文档库 最新最全的文档下载
当前位置:文档库 › 用空间向量证明线线垂直与线面垂直

用空间向量证明线线垂直与线面垂直

用空间向量证明线线垂直与线面垂直
用空间向量证明线线垂直与线面垂直

共享知识分享快乐

第二节用空间向量证明线线垂直与线面

垂直

、空间向量及其数量积

1、在空间,既有大小又有方向的量称为空间向量。用AB 或a 表示,其中向量的大小称为向量的长度或

模,记为AB 或a 。正如平面向量a 可用坐标(x,y.)表示,空间向量a 也可用坐标(x,y,z)表示。若已知点 A 坐标为( x1,y1, z1) ,点 B 坐标为( x2,y2,z2)则向量AB =(x2 -x1,y2- y1,z2 -z1)即是终点坐标减起点坐标。

在空间,知道向量a=(x, y,z)则,a = x2y2z2

2、空间向量数量积

① 已知两个非零向量a 、b ,在空间任取一点 O,作OA=a,OB =b ,则角∠ AOB叫向量a

与b的夹角,记作< a ,b >规定,若0≤≤ ,若< a,b>= ,称a与b垂直,记作a

2

⊥b。

② 已知空间两个向量a 、b ,则a b COS< a ,b >叫向量a 、b 的数量积,记作a b =a b COS

b =0

y1,z1),b =( x2,y2,z2)

x1 x2 y1 y2 z1z2

2 2 2 2 2 2

y1 z1 x2 y2 z2

< a ,b >若a ⊥b

若已知空间向量a

则a?b =

x1x2+y1y2+z1z2

a.b COS< a ,b >=

COS

< a,b>=

a.b

x1

例1如图,已知直三棱柱 ABC-A 1B1C1中,∠ BCA=90 0,D1、 E1分别为 A1B1、A1C1中点,若 BC=CA=CC 1,求向量BD1 与AE1 所成角的余弦值。

共享知识分享快乐

AB

练习:已知正方体 ABCD—A1B1C1D1中,B1E1=D1F1= 1 1,求向量BE1与DF1 所成角的余弦

值。4

、利用向量证线线垂直与线面垂直

例 2 在正方体 ABCD—A1B1C1D1中,求证 A1 C⊥平面 AB1 D1

练习:在正方体 ABCD —A1B1C1D1中, O为底面 ABCD的中心, P为 DD1的中点,

例3 如图, PA⊥矩形 ABCD所在平面, M, N分别是 AB ,PC中点

(1)求证: MN⊥CD

卑微如蝼蚁、坚强似大象

C

1

C

共享知识 分享快乐

2)若∠ PDA=45 0 ,求证: MN ⊥平面 PCD

练习:正方体 ABCD — A 1B 1C 1D 1中, M 是棱 D 1D 中点,N 是AD 中点,

P 为棱 A 1 B 1 上任一点。求证: NP ⊥AM

作业: 1.如图,正方体 ABCD — A 1B 1C 1D 1 中,

求证: OE ⊥平面 D 1 AC.

3、如图,直三棱柱 ABC-—A 1B 1C 1中,∠ACB=90 0,AC=1,CB= 2,侧棱 AA 1=1,,侧面 AA 1B 1B 的两 条对角线交点为 D ,B 1 C 1的中点为 M 。求证: CD ⊥平面 BDM

2.如图,正方体 ABCD — A 1B 1C 1D 1

中, 公垂线 . O ,M 分别是 BD 1, AA 1 中点,求证:

E 是 BB 1中点,

C

M

共享知识 分享快乐

ABC 为正三角形, AE 和CD 都垂直于平面 ABC ,且 AE=AB=2a , CD=a ,F 为 BE 中点,求

证:

6、如图,已知直三棱柱 ABC-A 1B 1C 1中 B 1C 1=A 1C 1,A 1B ⊥AC 1。 求证: A 1 B ⊥B 1C

4在棱长为 a 的正方体 ABCD — A 1 B 1C 1D 1中, E , F 分别为棱 AB 和 BC 的中点,

上任一点,当 B1M 值为多少时能使 D 1M ⊥平面 EFB 1

MB 1 1

5、如图, AF ⊥BD

M 为棱 B 1 B

C

第三节 利用空间向量求二面角及证明面面垂直

面角 面角 ,若 的一个法向量为 m , 的一个法向量为 n ,则 cos m,n

mn 面角的

|m| |n |

大小为 m,n 或

m,n

例 1 .如图,正三棱柱 ABC A 1B 1C 1 中, E 为 BB 1 的中点, AA 1 A 1B 1 ,求平面 A 1 EC 与平面 A 1B 1C 1所成 锐角的大小。

例 2.( 05 年全国)如图,在四棱锥

底面 ABCD .

