文档库 最新最全的文档下载
当前位置:文档库 › 直线与平面垂直练习题

直线与平面垂直练习题

直线与平面垂直练习题
直线与平面垂直练习题

课时跟踪检测(十二)直线与平面垂直

层级一学业水平达标

1.下列条件中,能使直线m⊥平面α的是( ) A.m⊥b,m⊥c,b⊥α,c⊥αB.m⊥b,b∥α

C.m∩b=A,b⊥αD.m∥b,b⊥α

解析:选D由线线平行及线面垂直的判定定理的推论1知选项D正确.故选D.

2.若两直线a与b异面,则过a且与b垂直的平面( ) A.有且只有一个B.可能有一个,也可能不存在

C.有无数多个D.一定不存在

解析:选B当a与b垂直时,过a且与b垂直的平面有且只有1个,当a与b不垂直时,过a且与b垂直的平面不存在.

3.空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是( ) A.垂直且相交B.相交但不一定垂直

C.垂直但不相交D.不垂直也不相交

解析:选C取BD的中点E,连接AE,CE.

则BD⊥AE,BD⊥CE,

又AE∩CE=E,

∴BD⊥平面AEC.

∵AC?平面AEC,

∴AC⊥BD.

观察图形可知AC与BD不相交.

4 . 如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l

与直线AC的关系是( )

A.异面B.平行

C.垂直D.不确定

解析:选C∵BA⊥α,α∩β=l,l?α,∴BA⊥l.同理BC⊥l.又BA∩BC=B,∴l⊥平面ABC.

∵AC?平面ABC,∴l⊥AC.

5.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离是( )

A. 5 B.2 5

C.3 5 D.4 5

解析:选D

如图所示,作PD⊥BC于D,连接AD.

∵PA⊥△ABC,∴PA⊥BC.

又PA∩PD=P,

∴BC⊥平面PAD,∴AD⊥BC.

在△ACD中,AC=5,CD=3,∴AD=4.

在Rt△PAD中,PA=8,AD=4,

∴PD=82+42=4 5.

6.已知直线l,a,b,平面α,若要得到结论l⊥α,则需要在条件a?α,b?α,l⊥a,l⊥b中另外添加的一个条件是________.

答案:a,b相交

7.长方体ABCD-A1B1C1D1中,MN在平面BCC1B1内,且MN⊥BC于点M,则MN与AA1的位置关系是________.

解析:如图.易知AB⊥平面BCC1B1,

又∵MN?平面BCC1B1,

∴AB⊥MN.

又∵MN⊥BC,AB∩BC=B,

∴MN⊥平面ABCD,易知AA1⊥平面ABCD.故AA1∥MN.

答案:平行

8.已知PA垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形ABCD一定是_______ _.

解析:如图,∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA.又BD⊥

PC,PA∩PC=P,∴BD⊥平面PAC.又AC?平面PAC,∴BD⊥AC.∴平

行四边形ABCD为菱形.

答案:菱形

9. 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是棱B1C1,B1B

的中点.求证:CF⊥平面EAB.

证明:在平面B1BCC1中,

∵E,F分别是B1C1,B1B的中点,

∴△BB1E≌△CBF,

∴∠B1BE=∠BCF,

∴∠BCF+∠EBC=90°,

∴CF⊥BE,

又AB⊥平面B1BCC1,CF?平面B1BCC1,

∴AB⊥CF.∵AB∩BE=B,

∴CF⊥平面EAB.

10 . 如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上

任意一点,AN⊥PM,N为垂足.

(1)求证:AN⊥平面PBM.

(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.

证明:(1)∵AB为⊙O的直径,

∴AM⊥BM.

又PA⊥平面ABM,

∴PA⊥BM.

又∵PA∩AM=A,

∴BM⊥平面PAM.

又AN?平面PAM,∴BM⊥AN.

又AN⊥PM,且BM∩PM=M,

∴AN⊥平面PBM.

(2)由(1)知AN⊥平面PBM,

PB?平面PBM,∴AN⊥PB.

又∵AQ⊥PB,AN∩AQ=A,

∴PB⊥平面ANQ.

又NQ?平面ANQ,

∴PB⊥NQ.

层级二应试能力达标

1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是( )

A.α∥β,且m?αB.m∥n,且n⊥β

C.m⊥n,且n?βD.m⊥n,且n∥β

解析:选B A中,由α∥β,且m?α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,符合题意;C、D中,m?β或m∥β或m与β相交,不符合题意,故选B.

2.已知直线PG⊥平面α于G,直线EF?α,且PF⊥EF于F,那么线段PE,PF,PG的大小关系是( )

A.PE>PG>PF B.PG>PF>PE

C.PE>PF>PG D.PF>PE>PG

解析:选C由于PG⊥平面α于G,PF⊥EF,

∴PG最短,PF

∴有PG

3.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的是( )

A.①②③B.①②④

C.②③④D.①②③④

解析:选A

由PA,PB,PC两两垂直可得PA⊥平面PBC;PB⊥平面PAC;PC

⊥平面PAB所以PA⊥BC;PB⊥AC;PC⊥AB,①②③正确.④错

误.因为若AB⊥BC,则由PA⊥平面PBC得PA⊥BC,又PA∩AB

=A,所以BC⊥平面PAB,又PC⊥平面PAB,这与过一点有且只有

一条直线与已知平面垂直矛盾.

