文档库 最新最全的文档下载
当前位置:文档库 › 内存数据库与磁盘数据库比较

内存数据库与磁盘数据库比较

内存数据库与磁盘数据库比较
内存数据库与磁盘数据库比较

内存数据库(MMDB)与磁盘关系数据库(DRDB)比较一、传统数据库与实时数据库

传统数据库系统(Traditional Database System,TDBS)处理对永久数据的管理,实现事务对永久数据的存取,同时维护其完整性、一致性。所以传统的数据库具有ACID(Atomicity,Consistency,Isolation,Durability)特征,即原子性、一致性、隔离性和永久性。传统数据库管理系统的典型代表是关系型数据库RDBMS(Relational Database Management System),我们平常用到的商用数据库管理系统如Oracle, Informix, Sybase, SQL Server等都是RDBMS。RDBMS已发展了很多年,其技术成熟度已广为人接受,其可靠性、可用性已被广泛验证,并在传统的商务和管理事务型的应用领域获得了极大成功,然而它们在现代的(非传统)工程和时间关键型应用面前却显得软弱无力,其主要原因是其数据存取服务的实时性很难得到保障,由此导致了实时数据库系统(Real-time DataBase System)的产生和发展。

实时数据库系统就是其事务和数据都可以具有定时特性或显式的定时限制的数据库系统,系统的正确性不仅依赖于逻辑结果,而且还依赖于逻辑结果产生的时间。近年来,实时数据库系统已发展成现代数据库系统研究的重要方向之一,在数据库研究领域受到极大关注。实时数据库系统通常简称为实时数据库(Real-time Database,RTDB)。

二、磁盘数据库与内存数据库

正如前面所述,我们平常用到的商业关系数据库系统,其主要目标是保证数据存取的ACID特征,为各类商务及事务应用提供强大的数据管理与存取服务。但它们的数据服务的实时性很难得到保障,其根本原因在于:

传统数据库是磁盘数据库(Disk Resident Database,DRDB),即数据的主拷贝(Primary DB)在磁盘上,数据库管理系统为了向应用系统提供存取服务,将用户需要访问的数据装入主存中,即对数据的管理是“基于磁盘的缓存技术”。而我们知道,磁盘相对于主存来说是极其低速的存储介质,且磁盘存取速度还和

欲存取的数据的物理位置和当前磁头状态有关。另外,管理缓存(cache)或缓冲(buffer),无论是在操作系统(OS)层,还是数据库管理系统层,都需要付出较大的代价(时间和空间,尤以时间代价为甚)。因此,即使将磁盘数据全部缓存到主存,其管理代价仍较大,存取速度仍然无法满足多数实时性应用系统的要求。

为了实现实时数据库系统,人们自然想到了基于内存的数据库,即内存数据库(Main Memory Database,MMDB)。MMDB与DRDB的根本区别在于,在MMDB中,数据库的全部或活动事务存取的数据放于内存中(如图1所示),这样事务对盘的访问完全取消了。由于整个数据库放于内存,数据库则不再作为大量存储文件看待而作为内存中可寻址的大量数据,不同于DRDB中的缓存或缓冲区方式,它完全打破了传统磁盘数据库系统的设计宗旨,带来了其自身新的设计问题。如:传统磁盘数据库系统的数据组织、访问方法、查询处理算法的设计都针对减少磁盘访问次数与有效利用盘存储空间,甚至牺牲CPU时间来减少I/O 次数(如查询处理有大量中间数据),而内存数据库的设计则主要考虑如何有效地利用CPU的时间和内存空间。对传统磁盘数据库系统相当有效的数据组织、访问方法、查询处理算法,对于内存数据库系统可能并不有效,相反,一些认为对传统磁盘数据库系统无用的办法,反而成为可行的。显然此方式可完全消除事务与盘打交道,且可避免与影响性能的缓冲区管理程序发生联系,故采用此方式使数据库系统性能极大提高。

内存数据库介绍

常用内存数据库介绍(一) 博客分类: 内存数据库 数据结构Oracle企业应用网络应用设计模式 (注:部分资料直接来源于Internet) 1. 内存数据库简介 1.1 概念 一、什么是内存数据库 传统的数据库管理系统把所有数据都放在磁盘上进行管理,所以称做磁盘数据库(DRDB:Disk-Resident Database)。磁盘数据库需要频繁地访问磁盘来进行数据的操作,由于对磁盘读写数据的操作一方面要进行磁头的机械移动,另一方面受到系统调用(通常通过CPU中断完成,受到CPU时钟周期的制约)时间的影响,当数据量很大,操作频繁且复杂时,就会暴露出很多问题。 近年来,内存容量不断提高,价格不断下跌,操作系统已经可以支持更大的地址空间(计算机进入了64位时代),同时对数据库系统实时响应能力要求日益提高,充分利用内存技术提升数据库性能成为一个热点。 在数据库技术中,目前主要有两种方法来使用大量的内存。一种是在传统的数据库中,增大缓冲池,将一个事务所涉及的数据都放在缓冲池中,组织成相应的数据结构来进行查询和更新处理,也就是常说的共享内存技术,这种方法优化的主要目标是最小化磁盘访问。另一种就是内存数据库 (MMDB:Main Memory Database,也叫主存数据库)技术,就是干脆重新设计一种数据库管理系统,对查询处理、并发控制与恢复的算法和数据结构进行重新设计,以更有效地使用CPU周期和内存,这种技术近乎把整个数据库放进内存中,因而会产生一些根本性的变化。两种技术的区别如下表:

内存数据库系统带来的优越性能不仅仅在于对内存读写比对磁盘读写快上,更重要的是,从根本上抛弃了磁盘数据管理的许多传统方式,基于全部数据都在内存中管理进行了新的体系结构的设计,并且在数据缓存、快速算法、并行操作方面也进行了相应的改进,从而使数据处理速度一般比传统数据库的数据处理速度快很多,一般都在10倍以上,理想情况甚至可以达到1000倍。 而使用共享内存技术的实时系统和使用内存数据库相比有很多不足,由于优化的目标仍然集中在最小化磁盘访问上,很难满足完整的数据库管理的要求,设计的非标准化和软件的专用性造成可伸缩性、可用性和系统的效率都非常低,对于快速部署和简化维护都是不利的。 2. 内存数据库历史和发展 一、雏形期 从上个世纪60年代末到80年代初。在这个时期中,出现了主存数据库的雏形。1969年IBM公司研制了世界上最早的数据库管理系统------基于层次模型的数据库管理系统IMS,并作为商品化软件投入市场。在设计IMS时,IBM考虑到基于内存的数据管理方法,相应推出了IMS/VS Fast Path。Fast Path是一个支持内存驻留

数据库性能指标

数据库种类 数据库性能指标 1查询性能 多用户与查询之前的冲突 硬件 然而并不是所有的数据库性能问题都是来自数据库本身,我们日常工作中最常见的另一个情景就是数据库的硬件有若干问题,这里我们简单的介绍一下可能会出现的情况,毕竟市面上有已经有很多工具可以监测这些问题了 1、没有足够的CPU或CPU速度太慢:更多的CPU可以分担服务器的负载,从而提高性能。 2、慢的磁盘没有足够的IOPS:磁盘性能可以描述为每秒输入/输出操作(IOPS),它表示每秒磁盘的吞吐量。 3、配置不正确的磁盘:数据库需要效果明显的磁盘访问,配置不正确的磁盘会造成相当大的性能影响。 4、没有足够的内存:受限或不好的物理内存影响数据库性能,可用的内存越多,性能越好。 1NOsql 数据库优点 处理大规模数据和高并发能力 缺点 1. 复杂的数据库:NoSQL的简洁,有效,速度,然而所有这些特性都表现在数据库任务很简单的时候。当数据库变得更复杂,NoSQL开始崩溃 。同时nosql相对sql方面行业标准还不成熟,SQL有行业标准接口,而每一个nosql都是独一无二的 2. 灵活的Schema设计:在以前的数据库模型中,程序员必须考虑他们所需要的列,以照顾所有的潜在的可能性和每行中的数据项。当使用NoSQL时,各种各样的字符串都能实现,这种灵活性使得程序员能够快速地提高应用的速度。然而,当有几个小组在同一个项目上工作,或者当新的开发团队接手某个项目时,这可能是个问题。 3. NoSQL数据库相比关系型数据库通常更多的是资源密集型。它们需要更多的内存和内存分配。出于这个原因,大多数主机托管公司不提供NoSQL,你必须使用VPS或专用服务器。另一方面,随着数据库的需求增加,硬件也必须扩展 4. 监控困难:相对于已经成熟的SQL,NoSQL现在的监控可以说是比较困难的,国内也只有听云一家公司能够支持主流的Memcached, MongoDB, Redis等非关系型数据库服务

内存数据库(sqllite)使用介绍

内存数据库(sqllite)使用介绍 数据库的发展 数据库技术的发展,已经成为先进信息技术的重要组成部分,是现代计算机信息系统和计算机应用系统的基础和核心。数据库技术最初产生于20世纪60年代中期,根据数据模型的发展,可以划分为三个阶段:第一代的网状、层次数据库系统;第二代的关系数据库系统;第三代的以面向对象模型为主要特征的数据库系统。 第一代数据库的代表是1969年IBM公司研制的层次模型的数据库管理系统IMS和70年代美国数据库系统语言协商CODASYL下属数据库任务组DBTG提议的网状模型。层次数据库的数据模型是有根的定向有序树,网状模型对应的是有向图。这两种数据库奠定了现代数据库发展的基础。这两种数据库具有如下共同点:1.支持三级模式(外模式、模式、内模式)。保证数据库系统具有数据与程序的物理独立性和一定的逻辑独立性; 2.用存取路径来表示数据之间的联系; 3.有独立的数据定义语言; 4.导航式的数据操纵语 言 第二代数据库的主要特征是支持关系数据模型(数据结构、关系操作、数据完整性)。 关系模型具有以下特点:1.关系模型的概念单一,实体和实体之间的连系用关系来表示; 2.以关系数学为基础; 3.数据的物理存储和存取路径对用户不透明; 4.关系数据库语言是 非过程化的。 第三代数据库产生于80年代,随着科学技术的不断进步,各个行业领域对数据库技术提出了更多的需求,关系型数据库已经不能完全满足需求,于是产生了第三代数据库。主要有以下特征:1.支持数据管理、对象管理和知识管理;2.保持和继承了第二代数据库系统的技术;3.对其它系统开放,支持数据库语言标准,支持标准网络协议,有良好的可移植性、可连接性、可扩展性和互操作性等。第三代数据库支持多种数据模型(比如关系模型和面向对象的模型),并和诸多新技术相结合(比如分布处理技术、并行计算技术、人工智能技术、多媒体技术、模糊技术),广泛应用于多个领域(商业管理、GIS、计划统计等),由此也衍生出多种新的数据库技术。 分布式数据库允许用户开发的应用程序把多个物理分开的、通过网络互联的数据库当作一个完整的数据库看待。并行数据库通过cluster 技术把一个大的事务分散到cluster中的多个节点去执行,提高了数据库的吞吐和容错性。多媒体数据库提供了一系列用来存储图像、音频和视频对象类型,更好地对多媒体数据进行存储、管理、查询。模糊数据库是存储、组织、管理和操纵模糊数据库的数据库,可以用于模糊知识处理。 内存数据库的起因,分类 一、雏形期 从上个世纪60年代末到80年代初。在这个时期中,出现了主存数据库的雏形。1969年IBM 公司研制了世界上最早的数据库管理系统------基于层次模型的数据库管理系统IMS,并作为商品化软件投入市场。在设计IMS时,IBM考虑到基于内存的数据管理方法,相应推出了IMS/VS Fast Path。Fast Path是一个支持内存驻留数据的商业化数据库,但它同时也可以很好地支持磁盘驻留数据。在这个产品中体现了主存数据库的主要设计思想,也就是将需要频繁

