文档库 最新最全的文档下载
当前位置:文档库 › 遗传多态性的中等通量基因分型方法

遗传多态性的中等通量基因分型方法

遗传多态性的中等通量基因分型方法

质谱法基于PCR扩增中的碱基延伸反应,在紧挨SNP位点处设计一段探针。反应体系中不含dNTP,仅有ddNTP,使扩增引物仅在SNP位点处延伸一个碱基即终止。而4种ddNTP分子量不同。根据SNP位点的不同,引物延伸时将结合不同的ddNTP,从而具有不同大小的分子量,这种分子量差异即可被质谱仪检测出,从而实现SNP分型的目的。此外,在需要进行多重反应同时检测多个SNP位点的实验中,可将不同位点的引物长短进行梯度设计,即可同时进行数十个位点的基因分型。MassARRAY时间飞行质谱生物芯片系统由美国Sequenom公司开发,是目前唯一采用质谱法直接检测SNF,的设备。该仪器可以对数十到数百个SNP位点进行数百至上万份样本的基因分型。如SNP位点大于20个,采用MassARRAY是最经济、快速的方法,可以对95%以上的已被证实的SNP进行实验设计,准确度超过99. 7%。

SNPstream基因分型技术利用两条扩增引物和一个单碱基延伸引物,在特制的384孔板上杂交标记的延伸产物,每个微孔可检测12或48个SNP位点。此技术分型准确率高,具有中等通量,需要的样本DNA少,引物及探针可直接提交Beckman公司设计。但当标本数量较少,及每个样本检测位点少或为非12的倍数时,将会增加实验的成本。SNPsream系统不能同时枪测不同的杂台类型。SNPsream采用双色荧光检测技术,一次只能检测一种A/T或A/C的杂合子。

SNPlex是基于基因分析仪的高通量SNP分型方法,利用OLA-PCR技术提高通量,不同长度的ZipDChute杂交探针电泳分析结果,可在96/384孔板操作,每个样本可行48重检测。其具有中等的位点通量和高样本通量,从而降低了实验成本。并且此技术是基于现有的ABI 3730XL、3730和3130XL基因分析仪,从而使该平台整合了序列分析和基因分析的功能。在较大候选区域组关联分析时可选用SNPlex。

SNaPShot也称微测序技术,采用单碱基延伸反应原理,主要基于在DNA聚合酶作用下,加入单个与多态性碱基互补的带有不同颜色荧光标记的ddNTP,通过检测荧光信号进而检测与ddNTP互补的核苷酸序列。其操作过程与一代测序类似,检测阶段是在遗传分析测序仪(例如ABI 3730 XL)上进行,其准确性基于DNA聚合酶的特异性,可以同时检测10~30个位点。但检测多重位点时,必须要求每个位点带以不同长度的引物(晟好相差4~6个碱基),才能在电泳阶段区分出不同位点的核苷酸序列。SNaPShot技术平台的优点在于引物和探针的合成的周期短,位点分型的成功率和准确率大于95%,不受样本量的限制,不受SNP多态性限制,适宜于中通量的SNP筛选和高通量的SNP验证。