4.在正方体ABCD-A1B1C1D1中,下列结论错误的是( ) A.BD∥平面CB1D1B.AC1⊥BD

C.AC1⊥平面CB1D1D.AC1⊥BD1

解析:选D

在正方体中由BD∥B1D1,易知A正确;由BD⊥AC,BD⊥CC1,可易

得BD⊥平面ACC1,从而BD⊥AC1,即B正确;由以上可得AC1⊥B1D1,

同理AC1⊥D1C,因此AC1⊥平面CB1D1,即C正确;由于四边形ABC1D1

不是菱形,所以AC1⊥BD1不正确.故选D.

5 . 如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是棱AA1和AB

上的点,若∠B1MN是直角,则∠C1MN=________.

解析:∵B 1C 1⊥平面ABB 1A 1,

∴B 1C 1⊥MN .

又∵MN ⊥B 1M ,∴MN ⊥平面C 1B 1M ,

∴MN ⊥C 1M .∴∠C 1MN =90°.

答案:90°

6 . 如图,△ABC 是直角三角形,∠ABC =90°,PA ⊥平面ABC ,此图形

中有________个直角三角形.

解析:∵PA ⊥平面ABC ,∴PA ⊥AC ,PA ⊥AB ,PA ⊥BC ,

∵AB ⊥BC ,且PA ∩AB =A ,

∴BC ⊥平面PAB ,

∴BC ⊥PB .综上知:△ABC ,△PAC ,△PAB ,△PBC 都是直角三角形,共有4个. 答案:4

7 . 如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 是AB 上一点,

N 是A 1C 的中点,MN ⊥平面A 1DC .

求证:(1)MN ∥AD 1;

(2)M 是AB 的中点.

证明:(1)∵四边形ADD 1A 1为正方形,

∴AD 1⊥A 1D .

又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1.

∵A 1D ∩CD =D ,

∴AD 1⊥平面A 1DC .

又∵MN ⊥平面A 1DC ,∴MN ∥AD 1. (2)

连接ON ,在△A 1DC 中,

A 1O =OD ,A 1N =NC ,

∴ON 綊12CD 綊12

AB .

∴ON ∥AM .

又∵MN ∥OA ,

∴四边形AMNO 为平行四边形.∴ON =AM .

∵ON =12AB ,∴AM =12

AB . ∴M 是AB 的中点.

8.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =1,∠ACB =90°,AA 1=2

D 是A 1B 1的中点.

(1)求证C 1D ⊥平面AA 1B 1B ;

(2)当点F 在BB 1上的什么位置时,会使得AB 1⊥平面C 1DF ?并证明你 的结论.

证明:(1)∵ABC -A 1B 1C 1是直三棱柱,

∴A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°.

又D 是A 1B 1的中点,

∴C 1D ⊥A 1B 1.

∵AA 1⊥平面A 1B 1C 1,C 1D ?平面A 1B 1C 1,

∴AA 1⊥C 1D ,又A 1B 1∩AA 1=A 1,

∴C 1D ⊥平面AA 1B 1B .

(2)作DE ⊥AB 1交AB 1于E ,延长DE 交BB 1于F ,连接C 1F ,则AB 1

⊥平面C 1DF ,点F 为所求.

∵C 1D ⊥平面AA 1B 1B ,AB 1?平面AA 1B 1B , ∴C 1D ⊥AB 1.

又AB 1⊥DF ,DF ∩C 1D =D ,

∴AB 1⊥平面C 1DF .

∵AA 1=A 1B 1=2,

∴四边形AA 1B 1B 为正方形.

又D 为A 1B 1的中点,DF ⊥AB 1,

∴F为BB1的中点,

∴当点F为BB1的中点时,AB1⊥平面C1DF.

直线与平面垂直的判定练习题

直线与平面垂直的判定练习题 1.如果一条直线l 与平面α的一条垂线垂直,那么直线l 与平面α的位置关系是 ( ) A.l ?α B.l ⊥α C.l ∥α D.l ?α或l ∥α 2.若两直线a⊥b,且a⊥平面α,则b 与α的位置关系是 ( ) A.相交 B.b∥α C.b ?α D.b∥α,或b ?α 3.a ∥α,则a 平行于α内的( ) A.一条确定的直线 B.任意一条直线 C.所有直线 D.无数多条平行线 4.若直线l 上有两点P.Q 到平面α的距离相等,则直线l 与平面α的位置关系是( ) A.平行 B.相交 C.平行或相交 D.平行.相交或在平面α内 5.下面各命题中正确的是( ) A.直线a ,b 异面,a ?α,b ?β,则α∥β; B.直线a ∥b ,a ?α,b ?β,则α∥β; C.直线a ⊥b ,a ⊥α,b ⊥β,则α⊥β; D.直线a ?α,b ?β,α∥β,则a ,b 异面. 6.已知两条直线,m n ,两个平面,αβ,给出下面四个命题: ①//,m n m n αα⊥?⊥ ②//,,//m n m n αβαβ??? ③//,////m n m n αα? ④//,//,m n m n αβαβ⊥?⊥ 其中正确命题的序号是( ) A .①③ B .②④ C .①④ D .②③ 7.在△ABC 中,AB =AC =5,BC =6,PA ⊥平面ABC ,PA =8,则P 到BC 的距离等于( ) A .5 B .52 C .35 D .45 8.以下命题正确的有( ). ① //a b b a αα??⊥?⊥?. ②//a a b b αα⊥???⊥?. ③,,l m l n l m n ααα⊥⊥? ?⊥????; ④ l m l m αα⊥? ?⊥?? 是平面内的任意直线. A . ①② B . ①②③ C . ②③④ D . ①②④