【内存数据库】内存数据库的原理及应用

内存数据库的原理及应用 摘要 近年来,数据库系统在各种领域中扮演了关键角色,但传统的基于磁盘的关系数据库系统却不能满足上述应用高性能、实时/近实时数据访问的要求,内存数据库系统则可以很好地满足各种应用系统的实时数据管理需求,本文主要阐述了内存数据库的基本概念,并对其和传统基于磁盘的数据库进行了比较,此外对其在内存中的数据管理方式有一定的介绍。 1.内存数据库概述以及内存数据库技术的发展 内存数据库,也称主存数据库,是一个较新的研究领域,目前对内存数据库尚无一定义。内存数据库的本质特征是其主拷贝或“工作版本”常驻内存。相对于磁盘,内存的数据读写速度要高出几个数量级,将数据保存在内存中相比从磁盘上访问能够极大地提高应用的性能。同时,内存数据库抛弃了磁盘数据管理的传统方式,基于全部数据都在内存中重新设计了体系结构,并且在数据缓存、快速算法、并行操作方面也进行了相应的改进,所以数据处理速度比传统数据库的数据处理速度要快很多。 内存数据库与磁盘数据库之间主要区别在于:内存数据库主数据库常驻内存,体系结构设计的优化目标是提高内存和CPU使用效率由于事务处理无需进行磁盘访问,使用内存数据库的应用系统性能得到极大提高。 随着电子技术的快速发展,计算机内存已越来越便宜,这使得计算机上配置的内存容量变得越来越大。现在一些商用的系统已配置几GB甚至更多的主存,另外,随着计算机及操作系统从32位向64位的发展,使理论上计算机可配置内存总数达B。从前,利用虚拟内存或内存交换技术来使大于地址空间或大于物理内存的程序可以运行,这些技术在当时乃至现在都具有重要的意义,然而,现在的问题是如何充分利用大内存,使程序运行更快。 随着计算机应用领域不断扩大和应用程度不断加深,人们对数据库技术提出了新的更高的要求。主存数据库技术,是随着存储技术的发展和现代应用的高性能需求产

关系型数据库性能测试参考指标 - prettyyang的个人空间 - 51testing软

关系型数据库性能测试参考指标- prettyyang的个人空间- 51Testing软... 关系型数据库性能测试参考指标----SQL Server 注:以下指标取自SQL Server自身提供的性能计数器。 指标名称 指标描述 指标范围 指标单位1.SQL Server中访问方法(Access Methods)对象包含的性能计数器全表扫描/秒 (Full Scans/sec) 指每秒全表扫描的数量。全表扫描可以是基本表扫描或全索引扫描。由于全表扫描需要耗费大量时间,因此全表扫描的

频率过高的话,会影响性能。 如果该指标的值比1或2高,应该分析设计的查询以确定是否确实需要全表扫描,以及SQL查询是否可以被优化。 次数/秒2.SQL Server中缓冲器管理器(Buffer Manager)对象包含的性能计数器缓冲区高速缓存命中率(BufferCache Hit Ratio%) 指在缓冲区高速缓存中找到而不需要从磁盘中读取的页的 百分比。该比率是缓存命中总次数与缓存查找总次数之比。经过很长时间后,该比率的变化很小。由于从缓存中读取数据比从磁盘中读取数据的开销小得多,一般希望该比率高一些。 该指标的值最好为90%或更高。通常可以通过增加SQL Server可用的内存数量来提高该指标的值。增加内存直到这指标的值持续高于90%,表示90%以上的数据请求可以从

数据缓冲区中获得所需数据。 %读的页/秒 (Page Reads/sec) 指每秒发出的物理数据库页读取数。该指标主要考察数据库从磁盘读取数据的频率。因为物理I/O会耗费大量时间,所以应尽可能地减少物理I/O以提高性能。 该指标的值应尽可能的小。可以通过使用更大的数据高速缓存、智能索引、更高效的查询或者改变数据库设计等方法,以降低该指标的值。 个数/秒写的页/秒 (Page Writes/sec) 指每秒执行的物理数据库写的页数。该指标主要考察数据库

开源内存数据库的调研与分析

一、内存数据库具备的一些基本功能 1):数据的管理,内存数据库机制是支持永久数据的管理的,包括数据库的的定义、存储、维护等功能。 2):数据的操作,内存数据库支持对数据进行增,删,改,查,数据完整性校验等一些基本功能。 3):事务管理,内存数据库支持调度,进程间、线程间的一些并发等操作。 4):数据恢复备份机制,内存数据库支持在线备份和系统崩溃后的自动恢复。