早泄基因多态性研究进展

早泄(Premature ejaculation , PE )是最常见的男性性功能障碍疾病,对患者及其伴侣的生活质量有着严重影响。近年流行病学研究显示,PE 的患病率约为20%~30%[1]。Revicki 等[2]就PE 对患者及其伴侣的生活影响进行了一项多国参与的、大样本定量分析研究,显示PE 对各国患者及其伴侣的心理、性满意度及其他多方面的生活都有着严重的负面影响。目前研究认为早泄的发生发展与患者的心理性、行为性和生物性等多方面因素有关,并提出了PE 的心理学、神经内分泌学和神经生物学发病机制,但这些机制并不能揭示所有PE 患者的病因,因此进一步阐明PE 病因进而为更好治疗PE 提供思路具有重要意义。鉴于部分研究发现PE 还受到遗传因素的影响,最近一些研究开始关注PE 发病与基因多态性之间的相关性。本文旨在综述PE 基因多态性方面的发病机制的研究进展。 1943年Schapiro 首次提出PE 发病具有一定的遗传性,他发现PE 患者家庭的其他男性成员更易出现PE 。Waldinger 等[3]研究支持了上述观点,他发现PE 患者的一级男性亲属中PE 发病率可高达91%。最近研究表明在早泄发病的多种因素中,遗传因素占其中30%左右[4]。在PE 的最新分类中,PE 被分为4大类:原发性PE 、继发性PE 、自然变异性PE 和早泄样射精功能障碍。4种类型PE 的病因不尽相同,其中与遗传学关联最大的是原发性PE 。当前,对PE 发病的基因多态性研究主要集中在5-羟色胺(5-hydroxytryptamine ,5-HT )相关基因和多巴胺相关基因上,在其他基因如催产素和后叶加压素相关基因方面也有一定报道。 一、PE 与5-HT 相关基因多态性 大量动物研究和人类研究表明5-HT 是射精活动中重要的神经递质,在射精过程中发挥着重要作用,其调控异常会导致射精加快或延迟。5-HT 相关基因也是PE 基因学发病机制研究中被研究得最多的基因。迄今发现至少有3个亚型的5-HT 受体即5-HT1A 受体、5-HT1B 受体和5-HT2C 受体参与射精活动的调控。5-HT1A 受体的激活可以加速射精,而5-HT2C 受体的激活则会延迟射精[3]。研究表明PE 与5 -HT 神早泄基因多态性研究进展 王俊龙 综述 李 铮 审校 上海交通大学医学院附属仁济医院泌尿外科 (上海 200127) 经传递降低有关,即5-HT1A 受体功能亢进和(或)5-HT2C 受体功能低下可导致PE 的发生[5]。 5-HTT (5-HT transporter )是位于突触间隙的跨膜转运蛋白,为了防止突触后膜5-HT 受体的过度刺激,其能迅速地将5-HT 从突触间隙再摄取到突触前神经元,5-HT 在此进行代谢、失活,从而调控5-HT 作用的时间与强度。人类5-HTT 基因是由位于染色体17q12上的单基因SLC6A4所编码,其转录区域的多态性是由一44bp 长度的插入(‘ long allele ’ [L])和缺失(‘ short allele ’ [S])所致,表现出基因型为S/S 、L/S 、L/L 的多态性。5-HTT 不同的基因型转录活性亦不同,L 等位基因的转录活性明显高于S 等位基因,两者通过影响5-HTT 蛋白的合成与作用进一步调控5-HT 作用的时间及强度,相对于S 等位基因,L 等位基因可增加5-HTT 的表达和5-HT 的再摄取。 罗顺文等[6]对119例原发性PE 、60例继发性PE 和90例健康成年男性的5-羟色胺转运体基因连锁多态性区域(5-HT transporter gene-linked polymorphism, 5-HTTLPR )基因进行分析、比较发现,原发性PE 组中S/S 基因型的频率明显高于健康对照组,L/S 基因型的频率明显低于健康对照组,S 等位基因出现的频率比健康对照组显著提高。进一步研究将PE 组按阴道内射精潜伏期(intravaginal ejaculation latency times ,IELT )长短分成3组,发现各组间基因型和等位基因频率的差异并无统计学意义,提示5-HTTLPR 基因多态性可能并不影响PE 的严重程度。Ozbek 等[7]对70例PE 患者和70例正常成年男性的5-HTTLPR 基因型进行分析,得出了同样的结论。5-HTT 基因的L 、S 等位基因可以改变5-HTT 蛋白的表达从而导致其功能上的差异,L 等位基因的表达水平比S 等位基因高3倍,即5-HTT 基因启动子区的多态性可以影响5-HTT 的表达。由于S 纯合子与S 杂合子在功能上表现出的差异并不明显,从而推测出S 等位基因可能在转录中占主导作用[8]。Janssen 等[9]研究了89例原发性PE 患者和92例正常男性的5-HTTLPR 基因型,结果发现两组的L 、S 等位基因和基因型均无统计学差异,但在PE 患者组中L/L基因型者的IELT 明显短于S/S 、L/S 基因型者,因此认为5-HTTLPR 多态性与原发性PE 患者的