直线和平面垂直的判定与性质

郸城二高高二年级集体备课教学案 直线和平面垂直的判定与性质(一) 一、素质教育目标 (一)知识教学点 1.直线和平面垂直的定义及相关概念. 2.直线和平面垂直的判定定理. 3.线线平行的性质定理(即例题1). (二)能力训练点 1.要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加.2.讲直线和平面垂直时,应注意引导学生把直线和平面关系转化为直线和直线的关系.如直线和平面垂直,只须这条直线垂直于这个平面内的两条相交直线,向学生渗透转化思想的应用.二、教学重点、难点、疑点 1.教学重点 (1)掌握直线和平面垂直的定义:如果一条直线和一个平面内的任何一条直线垂直,那么这条直线就和这个平面垂直. (2)掌握直线和平面垂直的判定定理: (3)掌握线线平行的性质定理: 若a∥b,a⊥α则b⊥α. 2.教学难点:在于线、面垂直定义的理解和判定定理的证明;同时还要解决好定理证明过程中,辅助线添加的方法和原因,及为何可用经过B点的两条直线说明“任意”直线的问题.3.教学疑点:判定定理的条件中,“相交”是关键,“两条”也是一个重要条件,对于初学立体几何的学生来讲,是不好理解的,教师应该用实例说明这两个条件缺一不可. 三、课时安排本课题共安排2课时,本节课为第一课时. 四、学生活动设计(略) 五、教学步骤 (一)温故知新,引入课题 1.空间两条直线有哪几种位置关系? (三种:相交直线、平行直线、异面直线) 2.经过一点和一条直线垂直的直线有几条? (从两条直线互相垂直的定义可知:经过一点有无数多条直线和已知直线垂直) 3.空间一条直线与一个平面有哪几种位置关系? (直线在平面内、直线和平面相交、直线和平面平行.) 4.怎样判定直线和平面平行? 我们已经知道,判定直线和平面平行的问题可以转化为考察直线和直线平行的关系.今天我们转入学习直线和平面相交的一种特殊情形——直线和平面垂直,这个问题同样可以从两条直线垂直的关系入手. (板书课题:§1.9直线和平面垂直) 郸城二高杨雅莉- 1 -

直线与平面垂直的典型例题

直线与平面垂直的典型例题 例1 判断题:正确的在括号内打“√”号,不正确的打“×”号. (1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( ) (2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( ) (3)垂直于三角形两边的直线必垂直于第三边.( ) (4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( ) (5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( ) 例2 在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD 例3 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥

例4如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ?= 例5如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离 例6 如图所示,直角ABC ?所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .

例7如图所示,?=∠90BAC .在平面α内,PA 是α的斜线,?=∠=∠60PAC PAB .求PA 与平面α所成的角. 例8如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥. 例9 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.

高中数学§9.3.1直线与平面垂直的判定教案

§9.3.1直线与平面垂直的判定(2) 时间:2018、12、13 (总第69课时) 一、教学目标 1、知识与技能 (1)使学生掌握直线和平面垂直的定义及判定定理; (2)使学生掌握判定直线和平面垂直的方法; (3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。 2、过程与方法 (1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程; (2)探究判定直线与平面垂直的方法。 3、情态与价值 培养学生学会从“感性认识”到“理性认识”过程中获取新知。 二、教学重点、难点 直线与平面垂直的定义和判定定理的探究。 三、教学设计 (一)创设情景,揭示课题 1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。 2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。 (二)研探新知 1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。然后教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义。 如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图2.3-1,直线与平面垂直时,它们唯一公共点P叫做垂足。并对画示表示进行说明。

直线与平面垂直的判定经典例题

2.3直线、平面垂直的判定及其性质 2.3.1直线与平面垂直的判定 一、基础达标 1.下列说法中正确的个数是() ①若直线l与平面α内一条直线垂直,则l⊥α. ②若直线l与平面α内两条直线垂直,则l⊥α; ③若直线l与平面α内两条相交直线垂直,则l⊥α; ④若直线l与平面α内任意一条直线垂直,则l⊥α; ⑤若直线l与平面α内无数条直线垂直,则l⊥α. A.1 B.2 C.3 D.4 答案 B 解析对①②⑤,均不能断定该直线与平面垂直,该直线与平面可能平行,可能斜交,也可能在平面内,所以是错误的.正确的是③④,故选B. 2.已知直线m,n是异面直线,则过直线n且与直线m垂直的平面() A.有且只有一个B.至多一个 C.有一个或无数个D.不存在 答案 B 解析若异面直线m、n垂直,则符合要求的平面有一个,否则不存在.3.(2014·淮北高一检测)线段AB的长等于它在平面α内的射影长的2倍,则AB 所在直线与平面α所成的角为() A.30°B.45° C.60°D.120° 答案 C 解析如图,AC⊥α,AB∩α=B,则BC是AB在平面α

内的射影,则BC =1 2AB ,所以∠ABC =60°,它是AB 与平面α所成的角. 4.空间四边形ABCD 的四边相等,则它的两对角线AC 、BD 的关系是( ) A .垂直且相交 B .相交但不一定垂直 C .垂直但不相交 D .不垂直也不相交 答案 C 解析 取BD 中点O , 连接AO ,CO , 则BD ⊥AO ,BD ⊥CO , ∴BD ⊥面AOC ,BD ⊥AC , 又BD 、AC 异面,∴选C. 5.已知△ABC 所在平面外一点P 到△ABC 三顶点的距离都相等,则点P 在平面ABC 内的射影是△ABC 的________. 答案 外心 解析 P 到△ABC 三顶点的距离都相等,则点P 在平面ABC 内的射影到△ABC 三顶点的距离都相等,所以是外心. 6.(2014·舟山高一检测)如图所示,P A ⊥平面ABC ,△ABC 中BC ⊥AC ,则图中直角三角形的个数有________. 答案 4 解析 ? ??? ?P A ⊥平面ABC BC ?平面ABC ?