(1)证明 AB ⊥平面 VAD ;

( 2)求面 VAD 与面 VBD 所成的二面角的大

练习:如图,棱长为 1 的正方体

ABCD A 1 B 1C 1D 1中, E 是CC 1的中

点,

求二面角 B B 1E D 的余弦值。

V-ABCD VAD 是正三角形 ,平面 VAD ⊥

C

A

B

二.证面面垂直

若平面 的一个法向量为 m ,平面 的一个法向量为 n ,且 m n ,则 。

例 3.在四棱锥 P-ABCD 中,侧面 PCD 是正三角形, 且与底面 ABCD 垂直,已知底面是面积为 2 3的菱形,

ADC 600,M 是 PB 的中点。

1)求证: PA CD

2)求二面角 P AB D 的度数; 3)求证:平面 PAB 平面 CDM 。

点 E 为 AB 的中点,点 F 为

PD 的中点。

( 1)证明平面 PED ⊥平面 PAB ;

( 2)求二面角 P-AB-F 的平面角的余弦值

作业:

1.( 04年广东)如图,在长方体 ABCD A 1B 1C 1D 1 中,

已知 AB 4,AD 3,AA 1 2,E,F 分别是线段 AB, BC 上的点,且 EB FB 1。

Ⅰ)求二面角 C-DE-C 1 的正切值; Ⅱ)求直线 EC 1与 FD 1所成角的余弦值。

练习:( 04 年辽宁)已知四棱锥 P-ABCD 中,底面 ABCD 是菱形, DAB 60 ,PD 平面 ABCD ,PD=AD ,

B

A

P

D

共享知识 分享快乐

2.(05 年全国)已知四棱锥 P-ABCD 的底面为直角梯形,

1

PA=AD=DC= AB=1 , M 是 PB 的中点。

2

( 1)证明:面 PAD ⊥面 PCD ; ( 2)求 AC 与 PB 所成的角;

( 3)求面 AMC 与面 BMC 所成二面角的大小。

3.已知四棱锥 P-ABCD 的底面是边长为 2 的正方形,侧棱 PA 底面 ABCD ,PA =2,M 、N 分别是 AD 、

BC 的中点, MQ PD 于 Q

1)求证:平面 PMN 平面 PAD ;

2)求 PM 与平面 PCD 所成角的正弦值; 3)求二面角 P MN Q 的余弦值。

4.(06 年全国)如图,在直三棱柱 ABC - A 1B 1C 1中, AB = BC , D 、 E 分别为 BB 1、AC 1的中点.

(1)证明: ED 为异面直线 BB 1 与 AC 1的公垂线;

(2)设 AA 1=AC = 2AB ,求二面角 A 1-AD -C 1 的大小.

AB∥DC , DAB 90 ,PA 底面 ABCD ,且

P

B 1

D

C

共享知识分享快乐

5.(04 年浙江)如图,已知正方形 ABCD 和矩形 ACEF 所在的平面互相垂直, AB= 2,AF=1,M是线段 EF 的中点。

( 1)求证: AM//平面 BDE;

( 2)求二面角 A DF B 的大小;

(3)试在线段 AC上确定一点 P,使得 PF与 BC所成的角是

60 。

6.(05年湖南)如图 1,已知 ABCD 是上.下底边长分别为 2和6,高为3的等腰梯形,将它沿对称轴 OO1 折成直二面角,如图 2.

(1)证明: AC ⊥BO1;

(2)求二面角 O-AC-O 1 的大小。

7.(06 年山东)如图,已知四棱锥 P-ABCD 的底面

ABCD 为等腰梯形, AB ∥DC,AC ⊥ BD,AC 与BD 相交于

点 O,且顶点

P 在底面上的射影恰为点 O,又 BO=2,PO= 2 ,PB⊥ PD.

(1)求异面直线 PD 与 BC 所成角的余弦值;卑微如蝼

蚁、坚强似大象

D O1 C

共享知识分享快乐

(2)求二面角 P-AB-C 的大小;

(3)设点 M 在棱 PC 上,且PM

,问为何值时,

MC PC⊥平面 BMD.