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

基因多态性与铁代谢

E DITORIALS&P ERSPECTIVES I ron homeostasis, like other physiological processes, relies on precise and timely interactions between key proteins involved in either its uptake or release. At the core of this is hepcidin, a small acute phase antimi-crobial peptide that now also appears to synchronously orchestrate the response of iron transporter and regula-tory genes to ensure proper balance between how much dietary iron is absorbed by the small intestine or released into the circulation by macrophages.1Several studies suggest that there are strong genetic compo-nents that underlie hepcidin regulation beyond the usual suspects(i.e. infection, inflammation, erythropoiesis, hypoxia and iron), in a manner that could impinge on phenotypic differences in susceptibility to iron-over-load or anemia. Based on variation in hepcidin expres-sion phenotypes, new emerging data suggest that there are heritable regulatory polymorphisms within the pro-moter that are linked to diseases of iron metabolism. Here we provide a perspective of what factors could determine such variability, giving some insight into how gene-gene, gene-environment, gene-nutrient inter-actions and even circadian rhythms may contribute to hepcidin ex pression variation and diseases associated with such variation. Role of human genetics in hepcidin expression variation Susceptibility to diseases of iron metabolism is often due to inappropriate levels of hepcidin expression or fer-roportin resistance to its effects.2Evidence suggests that these diseases cannot be fully explained by mutations in susceptibility genes alone i.e. those intimately linked to iron metabolism since most of these genes may have no mutations at all. This is particularly true for hepcidin because only a few mutations have been identified in the human hepcidin gene yet there are large variations in iron and hepcidin levels between individuals.3-5In other words, there are heritable differences in hepcidin expression that may determine phenotypic variation in iron metabolism between individuals. This is because like most other genes, hepcidin does not express at the same levels or in the same temporal order in every indi-vidual, a phenomenon known as the genomics of gene expression or expression level polymorphisms.6 Hepcidin regulation: the story so far For a whole host of reasons, gene expression is invari-ably stochastic. Thus, a random population-sampling would reveal wide variations in gene expression profiles and in hepcidin levels. Variation in hepcidin expression may be sex ually dimorphic or it may depend on age, iron levels, and infection/inflammation or simply on time of day.For example, estradiol has been shown to repress hepcidin transcription in fish7suggesting that dif-ferences in the complement of sex hormones could induce some variation in hepcidin expression within and between the sexes; this may underlie variation in hep-cidin ex pression and liver iron loading between males and females.3-5, 7-9 Regulatory variation in hepcidin ex pression may be determined by polymorphic cis-acting, non-coding regions of the gene. Thus these regions are just as crucial to quantitative differences in its ex pression as point mutations within its open-reading frame (ORF) because some of these regions contain transcription factor-bind-ing sites. Trans-acting factors also determine hepcidin expression variation; these include transcription factors and iron regulatory or modifier proteins.2Structural vari-ation in the hepcidin gene i.e. gene dosage or copy num-ber polymorphism, inversions and insertions,10may also determine variability in its ex pression. We conjecture that where certain individuals inherit different copy numbers or structural variants of the hepcidin gene, there may be consequential variation in hepcidin expres-sion and iron absorption. Although conceptually possi-ble, this type of variation has not yet been identified. Cis-acting regulatory polymorphisms in hepcidin expression level variation A CCAAT-enhancer-binding protein (C/EBP) recogni-tion site within the hepcidin promoter provided the first evidence for cis-acting regulation of its ex pression by C/EBPα.11Subsequently, we showed that hepcidin expression was also regulated by Upstream Stimulatory Factor (USF) and c-Myc/Max through several E-box es with the consensus sequence CAnnTG (n is any other nucleotide); these are binding sites for the basic helix-loophelix leucine zipper family of transcription factors.12 Genes that are regulated through E-boxes including the Clock genes period,timeless and clock tend to be under cir-cadian rhythmic transcriptional control,13suggesting that hepcidin may also be transcribed in pulses. This may account for the wide diurnal variations in hepcidin expression5which may cause cyclical changes in iron levels. We also showed that single nucleotide polymor-phisms (SNPs) within the cognate promoters of the genes in different mouse strains could contribute to vari-ability in mouse hepcidin gene ex pression as some of these SNPs constituted USF binding sites.14Similarly hepcidin ex pression by STAT3 (Signal Transducer and Activator of Transcription 3) is thought to be mediated by the STAT response element (also referred to as inter-feron-γactivation sequence, GAS), TTCTTGGAA.15In support of the contribution of regulatory SNPs in hep-cidin expression variation and iron metabolism, Island et al.found a C>T polymorphism (underlined) in one of Genetic variation in hepcidin expression and its implications for phenotypic differences in iron metabolism Henry K. Bayele, and Surjit Kaila S. Srai Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK. E-mail: kaila@https://www.wendangku.net/doc/e611366714.html,. doi:10.3324/haematol.2009.010793