线面垂直与面面垂直垂直练习题(汇编)

2.3线面垂直和面面垂直 线面垂直专题练习 一、定理填空: 1.直线和平面垂直 如果一条直线和 ,就说这条直线和这个平面垂直. 2.线面垂直判定定理和性质定理 线面垂直判定定理: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 判定定理1:如果两条平行线中的一条垂直于一个平面,那么 判定定理2:如果一条直线垂直于两个平行平面中的一个平面,那么 . 线面垂直性质定理: 垂直于同一个平面的两条直线互相平行. 性质定理1:垂直于同一条直线的两个平面互相平行。 二、精选习题: 1.设M 表示平面,a 、b 表示直线,给出下列四个命题: ①M b M a b a ⊥????⊥// ②b a M b M a //????⊥⊥ ③????⊥⊥b a M a b ∥M ④?? ??⊥b a M a //b ⊥M . 其中正确的命题是 ( ) A.①② B.①②③ C.②③④ D.①②④ 2.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( ) A.DP ⊥平面PEF B.DM ⊥平面PEF C.PM ⊥平面DEF D.PF ⊥平面DEF 3.设a 、b 是异面直线,下列命题正确的是 ( ) A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交 B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直 C.过a 一定可以作一个平面与b 垂直 D.过a 一定可以作一个平面与b 平行 4.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m ?α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m ∥β且l ⊥m D.α∥β且α⊥γ 5.有三个命题: 第3题图

直线与平面垂直的判定教案

第 页(共4页) 1 直线与平面垂直的判定 【教学目标】 1.通过观察图片和折纸试验,使学生理解直线与平面垂直的定义,归纳和确认直线与平面垂直的判定定理,并能简单应用定义和判定定理; 2.通过对判定定理的探究和运用,初步培养学生的几何直观能力和抽象概括能力; 3.通过对探索过程的引导,努力提高学生学习数学的热情,培养学生主动探究的习惯. 【教学重点】 对直线与平面垂直的定义和判定定理的理解及其简单应用. 【教学重点】 探究、归纳直线与平面垂直的判定定理,体会定义和定理中所包含的转化思想. 【教学方式】探究式 【教学手段】 计算机、实物模型 【教学过程】 一、实例引入,理解概念 1.通过复习空间直线与平面的位置关系,让学生举例感知生活中直线与平面相交的位置关系,其中最特殊、最常见的一种就是线面的垂直关系,从而引出课题. 设计意图:希望通过学生的生活经验,提高学生学习数学的兴趣和自觉性. 2.给出学生非常熟悉的校园图片,引导他们观察直立于操场上篮球架的立柱与它在地面影子的关系,然后将其抽象为几何图形,再用数学语言对几何图形进行精确描述,引出直线与平面垂直的定义.即:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直. 设计意图:通过从“具体形象——几何图形——数学语言”的过程,让学生体会定义的合理性. 3.简单介绍线面垂直在我国古代的重要应用——“日晷”. 设计意图:通过我国古代用来计时的一种仪器——日晷,让学生感受数学的应用价值,提高学生学习数学的热情.同时,引出探究判定定理的必要性. 二、通过试验,探究定理 准备一个三角形纸片,三个顶点分别记作A ,B ,C .如图,过△ABC 的顶点A 折叠纸片,得到折痕AD ,将折叠后的纸片打开竖起放置在桌面上.(使BD 、DC 边与桌面接触) D C A B D B A C

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质 最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题 . 知 识 梳 理 1.直线与平面垂直 (1)直线和平面垂直的定义 如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理 (1)定义:一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角. (2)范围:??? ???0,π2. 3.二面角 (1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;

(2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角. (3)二面角的范围:[0,π]. 4.平面与平面垂直 (1)平面与平面垂直的定义 两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理 1.两个重要结论 (1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法). 2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”. 基 础 自 测 1.判断下列结论正误(在括号内打“√”或“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( ) (2)垂直于同一个平面的两平面平行.( ) (3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )

直线与平面垂直教学设计

课题:1.2.3 直线与平面垂直 【教学内容解析】 本节课是苏教版教材必修2中第一章第二节的内容,属于新授概念原理课.其中直线与平面垂直的概念、判定定理的形成是教学重点. 这是直线与平面垂直在本节中的位置.线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例.线面平行研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式.线面垂直是线线垂直的拓展,又是面面垂直的基础,且后续内容如:空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用. 通过本节课的学习研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象、推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法.因此,学习这部分知识有着非常重要的意义. 【教学目标设置】 1.学生通过对实例、模型的观察、抽象,概括出直线与平面垂直的定义,发现、猜想、归纳直线与平面垂直的判定定理. 2.在定义、定理的探究活动中,学生通过独立思考和合作交流,发展类比、归纳等合情推理能力、逻辑思维能力和空间想象能力. 3.学生运用特殊化、类比、化归等数学思想,体验了研究空间关系的一般方法. 4.在探究线面垂直的定义和判定的过程中,体会数学的严谨、简洁之美,体