人生不能留遗憾

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

用法向量求二面角和证明两平面垂直

用法向量求二面角和证明两平面垂直 用法向量证明两平面垂直问题 要证两平面相互垂直,只需找出这两个平面的两个法向量,证明这两个法向量相互垂直。 例1.如右图,△ABC 是一个正三角形,EC ⊥平面ABC , BD ∥CE ,且CE=CA=2BD ,M 是EA 的中点。 求证:(1)DE=DA ; (2)平面BDM ⊥平面ECA ; (3)平面DEA ⊥平面ECA ; 分析(3):建立如图所示右手直角坐标系 ,不妨设CA=2, 则CE=2,BD=1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1),( ) 2,1,3-= EA ,()2,0,0=CE ,()1,2,0-=ED , 分 别假设面CEA 与面DEA 的法向量是()1111,,z y x n =、()3222,,z y x n =,所以得 11111113203200x y z y x z z ??+-==???? ?==????,22222 2222 3203202x y z x y y z z y ??+-==?????-==???? 不妨取() 0,3,11-=n 、()2,1,32=n ,从而计算得02 1 =?n n ,所以两个法向量相互 垂直,两个平就相互垂直。 用法向量求二面角 如图,有两个平面α与β,分别作这两个平面的法向量1n 与2n ,则平面α与β所成的角跟法向量1n 与 2n 所成的角相等或互补,所以首先必须判断二面角是锐角还是钝角。 例2、如下图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB=a ,AD=3a ,sin ∠ADC= 5 5 ,且PA ⊥平面ABCD ,PA=a ,求二面角P-CD-A 的平面角的余弦值。 分析:依题意,先过C 点CE ⊥AD ,计算得ED=2a ,BC=AE=a,建立如图右角直角坐标系,则P (0,0,a ),D(0,3a,0), C(a,a,0), () a a PD -=,3,0, () a a a PC -=,,, ()0,3,0a AD =,()0,,a a AC = 取平面ACD 的一个法向量()1,0,01=n ,设平面PCD 的法 z y x E A D B P C z y x M C B A E D

用空间向量证明线线垂直与线面垂直

第二节 用空间向量证明线线垂直与线面垂直 一、空间向量及其数量积 1、 在空间,既有大小又有方向的量称为空间向量。用或a 表示,其中向量的大小称为向量的长度或模, 或a 。正如平面向量可用坐标(x,y.)表示,空间向量也可用坐标(x,y,z)表示。若已知点A坐标为(x 1,y1,z1),点B 坐标为(x2,y 2,z 2) 则向量=(x 2 -x1,y 2- y 1,z 2 -z 1)即是终点坐标减起点坐标。 在空间,知道向量=(x,y ,z) 222z y x ++ 2、 空间向量数量积 ① 已知两个非零向量a 、b ,在空间任取一点O,作OA =a ,OB =b ,则角∠A OB 叫向量a 与b 的 夹角,记作<,>规定,若0≤<,>≤π,若<,>= 2 π ,称与垂直,记作⊥。 ② 已知空间两个向量、, 则 COS <,>叫向量、的数量积,记作a ? COS <,>若⊥?a ? =0 ③ 若已知空间向量=(x1,y 1,z 1), =(x 2,y2,z 2) 则a ?b =x 1x 2+y 1y2+z 1z 2 , COS<,> 2 2 2 22 22 12 12 12 12121z y x z y x z z y y x x ++?++++= 例1 如图,已知直三棱柱ABC -A 1B 1C 1中,∠B CA=900,D 1、E 1分别为A1B 1、A 1C 1中点,若BC=CA =C C1,求向量1BD 与1AE 所成角的余弦值。 C 1 B 1 A1 A C B D 1 E 1

E D A 1 F D 1 A B 1 C B C 1

1111D C B A 中,11E B =11F D = 4 1 1B A ,求向量1BE 与1DF 所成角的余弦值。 二 、利用向量证线线垂直与线面垂直 例2 在正方体AB CD —1111D C B A 中,求证A1C ⊥平面AB 1D 1 练习:在正方体ABCD —1111D C B A 中,O为底面ABCD 的中心,P为DD1的中点, 求证:B1O ⊥平面PAC 。 例3 如图,PA ⊥矩形ABCD 所在平面,M, N分别是AB ,P C中点 (1)求证:M N ⊥CD (2)若∠P DA=450 ,求证:MN ⊥平面P CD B A D C B A C D B 1 A 1 D C B A C 1 D 1 O P C D P N

空间向量与平行关系

《空间向量与平行关系》 教学目标: 知识与技能:掌握线线平行,线面平行,面面平行的传统,基底,坐标方法. 过程与方法:在简单例题中利用这三种方法,循序渐进,慢慢熟练掌握. 情感与价值:通过对线,面平行,两种方法的比较.发现其中的数学规律, 学会总结,慢慢理解加深对数学的认识. 教育目标:数学课到底教什么? 一教知识:传授人类在历史发展的过程中对各类事物观察、归纳、推演和论证过的共有的和特有的稳定属性,即事物在变化过程中保持的不变性。如三角形(类),其内角和 为180度(共有属性),而多边形的外角和为360度(更高层面的总结). 二教方法和思想:引导学生重演知识的发生发展的过程,感受人类先哲们探索的艰辛,体会数学先驱们天才的思想,从而学会观察事物,提出问题并加以解决,让数学知识 这“冰冷的美丽唤出火热的思考”。 三引导学生融会贯通:简化记忆,构建起自己的数学结构,即总结出自己解决问题的“中途点”,以期能站在前人的肩膀上思考和分析问题. 教学难点:线,面平行传统方法的回顾 处理办法:在学案进行复习巩固 教学重点:用向量解决线,面平行问题 处理办法:通过例题循序渐进 教学设计 一.(复习回顾)

