轴旋转而成,曲面上一点M 处的切平面∏与平面0=++z y x 平行. (1)写出曲面∑的方程并求出点M 的坐标; (2)若Ω是∑.∏和柱面122=+y x 围成的立体,求Ω的体积.

高等数学复习提纲同济大学下册

高等数学复习提纲同济 大学下册 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高等数学复习提纲 一、考试题型 1.填空题6题 2.计算题8题 二、知识点 1.平面及其方程。 例题:一平面过点(101)且平行于向量a (211)和b (110)试求这平面方程 解所求平面的法线向量可取为 k j i k j i b a n 30 11112-+=-=?=? 所求平面的方程为 (x 1)(y 0)3(z 1)0即xy 3z 40 2.空间直线及其方程。 例题:求过点(203)且与直线???=+-+=-+-0 12530742z y x z y x 垂直的平面方程 解所求平面的法线向量n 可取为已知直线的方向向量即 k j i k j i n 1114162 53421)2 ,5 ,3()4 ,2 ,1(++-=--=-?-=? 所平面的方程为 16(x 2)14(y 0)11(z 3)0 即16x 14y 11z 650 例题:求过点(312)且通过直线1 2354z y x =+=-的平面方程

解所求平面的法线向量与直线1 2354z y x =+=-的方向向量s 1(521)垂直因为点(312)和(430)都在所求的平面上所以所求平面的法线向量与向量s 2(430)(312)(142)也是垂直的因此所求平面的法线向量可取为 k j i k j i s s n 22982 4112521--=-=?=? 所求平面的方程为 8(x 3)9(y 1)22(z 2)0 即8x 9y 22z 590 3.旋转曲面。 例题:将zOx 坐标面上的抛物线z 25x 绕x 轴旋转一周求所生成的旋转曲面的方程 解将方程中的z 换成22z y +±得旋转曲面的方程y 2z 25x 例题:将zOx 坐标面上的圆x 2z 29绕z 轴旋转一周求所生成的旋转曲面的方程 解将方程中的x 换成22y x +±得旋转曲面的方程x 2y 2z 29 4.多元复合函数求导,隐函数求导。 例题:求函数x y e z =的全微分 解xdy e x dx e x y dy y z dx x z dz y x y 12+-=??+??= 例题:设zu 2ln v 而y x u =v 3x 2y 求x z ??y z ?? 解x v v z x u u z x z ?????+?????=??

高等数学同济第七版上册课后答案

习题1-10 1.证明方程x5-3x=1至少有一个根介于1和2之间. 证明设f(x)=x5-3x-1,则f(x)是闭区间[1, 2]上的连续函数. 因为f(1)=-3,f(2)=25,f(1)f(2)<0,所以由零点定理,在(1, 2)内至少有一点ξ(1<ξ<2),使f(ξ)=0,即x=ξ是方程x5-3x=1的介于1和2之间的根. 因此方程x5-3x=1至少有一个根介于1和2之间. 2.证明方程x=a sin x+b,其中a>0,b>0,至少有一个正根,并且它不超过a+b. 证明设f(x)=a sin x+b-x,则f(x)是[0,a+b]上的连续函数. f(0)=b,f(a+b)=a sin (a+b)+b-(a+b)=a[sin(a+b)-1]≤0. 若f(a+b)=0,则说明x=a+b就是方程x=a sin x+b的一个不超过a+b的根; 若f(a+b)<0,则f(0)f(a+b)<0,由零点定理,至少存在一点ξ∈(0,a+b),使f(ξ)=0,这说明x=ξ也是方程x=a sin x+b的一个不超过a+b的根. 总之,方程x=a sin x+b至少有一个正根,并且它不超过a+b. 3.设函数f(x)对于闭区间[a,b]上的任意两点x、y,恒有 |f(x)-f(y)|≤L|x-y|,其中L为正常数,且f(a)?f(b)<0.证明:至少有一点ξ∈(a,b),使得f(ξ)=0. 证明设x0为(a,b)内任意一点.因为