基因多态性分析

. 人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂 . . ⑴口腔拭子DNA抽提试剂盒。 ⑵琼脂糖。 ⑶1×TAE电泳缓冲液:980ml蒸馏水中加入50×TAE母液20ml。 ⑷50×TAE母液:Tris 121g,0.5M EDTA(pH8.0)50ml,冰醋酸28.55ml,定容至500ml。

基因检测基因分型指导临床个体化用药

基因分型检测指导个体化用药 据联合国世界卫生组织统计,全球死亡患者中三分之一是死于不合理用药,而非死于自然疾病本身。我国卫生部药品不良反应监测中心的数据为:住院病人中,每年约有19.2万人死于药品不良反应;家庭用药不良反应需要住院治疗的病人则多达250万人。 人们对药物毒副作用不重视是药物不良反应的重要原因。处方中的剂量多是常规剂量,对患者来说未必准确,没考虑个人代谢耐受因素,长期过量用药,很可能导致慢性药物中毒。 基因组的多态性是导致药物反应多态性的重要因素。实际上,每个人有自己特有的药物代谢基因,决定着药物的代谢和耐受剂量,只有根据自己的耐受剂量服药,才是最合理的安全剂量。进行药物代谢相关基因型检测,合理调整用药剂量,使长期用药更安全,毒副作用更小,效果更好。 药物基因组学正是从已知基因对药物效应的影响,确定药物作用的靶点,研究从表型到基因型的药物反应个体多样性。从基因水平研究证明和阐述药物疗效以及药物作用的靶位、作用模式和毒副作用。揭示药物反应多态性这些差异的遗传特征,鉴别基因序列中的差异,并以药物效应及安全性为目标,研究各种基因突变与药效及安全性之间的关系。通过对药物疗效与安全性的遗传体质评估,减少药物毒副作用及耐药现象发生,实现“个性化用药”的目标。 我们第四军医大学药学系药物基因组教研室经过研究,已开发了结核病用药指导的基因检测,乙肝治疗药物拉米夫定、抗凝剂药物华法林以及铂类、5-氟尿嘧啶、巯基嘌呤类等肿瘤化疗药物的用药指导基因检测项目,倡导基于基因分型的个体化合理用药。同时还开发了人乳头瘤病毒筛查与宫颈癌预警项目。 1.结核病用药指导的基因检测: 近年来,结核分枝杆菌耐药现象日趋严重,大大削弱了抗结核药物的疗效。目前结核菌的耐药性问题已成为结核病疫情上升和难以控制的一个重要原因。研究表明,结核分枝杆菌基因中基因突变所引起的耐药性是结核分枝杆菌产生耐药的主要方式。多数导致结核分枝杆菌耐药的基因突变机理比较明确,异烟肼、利福平、乙胺丁醇是一线抗结核药物。kat G 基因的点突变与异烟肼耐药性密切相关,kat G 基

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性 (longth polymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(single nucleotide polymorphism, SNP), SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 长度多态性:一类为可变数目***重复序列(variable number of tandem repeats, VNTRS),它是由于相同的重复顺序重复次数不同所致,它决定了小卫星DNA (minisatellite)长度的多态性。小卫星是由15-65 bp的基本单位***而成,总长通常不超过20bp,重复次数在人群中是高度变异的。另一类长度多态性是由于基因的某一片段的缺失或插入所致,如微卫星DNA(microsatellite),它们是由重复序列***构成,基本序列只有1-8bp,如(TA)n及(CGG)n等,通常重复10-60次。长度多态性是按照孟德尔方式遗传的,它们在基因定位、DNA指纹分析,遗传病的分析和诊断中广泛地应用。 造成基因多态性的原因:1复等位基因(multiple allele)位于一对同源染色体上对应位置的一对基因称为等位基因(allele)。由于群体中的突变,同一座位的基因