验探究发现的乐趣,培养善于观察、勇于探索的良好习惯. 【学生学情分析】 1.学生已有的认知基础 学生能够感知生活中有大量的线面垂直关系,已经掌握了线线垂直、线面平行的相关知识,从而具备了研究空间位置关系的经验,也体会了立体几何中化归的数学思想方法. 2.达成标所需要的认知基础 要达成本节课的目标,这些已有的知识和经验基础不可或缺,还需要整体上把握本节课的研究内容、方法和途径,能运用类比、化归等数学思想,同时具备较好地观察发现、空间想象、合情推理、抽象概括等能力,以及独立思考、合作交流、反思质疑等良好的数学学习习惯. 我校为普通高中,招收的学生大部分基础薄弱,自主学习能力差.进入高一,虽然能领悟一些基本的数学思想与方法,但还没有形成完整、严谨的数学思维习惯,对问题的探究能力也有待培养. 3.难点及突破策略 难点: 1.运用类比、化归等数学思想方法来研究直线与平面垂直的定义,突破“任意”的生成和理解. 3.探究、归纳、理解直线与平面垂直判定定理,突破“无限”与“有限”的转化. 突破策略: 1.启发学生明确研究的内容与方法,从总体上认识研究的目标与手段. 2.引导学生经过直观感知、操作确认、思辨论证的过程形成线面垂直的定义和判定定理. 3.发动学生通过问题串交流、汇报、展示思维过程,相互启发. 【教学策略分析】 根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用教法和学法如下:

直线与平面垂直的判定练习题

直线、平面垂直的判定与性质 (时间:45分钟分值:100分) 基础热身 1.[2013·太原一模] 设α,β是两个不同的平面,l是一条直线,以下命题正确的是() A.若l⊥α,α⊥β,则l?β B.若l⊥α,α∥β,则l⊥β C.若l∥α,α∥β,则l?β D.若l∥α,α⊥β,则l⊥β 2.[2013·沈阳一模] 用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b ⊥γ,则a∥b. 其中真命题的序号是() A.①②B.②③C.①④D.③④ 3.[教材改编试题] 如图K41-1,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC 的中点,则下列命题中正确的为( A. 平面ABC⊥平面ABD B. 平面ABD⊥平面BCD C. 平面ABC⊥平面BDE,且平面ACD⊥平面BDE D. 平面ABC⊥平面ACD,且平面ACD⊥平面BDE 4.[2013·长春三模] P A垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是() ①平面P AB⊥平面PBC;②平面P AB⊥平面P AD; ③平面P AB⊥平面PCD;④平面P AB⊥平面P AC. A.①②B.①③C.②③D.②④ 能力提升 5.[2013·济南三模] 如图K41-2,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论正确的是() A.PB⊥AD B.平面P AB⊥平面PBC C.直线BC∥平面P AE D.直线PD与平面ABC所成的角为45°

巩固练习_直线、平面垂直的性质_提高

【巩固练习】 1.下列说法中正确的是( ) ①过平面外一点有且仅有一条直线和已知平面垂直;②过直线外一点有且仅有一个平面与已知直线垂直;③过平面外一点可作无数条直线与已知平面平行;④过直线外一点只能作一条直线与已知直线垂直. A .①②③ B .①②③④ C .②③ D .②③④ 2.设a 、b 是异面直线,下列命题中正确的是( ) A .过不在a 、b 上的一点P 一定可作一条直线和a 、b 都相交 B .过不在a 、b 上的一点P 一定可作一个平面和a 、b 都垂直 C .过a 一定可作一个平面与b 垂直 D .过a 一定可作一个平面与b 平行 3.已知平面α、β、γ,则下列命题中正确的是( ) A .αβ⊥,βγ⊥,则//αγ B .//αβ,βγ⊥,则αγ⊥ C .a αβ=,b βγ=,αγ⊥,则a ⊥b D .αβ⊥,a α β=,a ⊥b ,则b ⊥α 4.给出下列四个命题: ①经过平面外一点有且仅有一个平面与已知平面垂直;②如果一条直线和两个垂直平面中的一个垂直,它必和另一个平行;③过不在平面内的一条直线可作无数个平面与已知平面垂直;④如果两个平面互相垂直,经过一个平面内一点与另一个平面垂直的直线在这个平面内. 其中正确的是( ) A .①③ B .②③ C .②③④ D .④ 5.已知平面α与平面β相交,直线m ⊥α,则( ) A .β内必存在直线与m 平行,且存在直线与m 垂直 B .β内不一定存在直线与m 平行,也不一定存在直线与m 垂直 C .β内不一定存在直线与m 平行,但必存在直线与m 垂直 D .β内必存在直线与m 平行,但不一定存在直线与m 垂直 6.在三棱锥A BCD -中,AC ⊥底面0 ,,,,30BCD BD DC BD DC AC a ABC ⊥==∠=,则点C 到平面ABD 的距离是( ) A B . C D 7.给定下列四个命题: ①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一

空间中直线与平面垂直的定义及判定教学设计

新课标高中立体几何教学案例 空间中直线与平面垂直的定义及判定 广州大学附属中学王映 说明: 本教学案例使用的教材是人教 A 版普通高中数学课程标准实验教材必修2。 【教学设计】 一、教材分析 (一)教材内容的安排与要求: 与传统立体几何内容体系相比,本次立体几何内容的体系结构有重大改革。传统立体几何基本上按照从局部到整体的原则,从研究点、直线和平面开始,先讲清楚它们之间的位置关系和有关公理、定理,再研究由它们组成的几何体的结构特征,几何体的体积、表面积等等。人教A 版新课标实验教材先从对空间几何体的整体感受入手,再研究组成空间几何体的点、直线和平面。这种安排有助于培养学生的空间想象能力、几何直观能力,淡化几何论证,降低立体几何学习入门难的门槛,强调几何直觉,把培养学生的空间观念和空间想象能力放到突出的位置,以激发学生学习立体几何的兴趣。 “空间中直线和平面垂直的定义及判定”这一专题内容经修改后教学要求大大降低,特别是论证方面,删去了"利用有关概念进行论证和解决有关的问题"的要求;将"三垂线定理及其逆定理"由"掌握"级降为" 了解" 级要求,淡化了几何论证的要求。强调通过直观感知、动手实践来认知和理解线面垂直的定义和判定定理,能运用定义及定理证明一些空间位置关系的简单命题。在教学内容设计上更注重实践操作和探 究。 (二)学情分析