二、FastDB FastDB是一个高效率的内存数据库系统,在磁盘上的数据库文件和使用该数据库的每一个应用程序占用的虚拟内存空间相映射,这样取消了数据文件和缓冲池中的数据传输。再将整个文件数据读入内存,并且使用了高性能的锁工具实现了只读模式线程间、单个更改模式线程和多个只读模式线程间的并发执行。FastDB通过位图实现对内存进行分配,最小单位块是分配量子(16字节)。如此大大提高了数据引用的局部性(对象数据尽可能分配在连续的内存区域),最小化了修改页的数目和减少了事务提交时间。事务提交协议基于一个影子根页算法,对数据库执行原子更新操作,恢复效率很高,在存储数据结构上可以采用T-tree结构(T-tree和A VL-tree相似,只是T-tree中每个节点中顺序存储了多个值),对于大量相似重复性数据的查询性能相当高;也可以采用Hash存储,这是用关键字段定位表中记录的最好办法(采用等号进行查询)。 影子根页算法概述:FastDB数据库中每条对象都具有唯一的标识符(OID),用作一个数组(对象索引)的下标,元素值表示对象的一个句柄,在FastDB数据库中存在两个索引(当前索引和影子索引),当某个对象第一次被修改时,它会创建一个副本,当前索引中的对象句柄被修改指向副本,影子索引仍然包含一个指向该对象原始版本的句柄。所有更改发生在副本上,FastDB在对象索引的一个特殊位图页上标记出哪个索引包含修改过的对象句柄。 当一个事务被提交时,FastDB首先检查对象索引的尺寸的大小,若增长了,还会重新为对象索引的影子副本重新分配内存,然后释放“旧对象”占用的内存,释放后,将修改过的所有位图页flush到磁盘上,然后FastDB将改变数据库头部中的当前对象索引指示符,以切换对象索引的角色。当前对象索引将变成影子索引之后,FastDB 把修改过的所有句柄从新的对象索引中复制到先前是影子的、现在已成为当前的对象索引中。此时,两个索引都得到了同步。 优点: 具备实时能力及便利的C++接口。FastDB针对应用程序通过控制读访问模式作了优化。通过降低数据传输的开销和非常有效的锁机制提供了高速的查询。对每一个使用数据库的应用数据库文件被影射到虚拟内存空间中。因此查询在应用的上下文中执行而不需要切换上下文以及数据传输。 fastdb中并发访问数据库的同步机制通过原子指令实现,几乎不增加查询的开销。fastdb假定整个数据库存在于RAM中,并且依据这个假定优化了查询算法和接口。此外,fastdb 没有数据库缓冲管理开销,不需要在数据库文件和缓冲池之间传输数据。 Fastdb支持事务、在线备份以及系统崩溃后的自动恢复。事务提交协议依据一个影子根页面算法来自动更新数据库。恢复可以执行得非常快,为临界应用提供了高可用性。此外,取消事务日志改进了整个系统的性能,并且使得可以更有效的利用系统资源。 fastdb是一个面向应用的数据库,数据库表通过应用程序的类信息来构造。fastdb支持自动的模式评估。

如何为数据库服务器配置存储和内存

服务器管理,本文介绍在设计数据库服务器系统地存储与内存时应该注意地一些基本原则. 随着服务器硬件地功能变得越来越强大,而价格一路急剧下跌,许多公司(尤其是小公司)发现如今购买数据库服务器面临众多选择.这意味着,经验相对欠缺地数据库管理员们也被要求设计功能越来越强大地系统.在为大型系统设计数据库系统时,能够买到有许多硬盘和充足内存地大型数据库服务器.以下是在设计系统时应当遵守地一些基本原则.文档来自于网络搜索 存储系统 人们在设计磁盘阵列时最常犯下地错误就是,只计算所需地闲置容量.闲置容量只是设计存储子系统时要考虑地一部分而已;另一个部分就是存储系统需要支持地输入输出操作次数.文档来自于网络搜索 应当遵守地一条基本原则就是,写操作频繁地数据库最好使用阵列,而读操作频繁地数据库通常最好使用阵列.原因在于,如果把数据写到阵列,性能会受到影响.由于把数据写到阵列上,存储系统必须在写数据之前计算出奇偶检验位,而算出奇偶检验位需要相当长地时间,这意味着写到阵列上地性能会降低.文档来自于网络搜索 由于这种性能影响,我们总是建议你应当把事务日志放到阵列上.事务日志是写操作始终很频繁地文件,不管数据库是以读操作为主地数据库,还是以写操作为主地数据库.数据库也应当放在阵列上,具体来说放在与事务日志文件所在阵列不同地另一个阵列上.文档来自于网络搜索 对每个磁盘阵列进行分区时,应当确保分区正确对齐.默认情况下,及以下版本没有正确对齐分区,这会导致磁盘子系统地性能达不到最理想水平.可以通过使用实用程序(中地)创建分区来解决这个问题.这样创建地每个分区其对齐偏移量应为;在默认情况下,创建地每个分区其对齐偏移量为. 在默认情况下创建地分区其对齐偏移量为.文档来自于网络搜索物理数据库构建 微软最近开始推荐使用地一项比较新地技术就是,针对两个至四个核心当中地每个核心,数据库应当有一个物理数据库文件.应当为数据库里面地每个文件组做到这一点.文档来自于网络搜索 如果你地服务器有两个四核,那么共有八个核心.我们假定数据库有两个文件组,一个名为,另一个名为.那么每个文件组都应当有两个至四个物理文件.这项技术让可以对磁盘输入输出进行优化.可能地话,你应当尽量分散文件,以便位于每个存储阵列上地文件尽可能少.文档来自于网络搜索 数据库地配置应有点不同.配置数据库时,建议针对每个核心,数据库应当有一个物理文件.这样系统就可以为数据库尽量加快输入输出操作.与用户数据库一样,放在每个磁盘阵列上地文件也应当尽可能少.文档来自于网络搜索 你在数据库里面应当始终至少有两个文件组.第一个文件组包括表,第二个组包括索引.你需要让它们位于不同地文件组,那样查询索引时,装入到表地操作不会受到影响,反之亦然.文档来自于网络搜索 系统内存 在过去,购买只安装了数内存地数据库服务器相当常见.那是因为内存地价格还很昂贵. 如今,内存价格相当便宜;只要你能承受得了,应当购买尽量多地内存.内存越多,数据库地运行速度几乎总是越快.例外情况就是,如果你安装地内存超过了数据库地大小.举例来说,如果你有大小地数据库,但安装了内存,那么为服务器添加更多内存对提升数据库地性能没有帮助,因为可能已经能把整个数据库装入到内存中.文档来自于网络搜索在决定为分配多大内存时,绝对不要让把所有内存都分配给它.因为操作系统需要内存