遗传标记STR基因座分型

遗传标记STR基因座的高分辨电泳分型 摘要:STR(Short Tandem Repeat,短片段重复序列)广泛存在于人类及哺乳动物的基因组中,具有高度多态性,一般由2~6个碱基构成一个核心序列,核心序列串联重复排列,由核心序列重复数目的变化产生长度多态性。本实验用磁珠法提取人类基因组DNA后,用三对引物(D1S1677、D4S2364和D10S1248)分别对一号染色体、四号染色体和十号染色体的STR序列进行PCR扩增,通过聚丙烯酰氨凝胶电泳技术(PAGE)对PCR产物进行分离,最后用EB染色凝胶后在紫外灯下观察实验结果并进行分析。通过此次实验,我们了解了STR序列的特征和相关应用,掌握了磁珠法提取人类基因组DNA技术、PCR技术,以及聚丙烯酰氨凝胶电泳技术(PAGE)。 关键词:STR磁珠法PCR扩增聚丙烯酰氨凝胶电泳技术(PAGE) 1.引言 DNA指纹技术是一项具有广泛应用价值的技术。它在人类医学中被用于个体鉴别、确定亲缘关系、医学诊断及寻找与疾病连锁的遗传标记;在动物进化学中可用于探明动物种群的起源及进化过程;在物种分类中,可用于区分不同物种,也有区分同一物种不同品系的潜力。在作物的基因定位及育种上也有非常广泛的应用。 DNA指纹技术的发展经历了三代。第一代DNA指纹技术利用了DNA 指纹图谱。1984年英国莱斯特大学的遗传学家Jefferys及其合作者首次将分离的人源小卫星DNA用作基因探针,同人体核DNA的酶切片段杂交,获得了由多个位点上的等位基因组成的长度不等的杂交带图纹,这种图纹极少有两个人完全相同,故称为“DNA指纹”,意思是它同人的指纹一样是每个人所特有的。众多“DNA指纹”组成“DNA指纹图谱”。第二代DNA指纹技术用PCR 的方法对STR位点进行PCR扩增可得到不同长度DNA片段,用银染或荧光的方法对扩增后的DNA片段检测得到DNA指纹。第三代DNA指纹技术是用PCR的方法对SNP位点进行PCR扩增。 STR(Short Tandem Repeat,短片段重复序列)广泛存在于人类及哺乳动物的基因组中,具有高度多态性。它们一般由2~6个碱基构成一个核心序列,核心序列串联重复排列,由核心序列重复数目的变化产生长度多态性。对于一个特定的个体,染色体上某个特定位置的重复序列的重复次数是固定的,而对于不同的个体在同一位置处的重复次数可能不同,这就构成了人群中这些重复序列的多态性。由于人类基因组中这种重复序列非常多,通过对这种多态性的检测,就可以明确区分个体与个体的不同,确定父母子的亲缘关系,这就是STR 分型。联合应用16个STR位点的特异性,其个体识别率可达0.999999999998,其父权排除率可达0.99998。 本次实验中人类基因组DNA的提取使用的是磁珠法核酸纯化技术。它采用了纳米级磁珠微珠,这种磁珠微珠的表面标记了一种官能团,能同核酸发生吸附反应。该方法快速简捷,一般可在36分钟完成。不用多次漂洗磁珠也可确保基因组DNA的高纯度,提取出的基因组DNA OD260/OD280典型的比值达 1.7~1.9,长度可达20kb~50kb,可直接用于PCR、Southern-blot和各种酶切反应。 聚合酶链式反应(Polymerase Chain Reaction,PCR)是体外核酸扩增技术,由变性、退火、延伸三个基本反应步骤构成。本实验以人类基因组DNA为模板,以dNTP为原料,以含有Mg2+的buffer为缓冲液,在Taq酶催化下,用特定引物(D1S1677、D4S2364和D10S1248)为延伸起点,通过变性、退火、延伸等步骤,获得不同基因座的STR扩增片段。可用于基因分离克隆,序列分析,基因表达调控,基因多态性研究等许多方面。总之,PCR是一项DNA 体外合成放大技术,能快速特异地在体外扩增任何目的DNA。可用于基因分离克隆,序列分