笔者所带两个教学班差异明显,重点班学生学习习惯良好,基础相对扎实,但不善于大胆表述自己的观点,合作意识有待加强;另一普通班学生学习依赖性较强,自主探究意识薄弱。 同时,同一个班中的学生有近一半来自初中课改实验区,使用实验教材;而另一半则沿用原教材。学生的初中几何基础参差不齐,差异较大。其中非课改区学生的空间感以及了解的几何知识相对课改区有一定差距。 (三)教学目标 针对教材特点和学生现状,分别从知识、能力以及情感与态度三方面来确定本节课的教学目标如下: 1.知识目标: (1)掌握直线与平面垂直的定义及判定定理; (2)会应用直线与平面垂直的定义及判定定理解决一些简单的问题。2.能力目标: (1)在合作探究中逐步构建知识结构; ( 2 )在实践操作中发展学生几何直观能力和空间想象能力。 3. 情感与态度目标: (1)通过创造情境激发学生学习的兴趣与热情; (2)鼓励合作探究、互助交流,培养创新意识。 (四)教学重点与难点 1.教学重点会运用定义与判定定理证明直线与平面的垂直关系。 2.教学难点在正方体模型中寻找线面垂直关系并予以证明。 二.教法分析

直线与平面垂直的判定说课稿

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 《直线与平面垂直的判定》说课稿 李凯帆 本节课是人教版《普通高中课程标准实验教科书·数学(A版)》必修2第三节“2.3.1直线与平面垂直的判定”的第一课时。下面,我将分别从教材分析、学情分析、教法与学法分析、教学过程设计、教学反思五个方面对本节课进行说明。 一、教材分析 1.内容、地位与作用 直线与平面垂直是直线和平面相交中的一种特殊情况,是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的基础,是空间中垂直位置关系间转化的重心,同时又是直线和平面所成的角等内容的基础,因而它是空间点、直线、平面间位置关系中的核心概念之一. 本节课是在学习了空间点、直线、平面之间的位置关系和直线与平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用。 其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带! 学好这部分内容,对于学生建立空间观念、实现从认识平面图形到认识 立体图形的飞跃, 是非常重要的. 2.教学目标

《数学课程标准》指出本节课学习目标是:通过直观感知、操作确认,归纳出线面垂直的判定定理;能运用判定定理证明一些空间位置关系的简单命题.考虑到本校学生的接受能力和课容量,本节课只要求学生在构建线面垂直定义的基础上探究线面垂直的判定定理,并进行定理的初步运用.故而确立以下教学目标: (1)知识与技能 通过直观感知、操作确认,理解线面垂直的定义,归纳线面垂直的判定定理, 并能运用定义和定理证明一些空间位置关系的简单命题。 (2)过程与方法 通过线面垂直定义及定理的探究过程,感知几何直观能力和抽象概括能力,体会转化思想在解决问题中的运用。 (3)情感、态度与价值观 通过线面垂直定义及定理的探究,让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。 3.教学重点和难点 根据教学大纲的要求以及学生的实际情况,确定如下: 重点:通过操作概括直线与平面垂直的定义和判定定理 难点:操作确认直线与平面垂直的判定定理 二、学情分析 学习本课前,学生已经通过直观感知、操作确认的方法,学习了直线与平面平行的判定定理,对空间概念建立有一定基础。但是,学生的抽象概括能力、空间想象力还有待提高。线面垂直的定义比较抽象,平面内看不到直线,要让学生去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。 高二年级的学生,已具有一定的想象能力和分析问题、解决问题的能力,但尽管思维活跃,敏捷,但却缺乏冷静、思考,因而片面,不够严谨。仍需依赖一定的具体形象的经验材料来理解抽象的逻辑关系。 三、教法与学法分析 本节课内容是学生空间观念形成的关键时期,课堂上充分利用现实情境,学生通过感知、观察,提炼直线与平面垂直的定义;进一步,在一个具体的数学问题情景中设想,并在教师指导下,动手操作,观察分析,自主探索等活动,切实感受直线与平面垂直判定定理的形成过程,体会蕴含在其中的思想方法。 采用启发式、引导式、参与式的教学方法,引导学生进行自主尝试和探究;引导学生采用自主探索与互相协作相结合的学习方式。 四、教学过程设计

空间直线和平面总结知识结构图+例题

【同步教育信息】 一. 本周教学内容: 期中复习 [知识串讲] 空间直线和平面: (一)知识结构 (二)平行与垂直关系的论证 1、线线、线面、面面平行关系的转化: 线线∥ 线面∥ 面面∥ 公理 4 (a//b,b//c a//c) 线面平行判定 αβ αγβγ //,//I I ==???? a b a b 面面平行判定1 a b a b a //,//???? ??ααα 面面平行性质 a b a b A a b ??=????? ?ααββαβ ,//,////I 线面平行性质 a a b a b ////αβαβ?=???? ? ?I 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? A b α a β a b α 2. 线线、线面、面面垂直关系的转化:

线线⊥线面⊥面面⊥三垂线定理、逆定理 PA AO PO a a OA a PO a PO a AO ⊥ ? ⊥?⊥ ⊥?⊥ α α α ,为 在内射影 则 线面垂直判定1面面垂直判定 a b a b O l a l b l , , ? = ⊥⊥ ?⊥ ? ? ? ? ? α α I a a ⊥ ? ?⊥ ? ? ? α β αβ 线面垂直定义 l a l a ⊥ ? ?⊥ ? ? ? α α 面面垂直性质,推论2 αβ αβ β α ⊥ = ?⊥ ?⊥ ? ? ? ? ? I b a a b a , αγ βγ αβ γ ⊥ ⊥ = ?⊥ ? ? ? ? ? I a a 面面垂直定义 αβαβ αβ I=-- ?⊥ ? ? ? l l ,且二面角 成直二面角 3. 平行与垂直关系的转化: 线线∥线面⊥面面∥ 线面垂直判定2面面平行判定2 面面平行性质3 a b a b // ⊥ ?⊥ ? ? ? α α a b a b ⊥ ⊥ ? ? ? ? α α // a a ⊥ ⊥ ? ? ? ? α β αβ // αβ α β // a a ⊥ ⊥ ? ? ? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: (三)空间中的角与距离 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90°

《直线与平面垂直的判定》教学设计

《直线与平面垂直的判定》教学设计 一、内容和内容解析 本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用。直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的基础,是空间中垂直位置关系间转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的基础,因而它是空间点、直线、平面间位置关系中的核心概念之一。 直线与平面垂直是通过直线和平面内的任意一条直线(无一例外)都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理,本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行。直线与平面垂直的判定方

法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。 本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想。直线与平面垂直是研究空间中的线线关系和线面关系的桥梁,为后继面面垂直的学习、距离的学习奠定基础。 二、学情分析 (1)学生的起点能力分析 学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础。 学生学习的困难在于如何从直线与平面垂直的直观形象中提炼出直线与平面垂直的定义,感悟直线与平面垂直的意义;以及如何从折纸试验中探究出直线与平面垂直的判定定理。 (2)学习行为分析 本节课安排在立体几何的初始阶段,是学生空间观念形成的关键时期,课堂上学生通过感知、观察、提炼直线与平面垂直的定义,进而通过辨析讨论,深化对定义的理解。进一步,在一个具体的数学问题情境中猜想直线与平面垂直的判定定理,并在教师的指导下,通过

直线与平面垂直的判定及其性质测试题

直线与平面垂直的判定与性质 一、选择题 1.两异面直线在平面α内的射影() A.相交直线 B.平行直线 C.一条直线—个点 D.以上三种情况均有可能 2.若两直线a与b异面,则过a且与b垂直的平面() A.有且只有—个 B.可能存在也可能不存在 C.有无数多个 D.—定不存在 3.在空间,下列哪些命题是正确的() ①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同—个平面的两条直线互相平行. A.仅②不正确 B.仅①、④正确 C.仅①正确 D.四个命题都正确 4.若平面α的斜线l在α上的射影为l′,直线b∥α,且b⊥l′,则b与l() A.必相交 B.必为异面直线 C.垂直 D.无法确定 5.下列命题 ①平面的每条斜线都垂直于这个平面内的无数条直线; ②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影; ③若平面的两条斜线段相等,则它们在同一平面内的射影也相等; ④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长. 其中,正确的命题有() A.1个 B.2个 C.3个 n 4个 6.在下列四个命题中,假命题为() A.如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直 B.垂直于三角形两边的直线必垂直于第三边 C.过点A垂直于直线a的所有直线都在过点A垂直于a的平面内 D.如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面 7.已知P是四边形ABCD所在平面外一点且P在平面ABCD内的射影在四边形ABCD内,若P到这四边形各边的距离相等,那么这个四边形是() A.圆内接四边形 B.矩形 C.圆外切四边形 D.平行四边形 8.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离等于()A. B. C.3 D.4 二、填空题 9.AB是平面α的斜线段,其长为a,它在平面α内的射影A′B的长为b,则垂线A′A_________. 10.如果直线l、m与平面α、β、γ满足:l=β∩γ,l⊥α,mα和m⊥γ,现给出以下四个结论: ①α∥γ且l⊥m;②αγ且m∥β③αβ且l⊥m;④αγ且l⊥m;其中正确的为“________”.(写出序号即可) 11.在空间四面体的四个面中,为直角三角形的最多有____________个. 12.如图,正方形ABCD,P是正方形平面外的一点,且PA⊥平面A BCD则在△PAB、△PBC、△PCD、△PAD、△PAC及△PBD中,为直角三角形有_________个. 13.给出以下四个命题 (1)两条平行直线在同一平面内的射影一定是平行直线; (2)两条相交直线在同一平面内的射影一定是相交直线; (3)两条异面直线在同一平面内的射影—定是两条相交直线; (4)一个锐角在平面内的射影一定是锐角. 其中假命题的共有_________个. 14.若一个直角在平面α内的射影是一个角,则该角最大为___________. 三、解答题 15.已知直线a∥平面α,直线b⊥平面α,求证:a⊥b. 16.如图,在长方体AC1中,已知AB=BC=a,BB1=b(b>a),连结BC1,过B l作B1⊥BC1交CC1于E,