0||lim |)()(|lim 0000 0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00 =-→x f x f x x , 即 )()(lim 00 x f x f x x =→. 因此f (x )在(a , b )内连续. 同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续. 因为f (x )在[a , b ]上连续, 且f (a )?f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 4. 若f (x )在[a , b ]上连续, a

同济大学高等数学1期末试题(含答案)

1. 若82lim =?? ? ??--∞→x x a x a x ,则_______.2ln 3- 2. =+++→)1ln()cos 1(1 cos sin 3lim 20x x x x x x ____.2 3 3.设函数)(x y y =由方程4ln 2y x xy =+所确定,则曲线)(x y y =在)1,1(处的切线方程为________.y x = 4. =-++∞→))1(sin 2sin (sin 1lim n n n n n n πππ ______.π2 5. x e y y -=-'的通解是____.x x e e y --=21C 二、选择题(每题4分) 1.设函数)(x f 在),(b a 内连续且可导,并有)()(b f a f =,则(D ) A .一定存在),(b a ∈ξ,使 0)(='ξf . B. 一定不存在),(b a ∈ξ,使 0)(='ξf . C. 存在唯一),(b a ∈ξ,使 0)(='ξf . D.A 、B 、C 均不对. 2.设函数)(x f y =二阶可导,且 ,)(),()(,0)(,0)(x x f dy x f x x f y x f x f ?'=-?+=?<''<', 当,0>?x 时,有(A ) A. ,0<>?dy y C. ,0?>y dy 3. =+?-dx e x x x ||2 2)|(|(C) A. ,0B. ,2C. ,222+e D. 26e 4. )3)(1()(--=x x x x f 与x 轴所围图形的面积是(B ) A. dx x f ?3 0)( B. dx x f dx x f ??-3110)()( C. dx x f ?-30)( D. dx x f dx x f ??+-3110)()( 5.函数Cx x y +=361 ,(其中C 为任意常数)是微分方程x y =''的(C ) A . 通解B.特解C.是解但非通解也非特解D.不是解

高等数学同济第七版7版(下册)习题全解

数,故 /, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/+r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ? 3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr+ jJ/( x ,y) dcr ,其中/) = /)! U /)2,, A 为两个 I) b\ lh

尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n" jj'ltr = Hm y^/( ,rji) A

高数答案(下)习题册答案-第六版--下册-同济大学数学系-编

第八章 多元函数的微分法及其应用 § 1 多元函数概念 一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ??求-=+=. 二、求下列函数的定义域: 1、2 221)1(),(y x y x y x f ---= };1|),{(2 2≠+x y y x 2、x y z arcsin = };0,|),{(≠≤x x y y x 三、求下列极限: 1、222)0,0(),(sin lim y x y x y x +→ (0) 2、 x y x x y 3)2,(),()1(lim +∞→ (6e ) 四、证明极限 2 42)0,0(),(lim y x y x y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2 x y =趋于(0,0)时,极限为2 1 , 二者不相等,所以极限不存在 五、证明函数?? ??? =≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x y x xy y x f 在整个xoy 面上连续。 证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。当)0,0(),(=y x 时, )0,0(01 sin lim 2 2)0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。所以函数 在整个xoy 面上连续。 六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数 1、设z=x y xe xy + ,验证 z x y +=??+??y z y x z x 证明:x y x y x y e x ,e x y e y +=??-+=??y z x z ,∴z xy xe xy xy x y +=++=??+??y z y x z x 42244222222)()),,((y y x x y y x y y x f +-=+-=?答案:

高数答案(下)习题册答案 第六版 下册 同济大学数学系 编

第八章 多元函数的微分法及其应用 § 1 多元函数概念 一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ??求-=+=. 二、求下列函数的定义域: 1、2 221) 1(),(y x y x y x f ---= };1|),{(22≠+x y y x 2、x y z arcsin = };0,|),{(≠≤x x y y x 三、求下列极限: 1、2 22)0,0(),(sin lim y x y x y x +→ (0) 2、 x y x x y 3)2,(),()1(lim +∞→ (6e ) 四、证明极限 2 42)0,0(),(lim y x y x y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2 x y =趋于(0,0)时,极限为2 1 , 二者不相等,所以极限不存在 五、证明函数????? =≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x y x xy y x f 在整个xoy 面上连续。 证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。当)0,0(),(=y x 时, )0,0(01sin lim 2 2 ) 0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。所以函数 42244222222)()),,((y y x x y y x y y x f +-=+-=?答案:

在整个xoy 面上连续。 六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数 1、设z=x y xe xy + ,验证 z x y +=??+??y z y x z x 证明:x y x y x y e x ,e x y e y +=??-+=??y z x z ,∴z xy xe xy xy x y +=++=??+??y z y x z x 2、求空间曲线??? ??=+=Γ2 1:2 2y y x z 在点( 1,21,23)处切线与y 轴正向夹角(4π) 3、设y x y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1) 4、设y z x u =, 求 x u ?? ,y u ?? ,z u ?? 解:1 -=??y z x y z x u , x x y z y u y z ln 2-=?? x x y z u y z ln 1=?? 5、设2 2 2 z y x u ++=,证明 : u z u y u x u 2 222222=??+??+?? 6、判断下面的函数在(0,0) 处是否连续是否可导(偏导)说明理由 ?????≠+≠++=0, 00,1sin ),(222 22 2y x y x y x x y x f )0,0(0),(lim 0 0f y x f y x ==→→ 连续; 2 01 sin lim )0,0(x f x x →= 不存在, 000 0lim )0,0(0=--=→y f y y 7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 x b x a f b x a f x ) ,(),(lim --+→

高等数学(同济第七版下)课后习题及解答

1.设u =a -b +2c ,v =-a +3b -c .试用a ,b ,c 表示2u -3v . 解2u -3v =2(a -b +2c )-3(-a +3b -c ) =5a -11b +7c . 2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形. 证如图8-1,设四边形ABCD 中AC 与BD 交于M ,已知 AM =MC ,MB DM . 故 DC DM MC MB AM AB . 即DC AB //且|AB |=|DC |,因此四边形 ABCD 是平行四边形. 3.把△ABC 的BC 边五等分,设分点依次为D 1,D 2,D 3,D 4,再把各 分点与点A 连接.试以AB =c,BC =a 表向量 A D 1,A D 2,A D 3,A D 4 .证 如图8-2,根据题意知 5 11 BD a, 5 12 1D D a, 5 13 2D D a, 5 14 3D D a, 故A D 1=-( 1BD AB )=-5 1 a-c

A D 2=-(2BD A B )=-52 a-c A D 3=-(3BD A B )=-53 a-c A D 4 =-(4BD AB )=-5 4 a-c. 4.已知两点M 1(0,1,2)和M 2(1,-1,0).试用坐标表示式表示向量 21M M 及-221M M . 解 21M M =(1-0,-1-1,0-2)=(1,-2,-2). -221M M =-2(1,-2,-2)=(-2,4,4). 5.求平行于向量a =(6,7,-6)的单位向量. 解向量a 的单位向量为 a a ,故平行向量a 的单位向量为 a a = 11 1(6,7,-6)= 11 6,117,116, 其中 11)6(7 6 2 2 2 a . 6.在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B (2,3,-4), C (2,-3,-4), D (-2, -3,1). 解A 点在第四卦限,B 点在第五卦限,C 点在第八卦限,D 点在第三卦限. 7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A (3,4,0), B (0,4,3), C (3,0,0), D (0,

高等数学(同济第七版)提纲

函数、极限、连续 一、函数:五大类基本初等函数幂函数,指数函数,对数函数 反函数,有界性,奇偶性 三角函数:正割函数,余割 反三角函数 二、极限 1、数列的极限 夹逼准则 2、函数的极限 (1)两个重要极限 (2)无穷小:高阶,低阶, 同阶,等价;性质:有界函数与无穷小的乘积仍然是无穷小。等价无穷小代换;