基因多态性分析

人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂

基因多态性的检测方法

基因多态性的检测方法 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性(longth polymorphism)。 基因多态性的主要检测方法简述如下: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变,用限制酶切割基因组时,所产生的片段数目和每个片段的长度就不同,即所谓的限制性片段长度多态性,导致限制片段长度发生改变的酶切位点,又称为多态性位点。最早是用Southern Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。 2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility shift),多用于鉴定是否存在突变及诊断未知突变。 3.PCR-ASO探针法(PCR-allele specific oligonucleotide, ASO):即等位基因特异性寡核苷酸探针法。在PCR扩增DNA片段后,直接与相应的寡核苷酸探杂交,即可明确诊断是否有突变及突变是纯合子还是杂合子。其原理是:用PCR扩增后,产物进行斑点杂交或狭缝杂交,针对每种突变分别合成一对寡核苷酸片段作为探针,其中一个具有正常序列,另一个则具有突变碱基。突变碱基及对应的正常碱基匀位于寡核苷酸片段的中央,严格控制杂交及洗脱条件,使只有与探针序列完全互补的等位基因片段才显示杂交信号,而与探针中央碱基不同的等位基因片段不显示杂交信号,如果正常和突变探针都可杂交,说明突变基因是杂合子,如只有突变探针可以杂交,说明突变基因为纯合子,若不能与含有突变序列的寡核苷探针杂交,但能与相应的正常的寡核苷探针杂交,则表示受检者不存在这种突变基因。若与已知的突变基因的寡核苷探针匀不能杂交,提示可能为一种新的突变类型。 4. PCR-SSO法:SSO技术即是顺序特异寡核苷酸法(Sequence Specific Oligonucleotide, SSO)。原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行

遗传病及遗传多态性

遗传病及遗传多态性 遗传病(hereditary disease)由基因突变或染色体畸变引起的疾病。已知的遗传病约有5000种,可分为3大类: 单基因遗传病由某一基因突变而引起,又分为:(1)常染色体显性遗传病,致病基因位于1~22号常染色体中的某一对上,且呈显性。如并指、多指、视网膜母细胞瘤、遗传性小脑性运动失调、先天性肌强直、多发性肠胃息肉、遗传性卟啉病等。(2)常染色体隐性遗传病,致病基因位于1~22号常染色体中的某一对上,且呈隐性。如白化病、先天性聋哑症、苯丙酮尿症、半乳糖血症、先天性鳞皮病等。(3)伴性遗传病,由性染色体上的基因发生突变而引起。包括X连锁隐性遗传病(致病基因位于X染色体上且呈隐性),如红绿色盲、血友病、先天性白内障、先天性丙种球蛋白缺乏症等;X连锁显性遗传病(致病基因位于X 染色体上且呈显性),如抗维生素D佝偻病、遗传性肾炎等。 多基因遗传病受多对微效基因控制并易受环境因素影响的遗传病。如唇裂、腭裂、先天性巨结肠、先天性幽门狭窄、早发性糖尿病、各种先天性心脏病等。 染色体异常病由先天性的染色体数目异常或结构异常而引起。又分为:(1)常染色体病,由1~22号常染色体发生畸变而引起。包括单体综合征,某一号染色体为单体,如21单体和22单体,这类病人极少见,大都于胎儿期死亡;三体综合征,某一号同源染色体不是两个而是三个,如21三体(又称先天愚型或唐氏综合征,核型为47XX或XY;+21)、18三体(Edward氏综合征)和13三体(Patan氏综合征)等;部分三体综合征(由某一片段有三份而引起)如9p部分三体综合征(9号染色体的短臂有三份);部分单体综合征(由某一常染色体的部分缺失而引起),如猫叫综合征(婴儿期哭声类似猫叫)就是5号染色体短臂部分缺失引起的。(2)性染色体病,由X和Y性染色体数目或结构变异而引起。如女性的特纳氏综合征(45,XO),男性的克氏综合征(47,XXY)等。遗传病目前尚难根治,故应积极预防。预防的措施有检出致病基因的携带者与禁止近亲结婚,推行计划生育,开展遗传咨询,进行产前检查与中止有病胎儿的妊娠等。 遗传多态性(genetic polymorphism)在一个群体内存在两种或两种以上非连续变异类型,而其中最罕见类型的频率不小于0.01(或0.05)的现象。常见的不同水平上的遗传多态性有:(1)基因多态性(gene polymorphism)。经调查人类大多数群体的ABO血型系统的三种复等位基因I A、I B和i的频率,最高的不超过0.55,最低的不小于0.2,所以,ABO血型系统的基因座为多态基因座。据研究,大多数生物的多态基因座约占总数基因座的15%~50%,即约有1/4~1/2的基因座存在两种或两种以上的等位基因。(2)染色体多态性(chromosome polymorphism)。在一群体中的同一染色体上可以发生不同的倒位或易位。例如拟暗果蝇(Drosophila pseudoobscura)的第三染色体上存在多种倒位,其自然群体中的倒位类型竟多达20余种。植物群体中的倒位多态性比动物的更普遍。在一些动植物群体中(如蟑螂、直果曼陀罗)还观察到易位多态性。此外,随着研究的深入,在分子水平上还发现核酸有限制性片段长度多态性(restriction fragment length polymorphism,RFLP),例如,在群体中用同一限制性内切酶“切割”DNA,可得到不同长度的DNA片段。 现在一般用自然选择理论来解释遗传多态性产生的原因,主要有杂合优势说和依赖 选择说。杂合优势说认为,杂合体(如Aa)在适应能力上要优于纯合体(如AA和aa),因此群体中的等位基因A和a的频率就会维持在一个既不过高也不过低的水平上。依赖选