2.方向向量:在空间中直线的方向上用一个与该直线平行的非零向量来表示,该向量称为这条直线 的一个方向向量. 法向量:垂直于平面的向量(非零向量) 向量垂直:0=??⊥→→→→b a b a (两非零向量)“思考为什么要强调两非零向量”? 二.新知引入:向量法 1. 设直线m l ,的方向向量分别为→→b a ,,平面βα,的法向量分别为→→v u ,,则: R b a b a m l ∈=??→→→→λλ,∥∥ 0=??⊥?→→→→u a u a l α∥ R v u v u ∈=??→→→→λλβα,∥∥ 1.线线平行 ① 设直线n m ,的方向向量分别为→→b a ,,根据下列条件判断直线n m ,的位置关系: ()2,1,2--=→a ()6,3,6--=→b , ()2,1,2--=→a ()2,1,2--=→ b , ②已知→1e ,→ 2 e 是空间任意两个非零向量,根据下列条件判断直线n m ,的位置关系: →→→-=2132e e a →→→+-=2132e e b →→→-=2132e e a →→→-=2164e e b 2.线面平行 ①设直线l 的方向向量为→a ,平面α的法向量为→u ,且直线l 不在平面α内.若0=?→→u a ,则( ) A .l α∥ B .l ?α C .l ⊥α D .l ?α或l α∥ ②设直线l 的方向向量为→a ,平面α的法向量为→u ,若0=?→→u a ,则( ) A .l α∥ B .l ?α C .l ⊥α D .l ?α或l α∥ ③设直线m 的方向向量为→a ,平面σ的法向量为,→u 直线m 不在平面α内. 根据下列条件判断直线 m 与平面σ的位置关系: ()5,2,2-=→a ()4,46-=→,u ()5,2,2-=→a ()2,23-=→ ,u 3.面面平行 ①设平面βα,的法向量分别为→→v u ,,根据下列条件判断直线β α,的位置关系 ()2,2,1-=→u ()4,4,2--=→v ()6,6,3-=→u ()4,4,2--=→v ②设平面σ的法向量为(1,2,-2),平面β的法向量为(-1,-2,k ),若βα∥,则k =( ) A .2 B .-4 C .4 D .-2

条据书信 如何证明是向量空间

如何证明是向量空间 向量空间证明解题的基本方法: 1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位; 3)计算有关点的坐标值,求出相关向量的坐标; 4)求解给定问题 证明直线与平面垂直的方法是在平面中选择二个向量,分别与已知直线向量求数积,只要分别为零,即可说明结论。 证明直线与平面平行的关键是在平面中寻找一个与直线向量平行的向量。这样就转化为证明二个向量平行的问题,只要说明一个向量是另一向量的m(实数)倍,即可 只要多做些这方面的题,或看些这方面的例题,也会从中悟出经验和方法 2 解: 因为x+y+z=0 x=-y-z y=y+0xz z=0xy+z (x,y,z)=(-1,1,0)xy+(-1,0,1)xz y,z为任意实数

则:(-1,1,0);(-1,0,1)是它的一组基,维数为2(不用写为什么是2) 步骤1 记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c) =i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A) =-asinC+csinA=0 接着得到正弦定理 其他 步骤2. 在锐角△ABC中,设BC=a,AC=b,AB=c。篇二:《空间向量在几何证明题解法》 空间向量在几何体中例题 1如图,在四棱椎P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点。 (1)求证:EF⊥CD; (2)证明:PA//平面DEF 3.已知四棱锥P ABCD的底面为直角梯形,AB//DC, DAB90,PA底面ABCD,且PA AD DC 1 2

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

利用空间向量证明线线垂直

利用空间向量证明线线垂直 1.如图,在四棱锥S?ABCD中,SA⊥底面ABCD,四边形ABCD 是边长为1的正方形,且SA=1,点M是SD的中点. 求证:SC⊥AM 2.如图,在三棱柱ABC?A1B1C1中,CC1⊥平面ABC,AC⊥BC, AC=BC=2,CC1=3,点D,E分别在棱AA1和棱CC1上, 且AD=1,CE=2,M为棱A1B1的中点. 求证:C1M⊥B1D 3.如图,正三棱柱ABC?A1B1C1中,底面边长为√2.设侧棱长为1, 求证:AB1⊥BC1