数据库集群技术指标

1.DBTwin技术指标 A.非入侵部署 与所有的系统服务一样,DBTwin也是通过唯一的入口-一对(IP,port)来向外提供数据服务。因此,应用程序及其数据库接口不需作任何修改。支持所有的数据库接口:https://www.wendangku.net/doc/e513758323.html,、ADO、RDO、DAO、OLE DB、ODBC、DB-LIBRARY等。 B.支持数据库 Microsoft SQL Server2005/2008的标准版和企业版。 C.事务处理同步复制 通过常用的宽带网络,快速的事务处理同步复制 D.高系统可用性 自动的错误恢复,真正把意料之内和意料之外的停机时间缩至最短。网关在错误恢复期间的停止服务间隙达到小于10秒。 E.零单点错误源 从DBTwin网关这一部件开始,整个数据库系统是完全、彻底地物理冗余。 F.数据“零”丢失 DBTwin使得系统同时拥有多个实时一致的数据集,这样从理论上讲,就真正消除了数据丢失的任何可能性。数据库可靠性达到目5个9,即99.999%。 G.动态负载均衡 DBTwin对只读数据库查询操作可以进行自动的判别和动态负载均衡,这是当前唯一实现的针对数据库的动态负载均衡技术,此技术可以大大改善整个数据库系统的性能。性能提升在30%~300%之间,具体提升比例取决于应用系统及网络结构和软硬的配置。 H.可伸缩性 可伸缩的数据库性能(负载均衡+非入侵式的数据库阵列扩展),使得数据库具有可伸缩性。需要更多的数据库性能的时候,只要增加数据库服务器就可以了。 I.容灾能力 具备即时的灾难恢复能力。 J.DBTwin自身的双机容错

DBTwin支持自身的双机主备容错切换,也可以采用第三方的HA方案解决DBTwin 自身的容错问题。 DBTwin备份(复制)软件镜像1专为数据库设计是否否 2支持数据库集群是部分支持部分支持 3支持并发数据库操作是否否 4支持动态负载均衡是部分支持部分支持 5工作方式并行串行串行 6支持多份数据集是是是 7支持多份一致数据集是否否 7单点错误源无有有 8支持业务连续性程度高低中 9数据丢失可能性零高高 10错误恢复自动化程度高低中 2.DBTwin与备份/复制软件,及数据库镜像的功能、特点比较

(完整版)数据库性能测试报告

数据库系统性能测试报告

目录 1计划概述 (3) 2参考资料 (3) 3术语解释 (3) 4系统简介 (3) 5测试环境 (3) 6测试指标 (4) 7测试工具和测试策略 (4) 8测试数据收集 (4) 9测试结果数据以及截图 (5) 10 测试结论 (10)

1计划概述 目的:找出系统潜在的性能缺陷 目标:从安全,可靠,稳定的角度出发,找出性能缺陷,并且找出系统最佳承受并发用户数,以及并发用户数下长时间运行的负载情况,如要并发100用户,如何对系统进行调优 概述:本次测试计划主要收集分析数据库处理并发请求相关数据,做出分析和调优 测试时间:*年*月**日*点*分-*点*分 2参考资料 相关性能测试资料 3术语解释 性能测试 英文解释:Performance testing 概念解释:运行性能测试确定系统处理能力,来判断系统是否需要优化 负载测试 英文解释:Load testing 概念解释:通过系统面临多资源运行或被攻击情况下进行测试 4系统简介 数据库服务器,支持整个系统对数据的存储过程 5测试环境

器 6测试指标 测试时间:*年*月*日—*年*月*日 测试范围:数据库处理服务器或客户端请求信息(插入,查询,更新,删除)语句时,服务器各项性能指标的性能测试 Jmeter指标:(由于Apache旗下性能测试工具Jmeter收集的性能指标偏少,下面的数据选取代表性指标)1.Average/ms:服务器处理事物平均响应时间(表示客户端请求到服务器处理信息且反馈客户端的时间) 2.Throughput/s:服务器每秒处理请求数(表示服务器每秒处理客户端请求数(单位:个/秒))3.KB/s:服务器每秒接受到的数据流量(表示服务器每秒接受到客户端请求的数据量KB表示)硬件指标: 1.%Processor time :CUP使用率(平均低于75%,低于50%更佳) 2.System:Processor Queue Length :CUP队列中的线程数(每个处理器平均低于2) 3.Memory:Pages/sec :内存错误页数(平均低于20,低于15更佳) 4.Physical Disk-%Disk Time:磁盘使用率(平均低于50%) 5.SQL Server:Buffer Manager-Buffer Cache Hit Ratio:(在缓冲区告诉缓存中找到而不需要从磁盘中读取的页的百分比,正常情况次比率超过90%,理想状态接近99%) 7测试工具和测试策略 ?测试工具:Apache-Jmeter2.3.2 ?测试策略:根据公司内部实际情况,以及业务分布设置数据库访问量即并发用户数 ?测试数据:因为涉及公司内部数据不便外泄,敬请见谅! ?数据说明:选取数据均为代表性数据,包括存储过程以及查询,更新,删除,插入 8测试数据收集 收集多轮测试的结果进行对比,绘制成几何增长图形,找出压力转折点