231直线与平面垂直的判定

2.3.1 直线与平面垂直的判定 一、教学目标 (一)知识目标:理解直线和平面垂直的定义及判定定理;掌握判定直线和平面垂直的方法; (二)能力目标:培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。 (三)情感目标:引导学生体会从“感性认识”到“理性认识”过程中获取新知。 二、教学重难点 (一)重点:直线与平面垂直的定义和判定定理的探究。 (二)难点:直线与平面垂直的定义和判定定理的探究。 三、活动设计 四、教学过程 (一)创设情景,揭示课题 1、提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆 与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子 吗?然后让学生回忆、思考、讨论、对学生的活动给予评价。 2、指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在 地面上的射影的位置关系引出课题内容。 (二)研探新知 1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长 方体模型让学生感知直线与平面的垂直关系。然后引导学生用“平面化” 的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程 得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与 这个平面垂直呢?组织学生交流讨论,概括其定义。 定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L 与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫 做直线L的垂面。直线与平面垂直时,它们唯一公共点P叫做垂足。 2、提出问题,探索思考: (1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施。有没有比较方便可行的方法来判断直线和平面垂直呢? (2)师生活动:请同学们准备一块三角形的纸片,我们一起来做试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起 放置在桌面上(BD、DC与桌面接触),问如何翻折才能保证折痕 AD与桌面所在平面垂直? (3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进行合情推理,获得判定定理: 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂 直。 特别强调:a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相

直线与平面垂直的判定(教学设计)

教学设计 直线与平面垂直的判定 一.教材分析 直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的基础,是空间中垂直关系转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的基础,因而它是空间点、直线、平面间位置关系中的核心概念之一。 二.学情分析 学生已经学习了直线、平面平行的判定及性质,学习了两直线(共面或异面)互相垂直的位置关系,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的空间想象能力、几何直观能力和推理论证能力。 三.教学目标 根据新课标要求和和教学内容的结构特征,学生获得知识、技能、方法及情感、态度、价值观等方面的要求,结合学生的实际水平,制定本节课的教学目标如下: 1.知识与技能 (1)使学生掌握直线和平面垂直的定义及判定定理; (2)使学生掌握判定直线和平面垂直的方法; (3)引导学生学会观察、发现问题、提炼结论,使他们在直观感知,操作确认的基础上学会归纳、概括结论。 2.过程与方法 (1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程; (2)通过学生动手实践,亲身经历数学知识的形成过程,体验探究的乐趣,增强学习数学的兴趣。 3.情态与价值 培养学生学会从“感性认识”到“理性认识”过程中获取新知。培养学生认真参与积极交流的主观意识;勇于探索新知的精神。渗透由具体到抽象的思想及事物间相互转化和理论联系实际的辩证唯物主义观点。 四.教学重点、难点 依据新课标要求及本节课在高中数学中的地位和作用确定以下重点和难点 教学重点:直线与平面垂直的定义和判定定理。 教学难点:直线与平面垂直定义的正确理解;判定定理的探究和线线垂直与线面垂直关系的灵活相互转化。

全国高中数学 优秀教案 直线与平面垂直教学设计

1.2.3 直线与平面垂直 【教学内容解析】 本节课是苏教版教材必修2中第一章第二节的内容,属于新授概念原理课.其中直线与平面垂直的概念、判定定理的形成是教学重点. 这是直线与平面垂直在本节中的位置.线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例.线面平行研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式.线面垂直是线线垂直的拓展,又是面面垂直的基础,且后续内容如:空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用. 通过本节课的学习研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象、推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法.因此,学习这部分知识有着非常重要的意义. 【教学目标设置】 1.学生通过对实例、模型的观察、抽象,概括出直线与平面垂直的定义,发现、猜想、归纳直线与平面垂直的判定定理. 2.在定义、定理的探究活动中,学生通过独立思考和合作交流,发展类比、归纳等合情推理能力、逻辑思维能力和空间想象能力. 3.学生运用特殊化、类比、化归等数学思想,体验了研究空间关系的一般方法. 4.在探究线面垂直的定义和判定的过程中,体会数学的严谨、简洁之美,体验探究发现的乐趣,培养善于观察、勇于探索的良好习惯. 【学生学情分析】

1.学生已有的认知基础 学生能够感知生活中有大量的线面垂直关系,已经掌握了线线垂直、线面平行的相关知识,从而具备了研究空间位置关系的经验,也体会了立体几何中化归的数学思想方法. 2.达成标所需要的认知基础 要达成本节课的目标,这些已有的知识和经验基础不可或缺,还需要整体上把握本节课的研究内容、方法和途径,能运用类比、化归等数学思想,同时具备较好地观察发现、空间想象、合情推理、抽象概括等能力,以及独立思考、合作交流、反思质疑等良好的数学学习习惯. 我校为普通高中,招收的学生大部分基础薄弱,自主学习能力差.进入高一,虽然能领悟一些基本的数学思想与方法,但还没有形成完整、严谨的数学思维习惯,对问题的探究能力也有待培养. 3.难点及突破策略 难点: 1.运用类比、化归等数学思想方法来研究直线与平面垂直的定义,突破“任意”的生成和理解. 3.探究、归纳、理解直线与平面垂直判定定理,突破“无限”与“有限”的转化. 突破策略: 1.启发学生明确研究的内容与方法,从总体上认识研究的目标与手段. 2.引导学生经过直观感知、操作确认、思辨论证的过程形成线面垂直的定义和判定定理. 3.发动学生通过问题串交流、汇报、展示思维过程,相互启发. 【教学策略分析】 根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用教法和学法如下: 1.教师创设情境,学生列举实例,形成关于线面垂直的直观感知. 2.教师启发引导,学生明确按照“定义——判定——性质”的研究程序,强化空间位置 关系的常用研究策略——降维化归. 3.教师以问题串为载体,驱动学生主动参与知识建构、合作探究. 4.教师分层设计知识应用,引导反思,学生深化理解,形成知识体系.

相关文档
相关文档 最新文档