4.如图,在四棱锥中,底面,,, ,,点E为棱PC的中点.证明: 5.如图,在三棱柱ABC?A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3, 点D,E分别在棱AA1和棱CC1上,且AD=1,CE=2,M为棱A1B1的中点. 求证:C1M⊥B1D 6.如图所示,直三棱柱ABC?A′B′C′的侧棱长为4,AB⊥BC,且AB=BC=4,点D, E分别是棱AB,BC上的动点,且AD=BE. 求证:无论D在何处,总有B′C⊥C′D

答案和解析 1.解:证明:以A 为原点,AB 为x 轴,AD 为y 轴,AS 为z 轴,建立如图所示的空间直角坐标系, 则S(0,0,1),C(1,1,0),A(0,0,0),M(0,12,12),∴SC ????? =(1,1,?1),AM ?????? =(0,12,1 2 ), ∴SC ????? ?AM ?????? =12?12=0,∴SC ⊥AM . 2.解:根据题意,以C 为原点,CA ????? ,CB ????? ,CC 1??????? 的方向为x 轴,y 轴,z 轴的正方向建立 空间直角坐标系,如图所示, 则C(0,0,0),A(2,0,0),B(0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D(2,0,1), E(0,0,2),M(1,1,3),证明:依题意,C 1M ???????? =(1,1,0),B 1D ???????? =(2,?2,?2), ∴C 1M ???????? ·B 1D ???????? =2?2+0=0,∴C 1M ???????? ⊥B 1D ???????? ,即C 1M ⊥B 1D ; 3.证明:(1)AB 1??????? =AB ????? +BB 1??????? ,BC 1??????? =BB 1??????? +BC ????? .因为BB 1⊥平面ABC , 所以BB 1??????? ?AB ????? =0,BB 1??????? ?BC ????? =0.又△ABC 为正三角形, 所以=π?=π?π3=2π3.因为AB 1??????? ?BC 1??????? =(AB ????? +BB 1??????? )?(BB 1??????? + BC ????? )=AB ????? ?BB 1??????? +AB ????? ?BC ????? +BB 1??????? 2 +BB 1??????? ?BC ????? =|AB ????? |?|BC ????? |?cos +BB 1??????? 2=?1+1=0,所以AB 1⊥BC 1. 4.证明:(1)依题意,以点A 为原点建立空间直角坐 标系(如图), 可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2). 由E 为棱PC 的中点,得E(1,1,1) 向量BE ????? =(0,1,1),DC ????? =(2,0,0),

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

§3.2 立体几何中的向量方法(二)——空间向量与垂直关系

§3.2立体几何中的向量方法(二) ——空间向量与垂直关系 课时目标 1.能利用平面法向量证明两个平面垂直.2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系. 1.空间垂直关系的向量表示 空间中的垂直关系 线线垂直线面垂直面面垂直 设直线l的方向向量为a =(a1,a2,a3),直线m 的方向向量为b=(b1,b2,b3),则l⊥m?______ 设直线l的方向向量是a= (a1,b1,c1),平面α的法向量 u=(a2,b2,c2),则l⊥α? ________ 若平面α的法向量u=(a1,b1 , c1),平面β的法向量为v= (a2,b2,c2),则α⊥β? ________ 线线垂直线面垂直面面垂直 ①证明两直线的方向向量的数 量积为______. ①证明直线的方向向量与平面的法向 量是______. ①证明两 个平面的 法向量 _________ ___. ②证明两直线所成角为 ______. ②证明直线与平面内的相交直线 ________. ②证明二 面角的平 面角为 ________._ _______. 一、选择题 1.设直线l1,l2的方向向量分别为a=(1,2,-2),b=(-2,3,m),若l1⊥l2,则m等于() A.1B.2C.3D.4 2.已知A(3,0,-1),B(0,-2,-6),C(2,4,-2),则△ABC是() A.等边三角形B.等腰三角形 C.直角三角形D.等腰直角三角形 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则() A.l∥αB.l⊥α C.l?αD.l与α斜交

4.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( ) A .平行 B .相交但不垂直 C .垂直 D .不能确定 5.设直线l 1的方向向量为a =(1,-2,2),l 2的方向向量为b =(2,3,2),则l 1与l 2的关系是( ) A .平行 B .垂直 C .相交不垂直 D .不确定 6. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是上底面中心,则AC 1与CE 的位置关系 是( ) A .平行 B .相交 C .相交且垂直 D .以上都不是 二、填空题 7.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______. 8.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有______对. 9.下列命题中: ①若u ,v 分别是平面α,β的法向量,则α⊥β?u·v =0; ②若u 是平面α的法向量且向量a 与α共面,则u·a =0; ③若两个平面的法向量不垂直,则这两个平面一定不垂直. 正确的命题序号是________.(填写所有正确的序号) 三、解答题 10.已知正三棱柱ABC —A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱 CC 1上的点,且CN =1 4 CC 1.求证:AB 1⊥MN . 11.已知ABC —A 1B 1C 1是各条棱长均为a 的正三棱柱,D 是侧棱CC 1的中点,求证:平面AB 1D ⊥平面ABB 1A 1.