数据库性能监测指标

数据库性能监测指标(如Oracle、SqlServer)、LoadRunner 性能测试指标 1.%Disk Time(PhysicalDisk_Total) 2.%Processor Time(Processor_Total) 3.File Data Operations/sec(System) 4.Interrupts/sec(Processor_Total) 5.Page Faults/sec(Memory) 6.Pages/sec(Memory) 7.PoolNonpaged Bytes(Memory) 8.Private Bytes(Process_Total) 9.Processor Queue Length(System) 10.Threads(Objects) dbm: rem_cons_in 到正在被监视的数据库管理器实例的当前连接数,从远程客户端启动 agents_from_pool 代理程序池中已分配的代理程序数 agents_stolen 从应用程序中盗用代理程序的次数。重新分配与应用程序相关联的空闲代理程序,以便对其他应用程序执行操作,称作“盗用” sort_heap_allocated 拍快照时,以所选择的级别为所有排序分配的排序堆空间的总页数post_threshold_sorts 达到排序堆阈值后,已请求的堆的排序数 db: appls_cur_cons 当前已连接到数据库的应用程序数 appls_in_db2 当前已连接到数据库并且数据库管理器当前正在处理其请求的应用程序数sort_heap_allocated 拍快照时,以所选择的级别为所有排序分配的排序堆空间的总页数total_sorts 已经执行的排序总数 total_sort_time 所有已执行排序的总已用时间(以毫秒为单位) sort_overflows 用完排序堆并且可能需要临时磁盘存储空间的排序总数 hash_join_small_overflows 哈希联接数据大小超过可用排序堆空间,但超出比率小于10% 的次数 pool_data_l_reads 已经通过缓冲池的数据页逻辑读取请求数 pool_data_p_reads 要求I/O 将数据页放入缓冲池的读取请求数 pool_index_l_reads 已经通过缓冲池的索引页逻辑读取请求数 pool_index_p_reads 需要将索引页放入缓冲池的物理读取请求数 files_closed 已关闭的数据库文件的总数 pkg_cache_lookups 应用程序在程序包缓存中查找一个节或程序包的次数。在数据库级,它表示自从启动数据库或重置监视器数据以来的引用总数 pkg_cache_inserts 请求的一个节不可用,因而必须加载到程序包缓存中的总次数。此计数包括由系统执行的任何隐式准备

内存数据库与磁盘数据库比较

内存数据库(MMDB)与磁盘关系数据库(DRDB)比较一、传统数据库与实时数据库 传统数据库系统(Traditional Database System,TDBS)处理对永久数据的管理,实现事务对永久数据的存取,同时维护其完整性、一致性。所以传统的数据库具有ACID(Atomicity,Consistency,Isolation,Durability)特征,即原子性、一致性、隔离性和永久性。传统数据库管理系统的典型代表是关系型数据库RDBMS(Relational Database Management System),我们平常用到的商用数据库管理系统如Oracle, Informix, Sybase, SQL Server等都是RDBMS。RDBMS已发展了很多年,其技术成熟度已广为人接受,其可靠性、可用性已被广泛验证,并在传统的商务和管理事务型的应用领域获得了极大成功,然而它们在现代的(非传统)工程和时间关键型应用面前却显得软弱无力,其主要原因是其数据存取服务的实时性很难得到保障,由此导致了实时数据库系统(Real-time DataBase System)的产生和发展。 实时数据库系统就是其事务和数据都可以具有定时特性或显式的定时限制的数据库系统,系统的正确性不仅依赖于逻辑结果,而且还依赖于逻辑结果产生的时间。近年来,实时数据库系统已发展成现代数据库系统研究的重要方向之一,在数据库研究领域受到极大关注。实时数据库系统通常简称为实时数据库(Real-time Database,RTDB)。 二、磁盘数据库与内存数据库 正如前面所述,我们平常用到的商业关系数据库系统,其主要目标是保证数据存取的ACID特征,为各类商务及事务应用提供强大的数据管理与存取服务。但它们的数据服务的实时性很难得到保障,其根本原因在于: 传统数据库是磁盘数据库(Disk Resident Database,DRDB),即数据的主拷贝(Primary DB)在磁盘上,数据库管理系统为了向应用系统提供存取服务,将用户需要访问的数据装入主存中,即对数据的管理是“基于磁盘的缓存技术”。而我们知道,磁盘相对于主存来说是极其低速的存储介质,且磁盘存取速度还和

数据库优化

近期因工作需要,希望比较全面的总结下SQL SERVER数据库性能优化相关的注意事项,在网上搜索了一下,发现很多文章,有的都列出了上百条,但是仔细看发现,有很多似是而非或者过时(可能对SQL 以前的版本或者ORACLE是适用的)的信息,只好自己根据以前的经验和测试结果进行总结了。 我始终认为,一个系统的性能的提高,不单单是试运行或者维护阶段的性能调优的任务,也不单单是开发阶段的事情,而是在整个软件生命周期都需要注意,进行有效工作才能达到的。所以我希望按照软件生命周期的不同阶段来总结数据库性能优化相关的注意事项。 一、分析阶段 一般来说,在系统分析阶段往往有太多需要关注的地方,系统各种功能性、可用性、可靠性、安全性需求往往吸引了我们大部分的注意力,但是,我们必须注意,性能是很重要的非功能性需求,必须根据系统的特点确定其实时性需求、响应时间的需求、硬件的配置等。最好能有各种需求的量化的指标。 另一方面,在分析阶段应该根据各种需求区分出系统的类型,大的方面,区分是OLTP(联机事务处理系统)和OLAP(联机分析处理系统)。 二、设计阶段 设计阶段可以说是以后系统性能的关键阶段,在这个阶段,有一个关系到以后几乎所有性能调优的过程—数据库设计。 在数据库设计完成后,可以进行初步的索引设计,好的索引设计可以指导编码阶段写出高效率的代码,为整个系统的性能打下良好的基础。 以下是性能要求设计阶段需要注意的: 1、数据库逻辑设计的规范化 数据库逻辑设计的规范化就是我们一般所说的范式,我们可以这样来简单理解范式: 第1规范:没有重复的组或多值的列,这是数据库设计的最低要求。 第2规范: 每个非关键字段必须依赖于主关键字,不能依赖于一个组合式主关键字的某些组成部分。消除部分依赖,大部分情况下,数据库设计都应该达到第二范式。 第3规范: 一个非关键字段不能依赖于另一个非关键字段。消除传递依赖,达到第三范式应该是系统中大部分表的要求,除非一些特殊作用的表。 更高的范式要求这里就不再作介绍了,个人认为,如果全部达到第二范式,大部分达到第三范式,系统会产生较少的列和较多的表,因而减少了数据冗余,也利于性能的提高。