三、连续 间断点:第一类,第二类左右极限都存在; 可去间断点,跳跃间断点无穷间断点,振荡间断点一切初等函数在定义区间内都连续。 闭区间上连续函数的性质:零点定理:方程根的存在性 第二章导数与微分 一、相关概念 1、导数的两大定义式; 2、左右导数;

3、几何意义; 4、可导与连续的关系。 5、16个基本导数公式,4个求导法则 二、六大类函数求导 1、复合函数求导; 2、隐函数求导; 3、参数方程所确定的函数求导; 4、幂指函数求导; 对数求导法 5、分段函数求导; 6、抽象函数求导。 三、微分 1、概念;可微 2、计算

第三章微分中值定理 与导数的应用 一、中值定理 罗尔定理:驻点 拉格朗日中值定理 二、洛必达法则 三、单调性和凹凸性 单调性:求单调区间; 求极值; 证明不等式; 证明方程根的唯一性。极值的第一充分条件 有且仅有;

凹凸性:凹凸区间;拐点 四、渐近线 1、水平渐近线 2、垂直渐近线 3、斜渐近线 第四章不定积分 一、不定积分的概念; (13+2) 原函数;被积函数;积分变量 二、计算 1、凑微分法(第一类换元法) 2、第二类换元法 3、分部积分法 (一)4小题

(二)2小题 (三)1小题 简单根式的积分 第五章定积分 一、相关概念和性质 积分下限,积分上限 几何意义:面积的代数和[a,b]积分区间 比较性质 定积分的中值定理 二、关于计算方面的内容 1、定积分的计算; 2、广义积分(反常积分);(1)无穷限的广义积分;

高等数学复习提纲同济大学下册

高等数学复习提纲 一、考试题型 1.填空题6题 2.计算题8题 二、知识点 1.平面及其方程。 例题:一平面过点(1?0??1)且平行于向量a ?(2?1?1)和b ?(1??1?0)?试求这平面方程? 解所求平面的法线向量可取为 k j i k j i b a n 30 11112-+=-=?=? 所求平面的方程为 (x ?1)?(y ?0)?3(z ?1)?0?即x ?y ?3z ?4?0? 2.空间直线及其方程。 例题:求过点(2?0??3)且与直线???=+-+=-+-0 12530742z y x z y x 垂直的平面方程? 解所求平面的法线向量n 可取为已知直线的方向向量?即 k j i k j i n 1114162 53421)2 ,5 ,3()4 ,2 ,1(++-=--=-?-=? 所平面的方程为 ?16(x ?2)?14(y ?0)?11(z ?3)?0? 即16x ?14y ?11z ?65?0? 例题:求过点(3?1??2)且通过直线1 2354z y x =+=-的平面方程?

解所求平面的法线向量与直线1 2354z y x =+=-的方向向量s 1?(5?2?1)垂直?因为点(3?1??2)和(4??3?0)都在所求的平面上?所以所求平面的法线向量与向量s 2?(4??3?0)?(3?1??2)?(1??4?2)也是垂直的?因此所求平面的法线向量可取为 k j i k j i s s n 22982 4112521--=-=?=? 所求平面的方程为 8(x ?3)?9(y ?1)?22(z ?2)?0? 即8x ?9y ?22z ?59?0? 3.旋转曲面。 例题:将zOx 坐标面上的抛物线z 2?5x 绕x 轴旋转一周?求所生成的旋转曲面的方程? 解将方程中的z 换成22z y +±得旋转曲面的方程y 2?z 2?5x ? 例题:将zOx 坐标面上的圆x 2?z 2?9绕z 轴旋转一周?求所生成的旋转曲面的方程? 解将方程中的x 换成22y x +±得旋转曲面的方程x 2?y 2?z 2?9? 4.多元复合函数求导,隐函数求导。 例题:求函数x y e z =的全微分 解xdy e x dx e x y dy y z dx x z dz y x y 12+-=??+??=? 例题:设z ?u 2ln v ?而y x u =?v ?3x ?2y ?求x z ???y z ??? 解x v v z x u u z x z ?????+?????=?? 31ln 22?+?=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=?

相关文档
相关文档 最新文档