用向量方法证明空间中的平行与垂直

用向量方法证明空间中的平行与垂 直 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

用向量方法证明空间中的平行与垂直 1.已知直线a的方向向量为a,平面α的法向量为n,下列结论成立的是( C > A.若a∥n,则a∥α B.若a·n=0,则a⊥α C.若a∥n,则a⊥α D.若a·n=0,则a∥α 解读:由方向向量和平面法向量的定义可知应选 C.对于选项D,直线a?平面α也满足a·n=0. 2.已知α,β是两个不重合的平面,其法向量分别为n1,n2,给出下列结论: ①若n1∥n2,则α∥β;②若n1∥n2,则α⊥β; ③若n1·n2=0,则α⊥β;④若n1·n2=0,则α∥β. 其中正确的是( A > A.①③ B.①④ C.②③ D.②④ 3.(原创>已知A(3,-2,1>,B(4,-5,3>,则与向量错误!平行的一个向量的坐标是( C >b5E2RGbCAP A.(错误!,1,1> B. (-1,-3,2> C.(-错误!,错误!,-1> D.(错误!,-3,-2错误!>p1EanqFDPw 解读:错误!=(1,-3,2>=-2(-错误!,错误!,-1>,DXDiTa9E3d 所以与向量错误!平行的一个向量的坐标是(-错误!,错误!,-1>,故选C.RTCrpUDGiT 4.设l1的方向向量为a=(1,2,-2>,l2的方向向量为b=(-2,3,m>,若l1⊥l2,则m等于 2 .5PCzVD7HxA 5.设平面α的法向量为(1,2,-2>,平面β的法向量为(-2,-4,k>,若α∥β,则k= 4 . 解读:因为α∥β,所以(-2,-4,k>=λ(1,2,- 2>, 所以-2=λ,k=-2λ,所以k=4. 6.已知错误!=(1,5,-2>,错误!=(3,1,z>.若错误!⊥错误!,错误!=(x-1,y,-3>,且BP⊥平面ABC,则实数x=错误!,y=-错误!,z= 4 .jLBHrnAILg 解读:由已知错误!,xHAQX74J0X 解得x=错误!,y=-错误!,z=4. 7.(原创>若a=(2,1,-错误!>,b=(-1,5,错误!>,则以a,b为邻边的平行四边形的面积为2错误!.LDAYtRyKfE 解读:因为a·b=(2,1,-错误!>·(-1,5,错误!>=0,

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

用向量方法证明直线垂直,求两直线夹角

3.2.2用向量运算证明两条直线垂直或求两条直线所成的角 学习目标: 1、进一步理解向量的坐标表示和坐标运算 2、能建立适应的空间直角坐标系并利用坐标方法求空间两个向量的夹角 3、利用向量的数量积解决与立体几何有关的问题 复习回顾 1、 向量数量积的运算及其性质? 2、 向量夹角与线线夹角的联系与区别? 3、 如何求向量的夹角? 一、课前达标: 1、异面直线所成的角: 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角θ等于向量b a ,所成的角或其补角(如图1所示), 则 .||||| |cos b a b a ??=θ 2、预习检测 (1)如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,求证EF ⊥DA 1 . (2)如图,在正方体ABCDA ′B ′C ′D ′中,E `1 、F 1分别是A 1B `1、C 1D 1的四等分点,求BE 1与DF 1所成的角.

二、典例分析: 1、建立坐标系证明线线垂直,求夹角 例3 在棱长为1的正方体中ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、BD 的中点,G 在CD 上,且CG =CD/4,H 为C 1G 的中点,⑴求证:EF ⊥B 1C ;⑵求EF 与C 1G 所成角的余弦值;⑶求FH 的长。 注意思考: (1) 如何建立坐标系、把已知条件转化为向量表示? (2) 如何对已经表示出来的向量进行运算才可获得所需结论? 巩固练习:练习A 1 练习B 1 2、选取基向量求解线线夹角:例4、(见课本100页) O -A B C ,O A =4,O B =5,O C =3; A O B =B O C = C O A =90,M ,N O A ,B C M N ,B C ∠∠∠三棱锥分别是中点,求直线所成角 注意:基向量的选取;如何用基向量来表示未知向量。 巩固练习:练习B 3 三:作业:如下图,直棱柱ABC —A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.