内存数据库

内存数据库 实时交易系统的催化剂 现在,支持实时应用程序(如证券交易系统)的基础架构软件已经面市。内存数据库(IMDB)是这种基础架构的核心部分。与IMDB 所替代的各种定制产品不同,基于IMDB技术的商用产品不仅仅具有高性能,还增加了消息处理接口、符合行业标准的API、事务处理、容错故障切换和恢复、事件发布和与后台RDBMS的连接。 今天,精简的开发团队有足够的能力处理应用程序级的更改。他们已不再需要在“应用程序底层”编写代码,而且与当今经过证实的可选商用方案相比,这也不再是一个审慎的策略。

内存数据库 实时交易系统的催化剂 现在,支持实时应用程序(如证券交易系统)的基础架构软件已经面市。内存数据库(IMDB)是这种基础架构的核心部分。与IMDB 所替代的各种定制产品不同,基于IMDB技术的商用产品不仅仅具有高性能,还增加了消息处理接口、符合行业标准的API、事务处理、容错故障切换和恢复、事件发布和与后台RDBMS的连接。 今天,精简的开发团队有足够的能力处理应用程序级的更改。他们已不再需要在“应用程序底层”编写代码,而且与当今经过证实的可选商用方案相比,这也不再是一个审慎的策略。 引言:对速度的需求永无止境 对于证券交易系统来说,持续的熊市并未减少交易处理量。当然,货币交易量大大减少了,这是因为美国市场在采用十进制最小报价单位之后平均价差变小了。但系统依旧忙于买卖盘传递、对盘和跟踪交易订单。事实上,纳斯达克报告的统计数据表明当前的股票交易量与2000年底股市动荡时期的交易量大致持平(参见图1)。 造成这种现象的原因是交易策略和习惯发生了某些重大改变,包括对冲基金的迅猛普及和程式交易的惊人增长。很多投资者采取短期买进卖出策略,这反映了股市的不稳定性。交易执行的速度和交易价格成为了最重要的问题。因此,处理投资者业务的交易系统的速度和 质量也成为了最重要的方面。

数据库的内存结构

系统全局区域(SGA) 大型池(Large Pool) 在SGA中大型池是可选的缓冲区。它可以根据需要有管理权进行配置。它可以提供一个大的区以供象数据库的备份与恢复等操作。 Oracle实例的内存结构组织包含在称为系统全局区域(System Global Area,SGA)的内存区域中。SGA在虚拟内存中进行分配,用于存放Oracle服务器进程。SGA内存结构组织包括共享池、数据库缓冲区高速缓存以及重做日志缓冲区,许多进程共享SGA。 1.共享池 共享池包括两个组件----库高速缓存和数据字典高速缓存。库高速缓存和数据字典高速缓存。库高速缓存储存当前最新使用的SQL语句及其执行计划。数据字典高速缓存则储存最新使用的数据字典信息,如表的定义、用户名和权限等。共享池的大小可以影响数据库的性能,在OLTP环境中更是如此。 2.数据库缓冲区高速缓存 当用户提交一个SQL查询时,为完成请求,服务器进程先查找数据库缓冲区高速缓存中的数据块。如果数据库缓冲区高速缓存中没有用户要求的数据块,那么服务器进程必须从物理设备中读取数据块,并在该缓冲区高速缓存中存放此数据的备份,这样,对相同数据块的后续请求就可以在内存中找到,而无需物理读取。 3.重做日志缓冲区 数据进行的所有更改都存储在重做日志缓冲区中,这些记录在以后会被拷贝到重做日志文件中。 程序全局区域(PGA) 程序全局区域(Program Global Area,PGA)是包含一个单个服务器进程数据的内存区域。在用于专门的服务器配置时,PGA由排序区域、会话信息、游标状态和堆栈空间组成。PGA在一个进程开始时进行分配,并在进程终止时释放。 数据库实例 为了访问数据库中的数据,Oracle使用一组为所有用户共享的后台进程。此外,还有一些存储结构(统称为系统全局区域)用来存储最近从数据库查询的数据。通过减少对数据库文件的I/O次数,这些存储区域可以改善数据库性能。 Oracle数据库实例通常称为数据库服务器,用来访问数据库文件集的存储结构及后台服务进程的集合。一个数据库可以被多个实例访问(对应于Oracle的并行服务器选项)。1.服务器启动和关闭 在用户能够操作Oracle数据库之前,必须先对数据库服务器执行一个启动操作。这个过程包括启动一个数据库实例、数据库实例挂上数据库和打开数据库。在服务器启动之后,数据库就可以被使用了。 相反,通过执行数据库服务器关闭操作,可以使一个数据库不可用。服务器关闭是服务器的反过程:首先要关闭数据库,然后从实例卸载数据库,最后关闭实例。在服务器关闭后,用户不能访问数据库,知道重新启动服务器才可以再次访问。 2.服务器连接 在一个Oracle实例启动并运行后,可以建立于服务器的连接来执行数据库工作。在后台,数据库实例工作机制负责完成用户请求。在同一时间,在保持数据库完整的同时,数据库实例自动地保护全部事务的工作。

数据库性能监控

数据库性能监控 1.纲要: 数据库性能监控是一个常非大范围。 包含:表空间、段、索引、主键、数据缓冲区、库缓冲、用户锁、等待事件、回滚段、I/O、共享池等等。(空间、索引、等待事件) 2.概述: 在日常生产系统中,我们的系统都使用相当长的时间,SGA 中重做日志缓存区的命中率,应该小于1%、高速缓存命中>=90%率等等一般都是正常的,当然一个非常低的命中率的确意味着系统配置或应用存在严重问题;非常高的缓存命中率存在严重低效率的SQL语句(极差的SQL造成%99以上的命中率), 但命中率的多少义意不是很大,主要是查看系统的等待事件,系统的反应时间,吞吐率(I/O)。 在系统的配置都没有问题情况下,影响性能的主要方面集中在: 1、索引 2、oracle、操作系统某些资源利用的不合理 3、系统的等待事件 3.索引 要开始监控一个索引的使用,使用这个命令: ALTER INDEX pk_addr MONITORING USAGE;