基因多态性及其生物学作用和医学意义doc资料

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义 一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2 种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性 (longth polymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(single nucleotide polymorphism, SNP), SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 长度多态性:一类为可变数目***重复序列(variable number of tandem repeats, VNTRS),它是由于相同的重复顺序重复次数不同所致,它决定了小卫星 DNA(minisatellite)长度的多态性。小卫星是由15-65 bp的基本单位***而 成,总长通常不超过20bp,重复次数在人群中是高度变异的。另一类长度多态性是由于基因的某一片段的缺失或插入所致,如微卫星DNA (microsatellite),它们是由重复序列***构成,基本序列只有1-8bp,如(TA)n及

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义 一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(genepolymorphism)。这种多态性可以分为两类,即DNA位点多态性(sitepolymorphism)和长度多态性(longthpolymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(singlenucleotidepolymorphism,SNP),SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 的基本单位*** 如(TA)n 及(CGG)n 基因( )一对等1 指由于碱 义突变 2.对 达产物,数个碱基的缺失、片段缺失等匀有可能造成剪接位点的缺失。 3.蛋白质肽链中的片段缺失:无义突变和DNA片段的缺失都可以导致肽链中的片段缺失,致使基因编码的蛋白质失去原有的功能。移码突变不仅翻译后的肽链中氨基酸序列发生改变,而且也导致肽链中的大片段缺失。4.启动子的突变及非转录区的突变:可以使基因的转录水平或活性的增强或降低。 5.基因多态性的基因型频率分布:在人群中符合Hardy-Wenberg平衡。 三、基因多态性的医学意义: 人类基因多态性在阐明人体对疾病、毒物的易感性与耐受性,疾病临床表现的多样性(clinicalphenotypediversity),以及对药物治疗的反应性上都起着重要的作用。临床上早期有关基因多态性的研究是从HLA基因开始的,分析基因型在疾病发生易感性方面的作用,如HLA-B27等位基因与强直性脊椎炎发生率的密切关联,可作为诊断的依据。通过基因多态性的研究,可从基因水平揭示人类不同个体间生物活性物质的功能及效应存在着差异的本质。通过对基因多态性与疾病的易感性的联系研究,如P53抑癌基因多态性与肿瘤发生及转移的关系研究,可阐明人体对疾病、毒物和应激的易感性,不仅为临床医学也为预防医学的发展带来新

相关文档
相关文档 最新文档