苏教版数学高二- 选修2-1素材 3.2利用空间向量解决形形色色的平行问题

3.2 例析利用空间向量解决形形色色的平行问题 一.证明线线平行 证明两直线平行可用112233//,,()a b a b a b a b R λλλλ?===∈或 3 12123 //a a a a b b b b ? ==. 例1:已知正方体''''ABCD A B C D -,E 、F 分别为'AA 和'CC 的中点.求证://'BF ED . 证明:不妨设正方体的边长为1,建立空间直角坐标系D xyz -,则相关各点坐标为(1,1,0)B ,1 (0,1,)2 F ,1 (1,0,)2 E ,'(0,0,1)D . 11 (0,1,)(1,1,0)(1,0,)22 BF =-=-, 11 '(0,0,1)(1,0,)(1,0,)22 ED =-=-. ∵'1ED BF =?, ∴'//ED BF 即//'BF ED . 例2:如果两条直线同垂直于一个平面,那么这两条直线平行. 已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足,求证://OA BD . 证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O xyz -,i ,j , k 为沿x 轴,y 轴,z 轴的坐标向量,且设(,,)BD x y z =. ∵BD α⊥,∴BD i ⊥,BD j ⊥. ∴(,,)(1,0,0)0BD i x y z x ?=?==, (,,)(0,1,0)0BD j x y z y ?=?==, ∴(0,0,)BD z zk == ∴//BD k . ∵O 、B 为不同两点, ∴//BD OA . 二.证明线面平行 例3:如图已知四边形ABCD 和ABEF 是两个正方形,MN 分别在其对角线FB 、AC 上,且FM AN =.求证://MN 平面EBC . D B O A α

向量讨论平行垂直及夹角

向量讨论平行垂直及夹角 1、如图所示:在三棱锥P-ABQ 中,ABQ PB 平面⊥,BA=BP=BQ,D 、C 、E 、F 分别是AQ,BQ,AP,BP 的中点,AQ=2BD,PD 与EQ 交于点G,PC 与FQ 交于点H,连接GH.求证:AB//GH; 2、如图所示:在四棱柱1111D C B A ABCD -中,侧棱⊥A A 1底面,5,2,1,,1=====⊥CD AD AA AC AB AC AB ABCD 且点M 和N 分别为C B 1和D D 1的中点,求证://MN 平面ABCD .

3、如图所示:在四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面ABCD ,.6,5,4,3,1,//1k DC k BC k AD k AB AA CD AB =====求证:⊥CD 平面11A ADD 4、如图所示:正方体1111D C B A ABCD -中,求 B A 1与平面CD B A 11所成角的大小。

5、如图所示:直三棱柱111C B A ABC -中底面ABC ?满足090,=∠==BCA a CB CA ,棱N M a AA ,,21=分别是11B A 、1AA 的中点。 (1)求BN 的长; (2)求异面直线1BA 与1CB ,所成角的余弦值; 6、在底面是直角梯形的四棱锥ABCD S -中,090=∠ABC ,⊥SA 平面21,1,====AD BC AB SA ABCD ,求平面SCD 与平面SBA 所成的二面角余弦值;

7、如图所示:在长方体1111D C B A ABCD -中,已知5,4,31===AA BC AB ,分别求点1A 到直线BD AC 、的距离; 8、正方体1111D C B A ABCD -的棱长为2,G F E ,,分别是AB A D C C ,,111的中点,求点A 到平面EFG 的距离;

向量法证明线面平行及垂直问题教案

龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法证明线面平行及垂直 掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离. 二、授课内容及过程: 考点1.利用空间向量证明空间垂直问题 例1:已知三棱锥P -ABC 中,PA ⊥面ABC ,AB ⊥AC ,PA=AC=12 AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.证明:CM ⊥SN ; 证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空 间直角坐标系如图,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0, 12),N (12,0,0),S (1,12,0)111(1,1,),(,,0)222 CM SN =-=--, 因为110022 CM SN ?=-++=, 所以CM ⊥SN . 【点评】对坐标系易建立的空间线线垂直判定(证明)问题,常用向量法,即通 过证明所证直线的方向向量的数量积为0证明两直线垂直. 例2:在长方体1111ABCD A B C D -中,E 、F 分别是棱BC ,1CC 上的点,CF =AB =2CE , 1::AB AD AA = 1:2:4.证明AF ⊥平面1A ED 解析:如图所示,建立空间直角坐标系,点A 为坐标原点,设1AB =,依题意得 (0,2,0)D ,(1,2,1)F , 1(0,0,4)A ,31,,02E ?? ??? 已知(1,2,1)AF =,131,,42EA ? ?=-- ???,11,,02ED ??=- ?? ?于是AF ·1EA =0,AF ·ED =0.因此,1AF EA ⊥,AF ED ⊥,又1EA ED E ?= 所以AF ⊥平面1A ED 【点评】对坐标系易建立的空间线面垂直问题,通常用向量法,先求出平面的法 向量和直线的方向向量,证明平面法向量与直线的方向向量平行或者直接用向量 法证明直线与平面内两条相交直线垂直,再用线面垂直判定定理即可. 例3:在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD , //PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. 求证:平面EFG ⊥平面PDC . 解析:以A 为原点,向量DA ,AB ,AM 分别为x 轴、y 轴、z 轴的正方向,如