要停止监控一个索引,输入: ALTER INDEX pk_addr NOMONITORING USAGE; 开始监控索引的使用之后,就可以在sys.v$object_usage视图中查到你所监控的索引的使用情况。 所有被使用过至少一次的索引都可以被监控并显示到这个视图中。不过,一个用户只可以接收它自己schema中的索引使用。Oracle并没有提供一个视图来接收所有模式中的索引。 4.oracle、操作系统某些资源利用的不合理 内存分配不合理 内存的利用率多于80%时,这时说明内存方面应该调节一下。方法大体有以下几项: 划给Oracle使用的内存不要超过系统内存的1/2,一般保在系统内存的40%为益。 为系统增加内存; 如果你的连接特别多,可以使用MTS的方式;(MTS(Multi-Threaded Server)是ORACLE SERVER的一个可选的配置选择,是相对DEDICATE方式而言,它最大的优点是在以不用增加物理资源(内存)的前提下支持更多的并发的连接。) 打全补丁,防止内存漏洞。 表空间分配的不合理 表空间不足的时候,系统前台根本无法使用。 回滚段空间的不足,持行脚本就回失败。 --监控表空间使用率与剩余空间大小的语句 SELECT D.TABLESPACE_NAME,SPACE "空间(M)", BLOCKS ,SPACE-NVL(FREE_SPACE,0) "使用空间(M)", ROUND((1-NVL(FREE_SPACE,0)/SPACE)*100,2) "使用率(%)", FREE_SPACE "空闲空间(M)" FROM (SELECT TABLESPACE_NAME, ROUND(SUM(BYTES)/(1024*1024),2) SPACE, SUM(BLOCKS) BLOCKS FROM DBA_DATA_FILES GROUP BY TABLESPACE_NAME) D,

内存芯片数据库

32m HYB25D256800BT-6 32m N2DS12H80BT-6K 64M EDD5108ABTA-6B 32M GL3LC32G88TG-6 32M V58C2256804SAT5B 64M MT46V64M8TG-6T 16M HY5DU561622AT-J 16M HY5DU561622CT-J 16M HY5DU28822BT-J 32M HY5DU56822BT-J 32M HY5DU56822AT-J 64M HY5DU12822AT-J 16M HYB25D256160BT-6 32M HYB25D256800CE-6 64m MT46V64M8TG-6TC 64M HYB25D512800AT-6 32M KDL388P4LA-60 32M MT46V32M8-6T 32M MT46V32M8TG-6TG 32M MT46V32M8-6TG 64M MT46V64M8TG-6TC 32M V58C2256804SAT6 16M NT5DS16M16BT-6K 16M NT5DS32M8BT-6K 32M X4P560840A-50 16M K4H561638D-TCB3 16M K4H561638F-TCB3 16M K4H280838D-TCB3 32M K4H560838D-TCB3 32M K4H560838E-TCB3 32M K4H560838F-TCB3 64M K4H510838B-TCB3 32M MT46V32M8-5B 32M HYB25D256800BT-5 64M MT46V64M8-5R 32M R030074A-7A1 32M P2S56D30BTP-UTT 64M MT46V64M8-6T 32M W942508CH-5 32M ADD8608A8A-5C 32M ADD8608A8A-5B 32M K4H560838E-TCCC 32M HY5DU56822BT-D43 32M A2S56D30BTP

内存数据库技术白皮书

内存数据库技术白皮书

前言 随着移动互联网的飞速发展,信息系统的互动性日益增强、用户规模不断攀升,催生出一大批高并发、低时延的新兴应用,这些应用需求对传统系统的性能提出了新的挑战,基于磁盘存储的数据库管理系统由于磁盘读写的速度限制,已经很难满足这类新应用的扩展性和时延要求。 主要依靠内存来存储数据的数据库管理系统,也称为内存数据库,成为了解决高并发、低时延数据管理需求的技术路线。近年来,随着动态随机存储器(DRAM)容量的上升和单位价格的下降,使大量数据在内存中的存储和处理成为可能,Redis、Memcached 等内存数据库管理软件逐渐成熟,应用范围越来越广。未来几年,随着非易失性存储器件(NVM)逐步投入商用,新硬件将会给内存数据库带来更大的发展机遇。 本白皮书阐述了内存数据库的概念,梳理了内存数据库的发展历史和核心属性,分析了在电商、直播和电信行业的典型应用场景,并对主流的内存数据库进行了介绍和对比。白皮书还从技术和管理两个角度提出了产品选型和硬件选型建议,并总结了内存数据库的发展趋势。 本白皮书的编写得到了 Redis 中国用户组的大力支持,在此表示感谢!

目录 版权声明............................................................ I 前言............................................................. I II 图表目录........................................................ V 一、什么是内存数据库 (1) (一)内存数据库概述 (1) (二)内存技术的成熟与突破 (1) (三)内存数据库的发展历程 (4) (四)内存数据库的优势与挑战 (7) 二、内存数据库的分类及应用场景 (9) (一)内存数据库的分类 (9) (二)内存数据库的使用场景 (10) 三、内存数据库的选型建议 (14) (一)内存数据库产品现状 (14) (二)内存数据库选型建议 (15) (三)硬件选型建议 (17) 四、内存数据库技术演进趋势 (18) (一)内存数据库和传统数据库混合使用将成为主要模式 (18) (二)软硬件深度整合为内存数据库开辟新的技术方向 (18) (三)协议创新将进一步提升分布式内存数据库的一致性能力 (21) (四)与容器技术结合为内存数据库提供更强的弹性扩展能力 (22) 五、总结与展望 (24) 参考文献 (25) 附件:缩略语 (26)

相关文档
相关文档 最新文档