空间向量巧解平行,垂直关系

高中数学空间向量巧解平行、垂直关系 编稿老师刘咏霞一校黄楠二校杨雪审核郑建彬 一、考点突破 知识点课标要求题型说明 空间向量巧解 平行、垂直关系 1. 能够运用向量的坐标判断两个 向量的平行或垂直。 2. 理解直线的方向向量与平面的 法向量。 3. 能用向量方法解决线面、面面的 垂直与平行问题,体会向量方法在 立体几何中的作用。 选择题 填空题 解答题 注意用向量方 法解决平行和垂直 问题中坐标系的建 立以及法向量的求 法。 二、重难点提示 重点:用向量方法判断有关直线和平面的平行和垂直关系问题。 难点:用向量语言证明立体几何中有关平行和垂直关系的问题。 考点一:直线的方向向量与平面的法向量 1. 直线l上的向量a或与a共线的向量叫作直线l的方向向量。 2. 如果表示向量a的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a⊥α,此时向量a叫作平面α的法向量。 【核心归纳】

① 一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。 ② 在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的。 【随堂练习】 已知A (1,1,0),B (1,0,1),C (0,1,1),则平面ABC 的一个法向量的单位向量是( ) A. (1,1,1) B. C. 111 (,,) 333 D. (333 - 思路分析:设出法向量坐标,列方程组求解。 答案:设平面ABC 的一个法向量为n =(x ,y ,z ),AB u u u r =(0,-1,1),BC uuu r =(- 1,1,0),AC u u u r =(-1,0,1),则·0 ·0· 0AB y z BC x y AC x z ?=-+=?? =-+=??=-+=??n n n u u u r u u u r u u u r ,∴x =y =z , 又∵单位向量的模为1,故只有B 正确。 技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下: (1)设出平面的法向量为n =(x ,y ,z )。 (2)找出(求出)平面内的两个不共线的向量a =(a 1,b 1,c 1),b =(a 2,b 2,c 2)。 (3)根据法向量的定义建立关于x ,y ,z 的方程组· 0· 0.=??=?n a n b (4)解方程组,取其中的一个解,即得法向量。 考点二:用向量法证明空间中的平行关系、垂直关系

江苏省淮阴中学高三数学一轮复习 第82课时 利用空间向量证明平行与垂直问题学案(无答案)

第82课时 利用空间向量证明平行与垂直问题 考点解说 利用直线的方向向量和平面的法向量判定直线与直线,直线与平面,平面与平面的位置关系,掌握用向量方法处理空间中的平行与垂直问题. 一、基础自测 1.已知向量),,3(),5,4,2(y x b a ==分别是直线12,l l 的方向向量,若1l ∥2l ,则=x =y . 2.已知)5,6,2(),,3,8(b n a m ==,若m //n ,则=+b a . 3.已知,,a b c r r r 分别为直线,,a b c 的方向向量且 (0),0,a b b c λλ=≠?=r r r r 则a 与c 的位置关系是 . 4.在空间四边形ABCD 中,E 、F 是分别是AB 、AD 上的点,且AE:EB=AF:FD=1:4,又H,G 分别是BC 、CD 的中点,则EFGH 是 形. 5.正三棱柱111ABC A B C -中,底面边长AB=1,且11AB BC ⊥,则侧棱1AA 的长为 . 6.已知平行六面体1111ABCD A B C D -底面为菱形, 0 1160,C CB BD CA ∠=⊥,则1C CD ∠的大小为 . 7.正方体1111ABCD A B C D -中,M 、N 、P 分别是棱1CC 、BC 、CD 的中点,则直线1A P 与平面MND 所成角为 . 8.空间四边形ABCD 中,,AB CD BC AD ⊥⊥,则AC 与BD 的位置关系为 . 二、例题讲解 例1.如图,正方体ABCD -A 1B 1C 1D 1中,O 是AC 和BD 的交点,M 是CC 1的中点,求证:A 1O ⊥平面MBD. 例2.正方体ABCD -A 1B 1C 1D 1中,E,F 分别是BB 1,CD 的中点,求证:平面AED ⊥平面A 1FD 1. 例 3.如图正方体ABCD -A 1B 1C 1D 1中,M,N,E,F 分别是所在棱的中点,求证:平面AMN ∥平面EFBD.

相关文档
相关文档 最新文档